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Manufacturing involute gears using form grinding or form milling wheels are beneficial to hobs in some 
special cases, such as small scale production and, the obvious, manufacture of internal gears. To 
manufacture involute gears correctly the form wheel must be purpose-designed, and in this paper the 
geometry of the form wheel is determined through inverse calculation. A mathematical model is presented 
where it is possible to determine the machined gear tooth surface in three dimensions, manufactured 
by this tool, taking the finite number of cutting edges into account. The model is validated by comparing 
calculated results with the observed results of a gear manufactured by an indexable insert milling cutter.

This paper was originally presented at the 2014 International Gear Conference, Lyon Villeurbanne, France and is republished here with the authors’ permission.

Introduction
The dominant and most cost-effective manufacturing meth-
od for large scale production of involute gears is hobbing. 
Nevertheless, form grinding wheels and form milling cutters 
can be beneficial compared to hobs in some special cases, viz. 
cheap tooling in rapid prototyping and small scale production, 
the ability to manufacture internal gears, gear integrated com-
ponents can be machined complete in one machine and one 
set-up using multitasking CNC-machine and thereby reducing 
total lead time and cost. In addition, a new type of form milling 
cutter has been introduced to the market with indexable carbide 
inserts which prolong tool life and are capable of operating at 
higher cutting data, leading to higher productivity.

These tools are not universal, unlike true generating methods 
such as hobbing and shaping, and therefore must be matched 
to the gear to cut. When machining spur gears, one can choose 
from a selection of standard cutters for each module, where each 
cutter will, at the cost of small geometrical errors to the tooth 
form, cut a range of gear-tooth numbers. According to Dudley 
(Ref. 1), these cutters are sometimes used in practice to machine 
helical gears of small helical angles by matching the cutter to the 
virtual number of spur gear teeth. However, to machine helical 
gears correctly, the milling cutter must be purpose designed.

Previous work on machining helical profiles states two prob-
lems: 1) the direct problem — to determine the geometry of the 
manufactured helical profile given the tool geometry, and 2) 
the inverse problem — to determine the tool geometry that cor-
rectly machines the helical profile. One example of solving the 
direct problem in gear manufacturing is presented by Ishibashi 
et al. (Ref. 2), who used an element removal method to deter-
mine the manufactured gear tooth with given tool geometry. If 
interference occurred, corrections were made to the tool pro-
file. To solve the inverse problem, the helical profile to machine 
and the kinematic relation between the workpiece and tool must 
be specified in advance. This is presented in previous work 
for helical drill flute machining using a CAD/CAM approach 
(Refs. 3–4), for helical gear manufacturing by Xiao et al. (Ref. 5) 
using a contact point method and by Häussler (Ref. 6) using dif-
ferential geometry. These works derived the tool geometry that 
correctly machines the helical profile, but did not define the cut-
ting edges to the tool. Thereby no consideration was made of 

the machined surface topography. Shih and Chen (Ref. 7) inves-
tigated form grinding of helical gears with flank form correction 
via modifications to the machine tool axis controls and by mod-
ification to the tool profile form, using B-splines.

This paper, conversely, focuses on the manufactured tooth 
surface topography machined by both form milling cutters 
and form grinding discs where the tool geometry is obtained 
through inverse calculation. Using a milling cutter, the gear 
tooth can be finished-cut or rough-cut. If finished-cut, the 
achieved tooth surface topography is of interest as to how the 
gear will perform in operation. If the gear is rough-cut instead, 
additional grinding stock will be left on the involute flank in the 
milling process to account for feed marks and possible manufac-
turing errors to be removed in a subsequent refining operation. 
If the machined surface can be predicted in advance, it opens 
up for optimization of the manufacturing process, such as mini-
mizing the required amount of grinding stock and choosing 
process data. The machined tooth surface topography achieved 
after hobbing is presented by Vedmar (Ref. 8) using parametric 
differential functions for highest accuracy; this approach will 
also be used here. The optimal designs of form milling cutters 
and form grinding wheels are presented and the paper con-
cludes with an experimental verification using a form milling 

Figure 1  Basic rack.
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cutter with carbide inserts.

