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Abstract

Fact verification (FV) is a challenging task

which requires to retrieve relevant evidence

from plain text and use the evidence to ver-

ify given claims. Many claims require to si-

multaneously integrate and reason over several

pieces of evidence for verification. However,

previous work employs simple models to ex-

tract information from evidence without let-

ting evidence communicate with each other,

e.g., merely concatenate the evidence for pro-

cessing. Therefore, these methods are unable

to grasp sufficient relational and logical infor-

mation among the evidence. To alleviate this

issue, we propose a graph-based evidence ag-

gregating and reasoning (GEAR) framework

which enables information to transfer on a

fully-connected evidence graph and then uti-

lizes different aggregators to collect multi-

evidence information. We further employ

BERT, an effective pre-trained language repre-

sentation model, to improve the performance.

Experimental results on a large-scale bench-

mark dataset FEVER have demonstrated that

GEAR could leverage multi-evidence infor-

mation for FV and thus achieves the promis-

ing result with a test FEVER score of 67.10%.

Our code is available at https://github.

com/thunlp/GEAR.

1 Introduction

Due to the rapid development of information ex-

traction (IE), huge volumes of data have been

extracted. How to automatically verify the

data becomes a vital problem for various data-

driven applications, e.g., knowledge graph com-

pletion (Wang et al., 2017) and open domain

question answering (Chen et al., 2017a). Hence,

many recent research efforts have been devoted to

fact verification (FV), which aims to verify given

claims with the evidence retrieved from plain text.

† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

“SUPPORTED” Example

Claim The Rodney King riots took place in the most populous
county in the USA.

Evidence
(1) The 1992 Los Angeles riots, also known as the
Rodney King riots were a series of riots, lootings, ar-
sons, and civil disturbances that occurred in Los An-
geles County, California in April and May 1992.
(2) Los Angeles County, officially the County of Los
Angeles, is the most populous county in the USA.

“REFUTED” Example

Claim Giada at Home was only available on DVD.

Evidence
(1) Giada at Home is a television show and first aired
on October 18, 2008, on the Food Network.
(2) Food Network is an American basic cable and
satellite television channel.

Table 1: Some examples of reasoning over several

pieces of evidence together for verification. The italic

words are the key information to verify the claim. Both

of the claims require to reason and aggregate multiple

evidence sentences for verification.

More specifically, given a claim, an FV system is

asked to label it as “SUPPORTED”, “REFUTED”,

or “NOT ENOUGH INFO”, which indicate that

the evidence can support, refute, or is not suffi-

cient for the claim.

Existing FV methods formulate FV as a natural

language inference (NLI) (Angeli and Manning,

2014) task. However, they utilize simple evidence

combination methods such as concatenating the

evidence or just dealing with each evidence-claim

pair. These methods are unable to grasp sufficient

relational and logical information among the ev-

idence. In fact, many claims require to simulta-

neously integrate and reason over several pieces

of evidence for verification. As shown in Ta-

ble 1, for both of the “SUPPORTED” example and

“REFUTED” example, we cannot verify the given

claims via checking any evidence in isolation. The

claims can be verified only by understanding and

reasoning over the multiple evidence.

To integrate and reason over information from

multiple pieces of evidence, we propose a

https://github.com/thunlp/GEAR
https://github.com/thunlp/GEAR
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graph-based evidence aggregating and reasoning

(GEAR) framework. Specifically, we first build a

fully-connected evidence graph and encourage in-

formation propagation among the evidence. Then,

we aggregate the pieces of evidence and adopt a

classifier to decide whether the evidence can sup-

port, refute, or is not sufficient for the claim. In-

tuitively, by sufficiently exchanging and reason-

ing over evidence information on the evidence

graph, the proposed model can make the best of

the information for verifying claims. For exam-

ple, by delivering the information “Los Angeles

County is the most populous county in the USA”

to “the Rodney King riots occurred in Los Ange-

les County” through the evidence graph, the syn-

thetic information can support “The Rodney King

riots took place in the most populous county in

the USA”. Furthermore, we adopt an effective pre-

trained language representation model BERT (De-

vlin et al., 2019) to better grasp both evidence and

claim semantics.

We conduct experiments on the large-scale

benchmark dataset for Fact Extraction and VER-

ification (FEVER) (Thorne et al., 2018a). Ex-

perimental results show that the proposed frame-

work outperforms recent state-of-the-art baseline

systems. The further case study indicates that our

framework could better leverage multi-evidence

information and reason over the evidence for FV.

2 Related Work

2.1 FEVER Shared Task

The FEVER shared task (Thorne et al., 2018b)

challenges participants to develop automatic fact

verification systems to check the veracity of

human-generated claims by extracting evidence

from Wikipedia. The shared task is hosted as

a competition on Codalab1 with a blind test

set. Nie et al. (2019); Yoneda et al. (2018) and

Hanselowski et al. (2018) have achieved the top

three results among 23 teams.

Existing methods mainly formulate FV as an

NLI task. Thorne et al. (2018a) simply concate-

nate all evidence together, and then feed the con-

catenated evidence and the given claim into the

NLI model. Luken et al. (2018) adopt the de-

composable attention model (DAM) (Parikh et al.,

2016) to generate NLI predictions for each claim-

evidence pair individually and then aggregate all

1https://competitions.codalab.org/

competitions/18814

NLI predictions for final verification. Then,

Hanselowski et al. (2018); Yoneda et al. (2018);

Hidey and Diab (2018) adopt the enhanced se-

quential inference model (ESIM) (Chen et al.,

2017b), a more effective NLI model, to infer the

relevance between evidence and claims instead

of DAM. As pre-trained language models have

achieved great results on various NLP applica-

tions, Malon (2018) fine-tunes the generative pre-

training transformer (GPT) (Radford et al., 2018)

for FV. Based on the methods mentioned above,

Nie et al. (2019) specially design the neural se-

mantic matching network (NSMN), which is a

modification of ESIM and achieves the best results

in the competition. Unlike these methods, Yin

and Roth (2018) propose the TWOWINGOS sys-

tem which trains the evidence identification and

claim verification modules jointly.

2.2 Natural Language Inference

The natural language inference (NLI) task requires

a system to label the relationship between a pair of

premise and hypothesis as entailment, contradic-

tion or neutral. Several large-scale datasets have

been proposed to promote the research in this di-

rection, such as SNLI (Bowman et al., 2015) and

Multi-NLI (Williams et al., 2018). These datasets

have made it feasible to train complicated neural

models which have achieved the state-of-the-art

results (Bowman et al., 2015; Parikh et al., 2016;

Sha et al., 2016; Chen et al., 2017b,c; Munkhdalai

and Yu, 2017; Nie and Bansal, 2017; Conneau

et al., 2017; Gong et al., 2018; Tay et al., 2018;

Ghaeini et al., 2018). It is intuitive to transfer

NLI models into the claim verification stage of

the FEVER task and several teams from the shared

task have achieved promising results by this way.

2.3 Pre-trained Language Models

Pre-trained language representation models such

as ELMo (Peters et al., 2018) and OpenAI

GPT (Radford et al., 2018) are proven to be ef-

fective on many NLP tasks. BERT (Devlin et al.,

2019) employs bidirectional transformer and well-

designed pre-training tasks to fuse bidirectional

context information and obtains the state-of-the-

art results on the NLI task. In our experiments, we

find the fine-tuned BERT model outperforms other

NLI-based models on the claim verification sub-

task of FEVER. Hence, we use BERT as the sen-

tence encoder in our framework to better encoding

semantic information of evidence and claims.

https://competitions.codalab.org/competitions/18814
https://competitions.codalab.org/competitions/18814
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Figure 1: The pipeline of our method. The GEAR framework is illustrated in the claim verification section.