Geometry of the Tool
One of the intentions in 
this report is to determine 
the geometry of a disc-type 
form tool that should be able 
to manufacture an involute 
helical gear correctly. This 
is achieved through inverse 
calculation by invoking the 
geometry of the gear being 
manufctured and the kinet-
ic relation between work-
piece and tool. The geome-
try of an involute gear can be 
described through conjugate 
action with its basic member, 
in this case the basic rack. 
Presupposing a gear blank 
with the outer diameter 2Rtip, and rolling the basic rack with 
the normal module mn over the pitch circle Rt = mnz/2/cosβ, the 
complete gear tooth geometry is determined. The basic rack 
is described in the normal plane by Vedmar (Ref. 8) using the 
coordinates ξn and ηn (Fig 1). The design of basic racks is stan-
dardized for cylindrical gears; see, for example, DIN 867 (Ref. 9).

The basic rack forms the gear tooth in the transverse plane; in 
this plane the coordinates describing the basic rack are:

(1)

ξt =
ξn

cos β
ηt = ηn

In Figure 2 a helical gear is in contact with the basic rack at 
point P. At any contact, the rack and the gear have a common 
surface normal, and this normal must be directed through the 
pitch point. This gives the geometric relation:

(2)

Γ (ξn, ζ) =
− ξn + (ηn − x) cot φ + ζ tan βcos β

R0,t

and from the rack coordinates we have:
(3)

cot φ = − dηt = − dηn cos β
dξt dξn

Here, the coordinate ξn is chosen as the parameter. By divi-
sion with the normal module mn the ideal gear tooth surface is 
described by the non-dimensional parameters:

(4)

r =( ξ (ξn, ζ)
η (ξn, ζ)

ζ ) = ( R0,t sin (Γ) − ηn − x cos (Γ − φ))sin (φ)

R0,t cos (Γ) + ηn − x sin (Γ − φ)
sin (φ)

ζ

where η (ξn,0) divides the tooth space into two equally sym-
metric parts. The normal to the gear tooth surface will be need-
ed to determine the point of contact between the tool and the 
gear tooth surface, and to measure the distance from the ideal 
smooth tooth surface to the machined surface.

(5)

n =( nξ
nη
nζ

) = × = ( ∂η )∂ξn

∂r ∂r − ∂ξ
∂ξn ∂ζ ∂ξn

∂ξ ∂η − ∂η ∂ξ
∂ξn ∂ζ ∂ξn ∂ζ

Now the complete geometry of the helical gear tooth is 
described in detail. To determine the profile of the form wheel 
tool, which should be able to manufacture this gear correctly, 
the tool axis is positioned at the center distance a, and at the 
angle βc to the transverse plane of the gear (Fig. 3). If a point Pv 
on the tool is to generate a point Pg on the gear, these must be 
the same point in space — i.e. Pv = Pg = P. In addition, the nor-
mal of the gear tooth surface must coincide with the normal to 
the tool surface in such a point. The point Pg belongs to the gear 
tooth surface and is described in the gear coordinate system Og 
by r (ξn,ζ), and the surface normal by n (ξn, ζ). The same point 
and surface normal is found in the tool coordinate system Ov by:

(6)

rv =( ξv
ηv
ζv

) = ( ξψ cos βc − ζψ sin βc); where {ξψ = ξ(ξn, 0) cos ψ − η (ξn, 0) sin ψ
a − ηψ ξψ = ξ(ξn, 0) sin ψ + η (ξn, 0) cos ψ

ξψ sin βc + ζψ cos βc ζψ = −Z

and
(7)

nv =(nv,ξ
nv,η
nv,ζ

) = ( nψ,ξ cos βc − nψ,ζ sin βc ); where {nψ,ξ = nξ (ξn, 0) cos ψ − nη (ξn, 0) sin ψ
− ηψ, n nψ,ξ = nξ (ξn, 0) sin ψ + nη (ξn, 0) cos ψ

nψ,ξ sin βc + nψ,ζ cos βc nψ,ζ = nζ

The gear tooth surface is here described in the transverse plane 
at ζ = 0 in Equation 4. The gear profile at any other section, ζ ≠ 0, 
is found by pure rotation in Og by the angle.

(8)

ψ (ζ) = ζ sin β
z/2

In Figure 4 the disc tool is shown with the contact point P 
described in the coordinate system Ov. The tool is a rotational 
symmetric surface, thus the resultant of the components nv,η and 
nv,ζ of the normal vector nv must be directed through the rota-
tional center. In conjunction with the point P:s coordinates, for 

Figure 2  Helical gear conjugated 
to its basic rack.