3 Method

We employ a three-step pipeline with compo-

nents for document retrieval, sentence selection

and claim verification to solve the task. In the doc-

ument retrieval and sentence selection stages, we

simply follow the method from Hanselowski et al.

(2018) since their method has the highest score on

evidence recall in the former FEVER shared task.

And we propose our Graph-based Evidence Ag-

gregating and Reasoning (GEAR) framework in

the final claim verification stage. The full pipeline

of our method is illustrated in Figure 1.

3.1 Document Retrieval and Sentence

Selection

In this section, we describe our document retrieval

and sentence selection components. Additionally,

we add a threshold filter after the sentence selec-

tion component to filter out those noisy evidence.

In the document retrieval step, we adopt the

entity linking approach from Hanselowski et al.

(2018). Given a claim, the method first utilizes

the constituency parser from AllenNLP (Gardner

et al., 2018) to extract potential entities from the

claim. Then it uses the entities as search queries

and finds relevant Wikipedia documents via the

online MediaWiki API2. The seven highest-ranked

results for each query are stored to form a candi-

date article set. Finally, the method drops the ar-

ticles which are not in the offline Wikipedia dump

and filters the articles by the word overlap between

their titles and the claim.

The sentence selection component selects the

most relevant evidence for the claim from all sen-

tences in the retrieved documents.

Hanselowski et al. (2018) modify the ESIM

2https://www.mediawiki.org/wiki/API:

Main_page

model to compute the relevance score between the

evidence and the claim. In the training phase, the

model uses the hinge loss function
∑

max(0, 1+
sn−sp) with the negative sampling strategy, where

sp and sn denote the relevance scores of positive

and negative samples. In the test phase, the final

model ensembles the results from 10 models with

different random seeds. Sentences with top-5 rel-

evance scores are selected to form the final evi-

dence set in the original method.

In addition to the original model (Hanselowski

et al., 2018), we add a relevance score filter with

a threshold τ . Sentences with relevance scores

lower than τ are filtered out to alleviate the noises.

Thus the final size of the retrieved evidence set is

equal to or less than 5. We choose different val-

ues of τ and select the value based on the dev

set result. The evaluation results of the document

retrieval and sentence selection components are

shown in Section 5.1.

3.2 Claim Verification with GEAR

In this section, we describe our GEAR framework

for claim verification. As shown in Figure 1, given

a claim and the retrieved evidence, we first uti-

lize a sentence encoder to obtain representations

for the claim and the evidence. Then we build

a fully-connected evidence graph and propose an

evidence reasoning network (ERNet) to propa-

gate information among evidence and reason over

the graph. Finally, we utilize an evidence aggre-

gator to infer the final results.

Sentence Encoder

Given an input sentence, we employ BERT (De-

vlin et al., 2019) as our sentence encoder by ex-

tracting the final hidden state of the [CLS] token

as the representation, where [CLS] is the special

classification embedding in BERT.

https://www.mediawiki.org/wiki/API: Main_page
https://www.mediawiki.org/wiki/API: Main_page
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Specifically, given a claim c and N pieces of

retrieved evidence {e1, e2, ..., eN}, we feed each

evidence-claim pair (ei, c) into BERT to obtain the

evidence representation ei. We also feed the claim

into BERT alone to obtain the claim presentation

c. That is,

ei = BERT (ei, c) ,

c = BERT (c) .
(1)

Note that we concatenate the evidence and the

claim to extract the evidence representation be-

cause the evidence nodes in the reasoning graph

need the information from the claim to guide the

message passing process among them.

Evidence Reasoning Network

To encourage the information propagation among

evidence, we build a fully-connected evidence

graph where each node indicates a piece of evi-

dence. We also add self-loop to every node be-

cause each node needs the information from it-

self in the message propagation process. We use

h
t = {ht

1
,ht

2
, ...,ht

N} to represent the hidden

states of nodes at layer t, where ht
i ∈ RF×1 and F

is the number of features in each node. The initial

hidden state of each evidence node h0

i is initialized

by the evidence presentation: h0

i = ei.

Inspired by recent work on semi-supervised

graph learning and relational reasoning (Kipf and

Welling, 2017; Velickovic et al., 2018; Palm et al.,

2018), we propose an evidence reasoning network

(ERNet) to propagate information among the ev-

idence nodes. We first use an MLP to compute

the attention coefficients between a node i and its

neighbor j (j ∈ Ni),

pij = W
t−1

1
(ReLU(Wt−1

0
(ht−1

i ‖ht−1

j ))), (2)

where Ni denotes the set of neighbors of node i,

W
t−1

0
∈ RH×2F and W

t−1

1
∈ R1×H are weight

matrices, and ·‖· denotes concatenation operation.

Then, we normalize the coefficients using the

softmax function,

αij = softmaxj(pij) =
exp(pij)∑

k∈Ni
exp(pik)

. (3)

Finally, the normalized attention coefficients are

used to compute a linear combination of the neigh-

bor features and thus we obtain the features for

node i at layer t,

h
t
i =

∑

j∈Ni

αijh
t−1

j . (4)

By stacking T layers of ERNet, we assume

that each evidence could grasp enough informa-

tion by communicating with other evidence. We

feed the final hidden states of evidence nodes

{hT
1
,hT

2
, ...,hT

N} into our evidence aggregator to

make the final inference.

Evidence Aggregator

We employ an evidence aggregator to gather infor-

mation from different evidence nodes and obtain

the final hidden state o ∈ RF×1. The aggregator

may utilize different aggregating strategies and we

suggest three aggregators in our framework:

Attention Aggregator. Here we use the repre-

sentation of the claim c to attend the hidden states

of evidence and get the final aggregated state o.

pj = W
′
1(ReLU(W′

0(c‖h
T
j ))),

αj = softmax(pj) =
exp(pj)∑N
k=1

exp(pk)
,

o =

N∑

k=1

αkh
T
k ,

(5)

where W
′
0
∈ RH×2F and W

′
1
∈ R1×H .

Max Aggregator. The max aggregator per-

forms the element-wise Max operation among hid-

den states.

o = Max(hT
1 ,h

T
2 , ...,h

T
N ). (6)

Mean Aggregator. The mean aggregator per-

forms the element-wise Mean operation among

hidden states.

o = Mean(hT
1 ,h

T
2 , ...,h

T
N ). (7)

Once the final state o is obtained, we employ a

one-layer MLP to get the final prediction l.

l = softmax(ReLU(Wo+ b)), (8)

where W ∈ RC×F and b ∈ RC×1 are parame-

ters, and C is the number of prediction labels.

4 Experimental Settings

4.1 Dataset

We conduct our experiments on the large-scale

dataset FEVER (Thorne et al., 2018a). The dataset

consists of 185,455 annotated claims with a set

of 5,416,537 Wikipedia documents from the June

2017 Wikipedia dump. We follow the dataset par-

tition from the FEVER Shared Task (Thorne et al.,

2018b). Table 2 shows the statistics of the dataset.
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Split SUPPORTED REFUTED NEI

Train 80,035 29,775 35,639

Dev 6,666 6,666 6,666

Test 6,666 6,666 6,666

Table 2: Statistics of FEVER dataset.

4.2 Baselines

In this section, we describe the baseline systems in

our experiments. We first introduce the top-3 sys-

tems from the FEVER shared task. As BERT (De-

vlin et al., 2019) has achieved promising perfor-

mance on several NLP tasks, we also implement

two baseline systems via fine-tuning BERT in the

claim verification task.

Shared Task Systems

We choose the top-3 models from the FEVER

shared task as our baselines.

The Athene UKP TU Darmstadt team (Athene)

(Hanselowski et al., 2018) combines five inference

vectors from the ESIM model via attention mech-

anism to make the final prediction.