Figure 3  Form wheel and helical gear.
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which tan γ = ζv,P/ηv,P, the relation is obtained:
(9)

tan γ = ζv,P = nv,ζ
ηv,P nv,η

Rewriting to suit numerical calculations this rela-
tion will be:

(10)
E(ξn, ζ) = ηv,P (ξn, ζ) nv,ζ (ξn, ζ) − ζv,P (ξn, ζ) nv,η (ξn, ζ) = 0

For given ξn, the corresponding ζ value is obtained 
by solving Equation 10; here, Newton-Raphson’s 
method is used.

(11)

ζi+1 =  ζi −
E(ξn, ζ)
∂E(ξn, ζ)

∂ζ
(12)

∂E(ξn, ζ) = ∂ηv,P (ξn, ζ) nv,ζ (ξn, ζ) + ηv,P (ξn, ζ) ∂nv,ζ (ξn, ζ)
∂ζ ∂ζ ∂ζ

− ∂ζv,P (ξn, ζ) nv,η (ξn, ζ) − ζv,P (ξn, ζ) ∂nv,η (ξn, ζ)
∂ζ ∂ζ

A convergent solution gives the point of contact. By varying ξn 
(ξ1 ≤ ξn ≤ ξ2) all contacts between the gear and the tool are found. 
The line of contact is found by connecting these points. The 
tool axis is perpendicular to the gear axis for spur gears, hence 
the line of contact will be a coplanar curve and located in the 
transverse plane of the gear. However, for helical gears, the con-
tact line will be a three-dimensional curve. The contact lines are 
shown in Figure 5 for a disc tool with the outer radius Rc, for a 
spur gear and a helical gear, β = 20°.

With the contact line known, the cross-section of the form 
tool can be determined. The axial and radial coordinates of the 
disc cutter:

(13)
ξc = ξv (ξn, ζ)
ηc = √η2

v + ζ2
v

are revolved around the rotational axis a rotation angle ϕ to 
describe the disc tool

(14)
ξf = ξc

ηf = ηc cos f
ζf = ηc sin f

A form milling wheel possesses a finite number of cutting teeth 
n. To avoid interference in the milling process, these cutting 
teeth must be relieved to allow only the cutting face to remove 
material. The cutting faces are described by planes intersecting 
the cutting teeth, perpendicular to the rotational axis, where the 
cutting edges are the boundaries of these faces. To describe a 
milling cutter, the complete wheel is gashed to the desired num-
ber of cutting teeth. The i:th cutting plane is then described by:

(15)
ξf,i = ξc

ηf,i = ηc cos (f + (i − 1) Δf)
ζf,i = ηc sin (f + (i − 1) Δf)

where Δf = 2π/n is the equian-
gular increment between the 
cutting faces.

For a form grinding wheel, 
there are no defined cutting 
edges. The surface grinding the 
gear tooth is the outer bound-
ary of the form wheel. The 
form grinding process can then 
be described by a form milling 

process with a sufficient number of cutting planes, so that the 
number of planes of the milling cutter does not influence the 
tooth surface topography. Then a milling cutter with many cut-
ting faces is approximately equivalent to a grinding wheel.

Milling Process
The form wheel is now positioned to machine the gear. Like 
before, the tool is positioned at the center distance a and the 
rotational axis is set at the angle βc to the transverse plane of the 
gear. It is not evident how the angle βc should be chosen since 
the helical angle of a helical gear varies with the radius accord-
ing to the relation ri cot βi = constant. It is here assumed that the 
angle βc coincides with the helical angle β of the gear at the pitch 
radius Rt. The form wheel can be positioned at another angle 
βc ≠ β, as long as the angle βc corresponds to a radius on the gear 
tooth. However, the geometry of the form wheel must be deter-
mined at the same angle βc as previously to machine the helical 
profile correctly.

The form wheel is rotated with the angu-
lar velocity ωc to machine the gear here in 
the negative f direction. Climb milling is 
achieved by moving the gear blank the dis-
tance Z = - S0f/(2π) at the angular displace-
ment of ϕ, where S = S0mn is the feed rate 
in distance-per-revolution. To achieve con-
ventional milling, the feed is in the reversed 
direction, i.e. — Z = S0ϕ/(2π).