The UCL Machine Reading Group (UCL

MRG) (Yoneda et al., 2018) predicts the label of

each evidence-claim pair and aggregates the re-

sults via a label aggregation component.

The UNC NLP team (Nie et al., 2019) proposes

the neural semantic matching network and uses the

model jointly to solve all three subtasks. They

also incorporate additional information such as

pageview frequency and WordNet features. They

have achieved best results in the competition.

BERT Fine-tuning Systems

We implement two BERT fine-tuning systems

with different evidence combination approaches.

The BERT-Concat system concatenates all evi-

dence into a single string while the BERT-Pair

system encodes each evidence-claim pair indepen-

dently and then aggregates the results. Both sys-

tems share the same document retrieval and sen-

tence selection components proposed by us.

BERT-Concat. In the BERT-Concat system,

we simply concatenate all evidence into a single

sentence and utilize BERT to predict the relation

between the concatenated evidence and the claim.

In the training phase, we add the ground truth ev-

idence into the retrieved evidence set with rele-

vance score 1 and select five pieces of evidence

with the highest scores. In the test phase, we con-

catenate the retrieved evidence for predicting.

BERT-Pair. In the BERT-Pair system, we uti-

lize BERT to predict the label for each evidence-

claim pair. Concretely, we use each evidence-

claim pair as the input and the label of the claim

as the prediction target. In the training phase, we

select the ground truth evidence for SUPPORTED

and REFUTED claims and the retrieved evidence

for NEI claims. In the test phase, we predict labels

for all retrieved evidence-claim pairs. Because dif-

ferent evidence-claim pairs may have inconsistent

predicted labels, we then utilize an aggregator to

obtain the final claim label. We find the aggre-

gator only returning the predicted label from the

most relevant evidence has the best performance.

4.3 Hyperparameter Settings

We utilize BERTBASE (Devlin et al., 2019) in all

of the BERT fine-tuning baselines and our GEAR

framework. The learning rate is 2e-5.

For BERT-Concat, the maximum sequence

length is 256 and the batch size is 16. We limit

the max length for concatenated evidence to 240

and the max length for claims to 16. We train this

model for two epochs based on dev results. For

BERT-Pair, we set the maximum sequence length

to 128 and batch size to 32. We train this model for

one epoch. As for the GEAR framework, we use

the fine-tuned BERT-Pair model to extract features

and the batch size is 512.

In our ERNet, we set the batch size to 256,

the number of features F to 768 and the dimen-

sion of weight matrices H to 64. The model is

trained to minimize the negative log likelihood

loss on the predicted label using the Adam opti-

mizer (Kingma and Ba, 2015) with an initial learn-

ing rate of 5e-3 and L2 weight decay of 5e-4. We

use an early stopping strategy on the label accu-

racy of the validation set, with a patience of 20

epochs. We attempt to stack 0-3 ERNet layers and

analyze the effect of different layer numbers.

4.4 Evaluation Metrics

Besides traditional evaluation metrics such as la-

bel accuracy and F1, we use other two metrics to

evaluate our model.

FEVER score. The FEVER score is the la-

bel accuracy conditioned on providing at least one

complete set of evidence. Claims labeled as “NEI”

do not need the evidence.
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Model OFEVER

Athene 93.55

UCL MRG -

UNC NLP 92.82

Our Model 93.33

Table 3: Document retrieval evaluation on dev set (%).

(’-’ denotes a missing value)

τ OFEVER Precision Recall F1 GEAR LA

0 91.10 24.08 86.72 37.69 74.84

10−4 91.04 30.88 86.63 45.53 74.86

10−3 90.86 40.60 86.36 55.23 74.91

10−2 90.27 53.12 85.47 65.52 74.89

10−1 87.70 70.61 81.64 75.72 74.81

Table 4: Sentence selection evaluation and average la-

bel accuracy of GEAR with different thresholds on dev

set (%).

OFEVER score. The document retrieval and

sentence selection components are usually eval-

uated by the oracle FEVER (OFEVER) score,

which is the upper bound of the FEVER score by

assuming perfect downstream systems.

For all of the experiments with GEAR, the

scores (label accuracy, FEVER score) we report

on the dev set are mean values with 10 runs ini-

tialized by different random seeds.

5 Experimental Results and Analysis

In this section, we first present the evaluations

of the document retrieval and sentence selection

components. Then we evaluate our GEAR frame-

work in several different aspects. Finally, we

present a case study to demonstrate the effective-

ness of our framework.

5.1 Document Retrieval and Sentence

Selection

We use the OFEVER metric to evaluate the doc-

ument retrieval component. Table 3 shows the

OFEVER scores of our model and models from

other teams. After running the same model pro-

posed by Hanselowski et al. (2018), we find our

OFEVER score is slightly lower, which may due

to the random factors.

Then we compare our sentence selection com-

ponent with different thresholds, as shown in Ta-

ble 4. We find the model with threshold 0 achieves

the highest recall and OFEVER score. When

the threshold increases, the recall value and the

OFEVER score drop gradually while the precision

and F1 score increase. The results are consistent

with our intuition. If we do not filter out evidence,

more claims could be provided with the full evi-

dence set. If we increase the value of the thresh-

old, more pieces of noisy evidence are filtered out,

which contributes to the increase of precision and

F1.

5.2 Claim Verification with GEAR

In this section, we evaluate our GEAR framework

in different aspects. We first compare the label ac-

curacy scores between our framework and base-

line systems. Then we explore the effect of differ-

ent thresholds from the upstream sentence filter.

We also conduct additional experiments to check

the effect of sentence embedding. As there are

nearly 39% of claims require reasoning over mul-

tiple pieces of evidence, we construct a difficult

dev subset and check the effectiveness of our ER-

Net for evidence reasoning. Finally, we make an

error analysis and provide the theoretical upper-

bound label accuracy of our framework.

Model Evaluation

We use the label accuracy metric to evaluate the

effectiveness of different claim verification mod-

els. The second column of Table 7 shows the la-

bel accuracy of different models on the dev set.

We find the BERT fine-tuning models outperform

all of the models from the shared task, which

shows the strong capacity of BERT in represen-

tation learning and semantic understanding. The

BERT-Concat model has a slight improvement

over BERT-Pair, which is 0.37%.

Our final model outperforms the best BERT-

Concat baseline by 1.17%. As our framework pro-

vides a better way for evidence aggregating and

reasoning, the improvement demonstrates that our

framework has a better ability to integrate features

from different evidence by propagating, analyzing

and aggregating the features.

Effect of Sentence Thresholds

The rightmost column of Table 4 shows the results

of our GEAR frameworks with different sentence

selection thresholds. We choose the model with

threshold τ = 10−3, which has the highest label

accuracy, as our final model. When the thresh-

old increases from 0 to 10−3, the label accuracy

increases due to less noisy information. However,

when the threshold increases from 10−3 to 10−1,
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ERNet Layers
Aggregator

Attention Max Mean

0 66.17 65.36 65.03

1 67.13 66.63 66.76

2 67.44 67.24 67.56

3 66.53 66.72 66.89

Table 5: Label accuracy on the difficult dev set with

different ERNet layers and evidence aggregators (%).

ERNet Layers
Aggregator

Attention Max Mean

0 77.12 76.95 76.30

1 77.74 77.66 77.62

2 77.82 77.66 77.73

3 77.70 77.55 77.60

Table 6: Label accuracy on the evidence-enhanced dev

set with different ERNet layers and evidence aggrega-

tors (%).

the label accuracy decreases because informative

evidence is filtered out, and the model can not

obtain sufficient evidence to make the right infer-

ence.