Here the center of the cutting plane i = 1, (ξϕ,1 = 0, ηϕ,1 = ηc) is 
assumed to be located so it coincides with the center point of 
the gear (ξ = ζ = 0 and Z = 0). In the mathematical model, the 
form wheel is now rotated backwards and the gear blank moves 
the distance Z and rotates ψ (Z) so that the form wheel is out-
side the range of the gear blank. The form wheel then starts to 
machine the gear blank over the whole width. That means as no 
radial feed is present, the form wheel starts to machine the gear 
at full depth.

As the gear blank is fed the distance Z, the coordinates of the 
i:th cutting edge of the form wheel can be determined in the 
transverse plane of the gear. Simultaneously and continuously, 
the gear is rotated the angle ψ (Z). The i:th cutting edge can then 
be represented in a coordinate system that coincides with that of 
the gear.

Figure 5  Contact lines.

Figure 4  Form wheel.
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(16)

rSi =( ξSi (ξn,c, ϕ)
ηSi (ξn,c, ϕ)
ζSi (ξn,c, ϕ) ) = ( ζψ cos ψ + ηψ sin ψ ); where { ξψ  = ξϕ,i cos βc + ζϕ,i sin βc

− ξψ sin ψ + ηψ cos ψ ηψ = a − ηϕ,i

ζψ + Z ζψ  = −ξϕ,i sin βc + ζϕ,i cos βc

The Machined Surface
The machined tooth surface, that is, the surface after all mate-
rial is removed, is now to be determined. By using a milling cut-
ter with finite number of cutting teeth n that is fed by the feed 
rate S0, the machined surface will deviate from the ideal smooth 
geometry. The distance h0 = h/mn between these two surfaces 
is measured in the normal direction from the ideal tooth sur-
face to the machined surface. From a specific point on the gear 
tooth, the distance h0 to the i:th cutting edge is found:

(17)

rSi (ξn,c, ϕ) = r(ξn, ζ) − h0
n (ξn, ζ)

|n|

where r (ξn,ζ) is the coordinate of the ideal tooth surface and n 
(ξn, ζ) is the normal to this surface. The distance h0 is measured 
in the normal direction from the ideal tooth surface and, in this 
formulation, measured positive in the direction into the gear 
blank material. In component form Equation 17 is expressed as:

(18)

fξ (ξn,c, ϕ, h0) = ξSi(ξn,c, ϕ) + h0
nξ (ξn, ζ) −ξ (ξn, ζ) = 0|n|

fη (ξn,c, ϕ, h0) = ηSi(ξn,c, ϕ) + h0
nη (ξn, ζ) −η (ξn, ζ) = 0|n|

fζ (ξn,c, ϕ, h0) = ζSi(ξn,c, ϕ) + h0
nζ (ξn, ζ) −ζ (ξn, ζ) = 0|n|

This set of equations contains three unknowns, namely, ξn,c, 
ϕ and h0. To find a solution, Newton-Raphson’s method is 
employed. In matrix form, a solution is found by:

(19)

(ξn,c,k+1
ϕk+1
h0,k+1

) = ( ξn,c,k
ϕk
h0,k

)−M−1( fξ (ξn,c,k, ϕk, h0,k)
fη (ξn,c,k, ϕk, h0,k)
fζ (ξn,c,k, ϕk, h0,k) )

where
(20)

M = ( ∂fξ ∂fξ ∂fξ ) = ( ∂ξSi ∂ξSi ∂nξ)∂ξn,c ∂ϕ ∂h0 ∂ξn,c ∂ϕ ∂n
∂fη ∂fη ∂fη ∂ηSi ∂ηSi ∂nη

∂ξn,c ∂ϕ ∂h0 ∂ξn,c ∂ϕ ∂n
∂fζ ∂fζ ∂fζ ∂ζSi ∂ζSi ∂nξ

∂ξn,c ∂ϕ ∂h0 ∂ξn,c ∂ϕ ∂n

Reaching a convergent solution the distance from the ideal sur-
face to the surface machined by the i:th cutting edge is known. 

To find the finished machined surface, the surface after all mate-
rial to be removed is cut, the maximum h0 of all n cutting edges 
is to be found.

(21)
h0 (ξn, ζ) = max (h0 (ξn,c, ϕ,i))

In the machining process, all cutting teeth do not have the pos-
sibility to machine the surface at all positions. To make the cal-
culations faster, only the cutting teeth facing the gear blank need 
to be considered.