Effect of Sentence Embedding

The BERT model we used in the sentence encod-

ing step is fine-tuned on the FEVER dataset for

one epoch. We need to find out whether the fine-

tuning process or simply incorporating the sen-

tence embeddings from BERT makes the major

contribution to the final result. We conduct an ex-

periment using a BERT model without the fine-

tuning process and we find the final dev label ac-

curacy is close to the result from a random guess.

Therefore, the fine-tuning process rather than sen-

tence embeddings plays an important role in this

task. We need the fine-tuning process to capture

the semantic and logical relations between evi-

dence and the claim. Sentence embeddings are

more general and cannot perform well in this spe-

cific task. So that we cannot just use sentence em-

beddings from other methods (e.g., ELMo, CNN)

to replace the sentence embeddings we used here.

Effectiveness of ERNet

In our observation, more than half of the claims in

the dev dataset only need one piece of evidence to

make the right inference. To verify the effective-

ness of our framework on reasoning over multiple

pieces of evidence, we build a difficult dev sub-

Model
Dev Test

LA FEVER LA FEVER

Athene 68.49 64.74 65.46 61.58

UCL MRG 69.66 65.41 67.62 62.52

UNC NLP 69.72 66.49 68.21 64.21

BERT Pair 73.30 68.90 69.75 65.18

BERT Concat 73.67 68.89 71.01 65.64

Our pipeline 74.84 70.69 71.60 67.10

Table 7: Evaluations of the full pipeline. The results of

our pipeline are chosen from the model which has the

highest dev FEVER score (%).

set via selecting samples from the original dev set.

For SUPPORTED and REFUTED classes, claims

which can be fully supported by only one piece of

evidence are filtered out. All of the NEI claims

are selected because the model needs all of the re-

trieved evidence to conclude that there is “NOT

ENOUGH INFO”. The difficult subset contains

7870 samples, which includes more than 39% of

the dev set.

We test our final model on the difficult sub-

set and present the results in Table 5. We find

our models with ERNet perform better than mod-

els without ERNet and the minimal improvement

between them is 1.27%. We can also discover

from the table that models with 2 ERNet lay-

ers achieve the best results, which indicates that

claims from the difficult subset require multi-step

evidence propagation. This result demonstrates

the ability of our framework to deal with claims

which need multiple evidence.

Error Analysis

In this section, we examine the effect of errors

propagating from upstream components. We uti-

lize an evidence-enhanced dev subset, which as-

sumes all pieces of ground truth evidence are re-

trieved, to test the theoretical upper-bound score

of our GEAR framework.

In our analysis, the main errors of our frame-

work come from the upstream document retrieval

and sentence selection components which can not

extract sufficient evidence for inferring. For exam-

ple, to verify the claim “Giada at Home was only

available on DVD”, we need the evidence “Giada

at Home is a television show and first aired on Oc-

tober 18, 2008, on the Food Network.” and “Food

Network is an American basic cable and satellite

television channel.”. However, the entity linking
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Claim:
Al Jardine is an American rhythm guitarist.

Truth evidence:
{Al Jardine, 0}, {Al Jardine, 1}

Retrieved evidence:
{Al Jardine, 1}, {Al Jardine, 0}, {Al Jardine, 2}, {Al Jar-
dine, 5}, {Jardine, 42}

Evidence:

(1) He is best known as the band’s rhythm guitarist, and for
occasionally singing lead vocals on singles such as “Help Me,
Rhonda” (1965), “Then I Kissed Her” (1965) and “Come Go
with Me” (1978).

(2) Alan Charles Jardine (born September 3, 1942) is an
American musician, singer and songwriter who co-founded
the Beach Boys.

(3) In 2010, Jardine released his debut solo studio album, A
Postcard from California.

(4) In 1988, Jardine was inducted into the Rock and Roll Hall
of Fame as a member of the Beach Boys.

(5) Ray Jardine American rock climber, lightweight back-
packer, inventor, author and global adventurer.