Numerical Example and Validation
Table 1 shows the specifications of the gear and the milling cut-
ter used in this example. The geometry of the milling cutter 
used in the simulation software is based on the mathematical 
model, whereas the indexable milling cutter used in experi-
ments is determined using the software PTM/GH–Precision Tool 
Manufacturing/Gear Hob.

To verify the model, an actual gear is cut using an indexable 
insert milling cutter in a Höfler HF600. Before machining, the 
milling cutter was control measured for radial run-out at tooth 
tips. These values are given in Table 2, showing the maximum 
deviation of 36 μm between the cutting teeth. This run-out error 
is too large for the calculated results from the simulation model 
to agree with the observed machined surface topography. Thus, 
deviations must be considered in the model. To account for both 
axial and radial deviations, Δai and Δri, of the i:th cutting tooth, 
Equation 15 is modified accordingly:

(22)
ξϕ,i = ξc + Δai

ηϕ,i = (ηc +  Δri) cos (ϕ + (i − 1) Δϕ)
ζϕ,i = (ηc +  Δri) sin (ϕ + (i − 1) Δϕ)

To compare the machined surface with the computed tooth sur-
face from the simulation model, one tooth of the gear was cut 

Figure 6  Form wheel machines helical gear.

Table 2  Radial run-out of tooth tips
Cutting tooth number 1 2 3 4 5 6 7
Radial run-out [mm] 51.958 51.946 51.969 51.982 51.975 51.961 51.956

Deviation [μm] -24 -36 -13 0 -7 -21 -26

Table 1  Numerical example
Gear

Number of teeth z = 27
Normal module mn = 5 mm

Normal pressure angle αn = 20°
Tip radius R0,tip = z/2/cosβ + x + 1

Helical angle β = 25.8°
Addendum h0,t = ht/mn = 1.25

Addendum correction x = -0.1
Rack fillet radius r0,t = rt/mn = 0.2

Form Cutter
Number of cutting teeth n = 7

Feed per revolution S0 = S/mn = 2.1 / 5 = 0.42
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out and a width of approximately 10 mm was scanned using a 
computer controlled optical microscope, Alicona Infinite Focus. 
The magnification used on the optical microscope was 20×, 
with a vertical resolution (height) of 25 nm and a lateral resolu-
tion (in-plane) of 3 μm.

The same area was calculated using the simulation model 
and the results are presented in Figure 7. In these figures, mea-
surements along the three lines over the width are extract-
ed, i.e. — lines a, b and c. The roughness profiles for these 
three lines are presented in Figure 8. The feed rate was set to 
S = 2.1 mm/rev in the axial direction of the gear, and the milling 
cutter having n = 7 cutting teeth. Thus, the distance between the 
feed ridges of the feed marks should be approximately s = S/n/
cos β = 2.1 mm/7/cos 25.8° ≈ 0.33 mm. This is not the case in the 
results shown in Figure 8. Although all cutting teeth remove 
material in the milling process, the finished gear tooth is actu-
ally formed by only one cutting tooth due to the radial run-out 
error of the cutter, i.e. s = S/cos β = 2.1 mm/cos 25.8° ≈ 2.33 mm.

Conclusion
This paper presents a mathematical model for determining the 
tooth surface topography machined by a form wheel, i.e. for 
both form grinding wheels and form milling cutters. The geom-
etry of the form wheel is determined through inverse calcula-

tion and the form wheel is able to manufacture helical gears cor-
rectly. Due to the finite number of cutting teeth of the milling 
cutter, the cut surface will deviate from the ideal smooth tooth 
surface. With this model the machine surface is predicted. To 
be able to predict the machined tooth surface topography is of 
great industrial interest as it opens up the manufacturing pro-
cess for optimizations such as choosing process data and the 
required amount of grinding stock. In the prescribed mathemat-
ical model, the machined surface in both the fillet and involute 
region is determined.

The model is validated by milling a helical gear using an 
indexable insert milling cutter. This type of cutter could cause 
positional errors of the cutting teeth that are not present for 
conventional high speed steel milling cutters; such errors are 
axial and radial positional errors. The mathematical model is 
modified to account for these types of positional errors to the 
cutting teeth. Measurements of the positional errors of the used 
indexable milling cutter were used as input to the simulation 
model, resulting in very good agreement of the surface rough-
ness achieved of the milled gear and the calculated roughness 
from the mathematical model.
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