Label: SUPPORTED

Table 8: A case of the claim that requires integrating

multiple evidence to verify. The representation for ev-

idence “{DocName, LineNum}” means the evidence is

extracted from the document “DocName” and of which

the line number is LineNum.

method used in our document retrieval component

could not retrieve the “Food Network” document

only from parsing the content of the claim. Thus

the claim verification component can not make the

right inference with insufficient evidence.

To explore the effect of this issue, we test our

models on an evidence-enhanced dev set, in which

we add the ground truth evidence with relevance

score 1 into the evidence set before the sentence

threshold filter. It ensures that each claim in the

evidence-enhanced set is provided with the ground

truth evidence as well as the retrieved evidence.

The experimental results are shown in Table 6.

We can find that all scores in the table increase by

more than 1.4% compared to the original dev set

label accuracy in Table 7 because of the addition of

the ground truth evidence. Because of the assump-

tion of oracle upstream components, the results in

Table 6 indicate the theoretical upper bound label

accuracy of our framework.

The results show the challenges in the previous

evidence retrieval task, which could not be solved

by current models. Nie et al. (2019) propose a

two-hop evidence enhancement method which im-

proves 0.08% on their final FEVER score. As the

addition of the ground truth evidence leads to a

0 1 2 3 4
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2
3

4
5

1 0.0002 0.0008 0.0008 0.0008

0.42 0.41 0.056 0.056 0.056

0.11 0.57 0.1 0.1 0.1

0.13 0.48 0.13 0.13 0.13

0.17 0.33 0.17 0.17 0.17

0.37 0.15 0.15 0.16 0.16

0.2

0.4

0.6

0.8

Figure 2: Attention map for the case in Table 8. The

first five rows indicate the attention weights from nodes

1 to 5 in the first ERNet layer and the last row shows

the attention weights from the attention aggregator.

more than 1.4% increase in our experiment, it is

worthwhile to design a better evidence retrieval

pipeline, which remains to be our future research.

5.3 Full Pipeline

We present the evaluation of our full pipeline in

this section. Note that there is a gap between the

label accuracy and the final FEVER score due to

the completeness of the evidence set. We find that

a model which is good at predicting NEI instances

tends to obtain higher FEVER score. So we

choose our final model based on the dev FEVER

score among all of our experiments. This model

contains one layer of ERNet and uses the attention

aggregator. The threshold of the sentence filter is

10−3.

Table 7 presents the evaluations of the full

pipeline. We find the test FEVER score of BERT

fine-tuning systems outperform other shared task

models by nearly 1%. Furthermore, our full

pipeline outperforms the BERT-Concat baseline

by 1.46% and achieves significant improvements.

5.4 Case study

Table 8 shows an example in our experiments

which needs multiple pieces of evidence to make

the right inference. The ground truth evidence set

contains the sentences from the article “Al Jar-

dine” with line number 0 and 1. These two pieces

of evidence are also ranked at top two in our re-

trieved evidence set. To verify whether “Al Jar-

dine is an American rhythm guitarist”, our model

needs the evidence “He is best known as the band’s

rhythm guitarist” as well as the evidence “Alan
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Charles Jardine ... is an American musician”. We

plot the attention map from our final model with

one layer of ERNet and the attention aggregator

in Figure 2. We can find that all evidence nodes

tend to attend the first and the second evidence

nodes, which provide the most useful information

in this case. The attention weights in other evi-

dence nodes are pretty low, which indicates that

our model has the ability to select useful informa-

tion from multiple pieces of evidence.

6 Conclusion

We propose a novel Graph-based Evidence Aggre-

gating and Reasoning (GEAR) framework on the

claim verification subtask of FEVER. The frame-

work utilizes the BERT sentence encoder, the evi-

dence reasoning network (ERNet) and an evidence

aggregator to encode, propagate and aggregate in-

formation from multiple pieces of evidence. The

framework is proven to be effective and our final

pipeline achieves significant improvements. In the

future, we would like to design a multi-step ev-

idence extractor and incorporate external knowl-

edge into our framework.
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