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Vibration signals of gearbox are sensitive to the existence of the fault. Based on vibration signals, this paper presents an
implementation of deep learning algorithm convolutional neural network (CNN) used for fault identi�cation and classi�cation
in gearboxes. Di	erent combinations of condition patterns based on some basic fault conditions are considered. 20 test cases with
di	erent combinations of condition patterns are used, where each test case includes 12 combinations of di	erent basic condition
patterns. Vibration signals are preprocessed using statistical measures from the time domain signal such as standard deviation,
skewness, and kurtosis. In the frequency domain, the spectrum obtained with FFT is divided into multiple bands, and the root
mean square (RMS) value is calculated for each one so the energy maintains its shape at the spectrum peaks.�e achieved accuracy
indicates that the proposed approach is highly reliable and applicable in fault diagnosis of industrial reciprocating machinery.
Comparing with peer algorithms, the present method exhibits the best performance in the gearbox fault diagnosis.

1. Introduction

Gearboxes play crucial roles in the mechanical transmission
systems, are used to transmit power between sha
s, and are
expected to work 24 hours a day in the production system.
Any failures with the gearboxes may introduce unwanted
downtime, expensive repair, and even human casualties.
�erefore it is essential to detect and diagnose faults in
the initial stage [1–4]. As an e	ective component for the
condition-based maintenance, the fault diagnosis has gained
much attention for the safe operations of the gearboxes [5, 6].

Machine fault identi�cation can be done with di	erent
methodologies such as vibration signature analysis, lubricant
signature analysis, noise signature analysis, and temperature
monitoring. �e gearbox conditions can be re�ected by such
measurements as vibratory, acoustic, thermal, electrical, and
oil-based signals [7–12]. Of the above the diagnostic by vibra-
tions is the most employed for the reason that every machine
is considered to have a normal spectrum until there is a fault,
where the spectrum changes [13, 14]. �e vibration signals

have been proven e	ective to re�ect the healthy condition
of the rotating machinery. In the vibration-based gearbox
fault diagnostics, Wang et al. [15] proposed the application of
local mean decomposition of the vibration signal to diagnose
a low-speed helical gearbox. Hong et al. [16] investigated
the vibration measurements for the planetary gearbox fault
detection. �e vibration characteristics in both the time and
the frequency domains were analyzed by Lei et al. [17] for the
diagnostics of the planetary gearboxes.

Various studies exist, of algorithms for detection and
diagnostics of faults in gearboxes; among these are support
vector machines and arti�cial neural network. A support
vector machines based envelope spectrum was proposed by
Guo et al. [18] to classify three health conditions of the
planetary gearboxes. An intelligent diagnosis model based on
wavelet support vector machine (SVM) and immune genetic
algorithm (IGA)was proposed for the gearbox fault diagnosis
[19]. �e IGA was developed to determine the optimal
parameters for the wavelet SVM with the highest accu-
racy and generalization ability. Tayarani-Bathaie et al. [20]
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suggested a dynamic neural network to diagnose the gas
turbine fault. �e arti�cial neural network combining with
empirical mode decomposition was applied for automatic
bearing fault diagnosis based on vibration signals [21].
Among all the typical classi�ers, the support vector classi�-
cation (SVC) family (i.e., the standard SVC and its variants)
attracted much attention due to their extraordinary classi�-
cation performance. According to the researches, the SVM
family received good results in comparison with the peer
classi�ers.

Recently, deep learning received great success in the
classi�cation �eld. �e deep learning gained better classi-
�cation performance owing to its “deeper” representations
for the faulty features. Up to now, di	erent deep learning
networks such as deep belief network [22], deep Boltzmann
machines (DBMs) [23], deep autoencoder [24], and con-
volutional neural networks [25] have been introduced, but
few been used for the fault diagnosis cases. Tran et al. [26]
introduced the application of the deep belief networks to
diagnose reciprocating compressor valves. Tamilselvan and
Wang [27] employed the deep belief learning based health
state classi�cation for iris dataset, wine dataset, Wisconsin
breast cancer diagnosis dataset, and Escherichia coli dataset.
�e limited reports used the deep learning structure for the
fault diagnosis, with commonly one modality feature.

�is paper presents a study for the application of the
convolutional neural network in the identi�cation and classi-
�cation of the gearboxes fault. Convolutional neural network
(CNN) is a type of feed-forward arti�cial neural network. Its
individual neurons are tiled in such a way that they respond
to overlapping regions in the visual �eld [28]. CNN and
its variations are widely used models for image and video
recognition [29, 30]. In this work, it is used as a classi�er for
the gearbox faults diagnosis.

�e most successful methods of vibration-based fault
diagnoses are composed of two main steps: extracting the
sensitive features and classifying the condition patterns. In
the vibration-based fault diagnosis, the most commonly used
features have been generated from the temporal [31], spectral
[32], wavelet [33], and other representations of the signals.
Di	erent representations can be regarded as di	erent obser-
vations on the vibration signals [34]. In this work, statistical
measurements such as standard deviation, skewness, and
kurtosis are computed from the acquired time domain data.
In the frequency domain, the spectrum obtained with a
FFT is divided into multiple bands. �e root mean square
value is calculated for each band so the energy maintains
its shape at the spectrum peaks. Vectors of the features of
the preprocessed signal are formed, which are used as input
parameters for the CNN. It is important to point out that the
testing is performed under �ve di	erent rotation frequencies
and for each one four di	erent load conditions are applied,
which simulates the most likely scenario within an industrial
application.

�e rest of this paper is structured as follows. �e
CNN model and method of extracting statistical features
are introduced in Section 2; Section 3 explains the mechan-
ical conditions for the experiment; Section 4 presents the
implementation of classi�er based on the CNN model; and

Section 5 shows the obtained results and their evaluation.
Finally some conclusions are drawn.

2. Methodologies

In this section, we �rst present the representations of the
convolutional neural network. And then the approach of
extracting the sensitive features is introduced, where some
classical statistical parameters are calculated from the time
and the frequency.

2.1. Deep Learning with Convolutional Neural Network. Con-
volutional neural network was inspired by the visual system’s
structure [35] and in particular by the models of it proposed
by [36]. �e �rst computational models are based on local
connectivity between neurons and on hierarchically orga-
nized transformations of the image in Fukushima’s neocogni-
tron [37]. LeCun and collaborators, following up on this idea,
designed and trained convolutional networks using the error
gradient, where state-of-the-art performance was obtained
[38, 39] on several pattern recognition tasks. Modern under-
standing of the physiology of the visual system is consistent
with the processing style found in convolutional networks in
the literature [40]. To this day, pattern recognition systems
based on convolutional neural networks are among the best
performing systems [41]. �is has been shown clearly for
handwritten character recognition [38], which has served as
a machine learning benchmark for many years.

A typical convolutional neural network [38] is organized
in layers of two types: convolutional layers and subsampling
layers. Each layer has a topographic structure.

At each location of each layer, there are a number of
di	erent neurons. Each has its set of input weights that
is associated with neurons in a rectangular patch in the
previous layer. �e same set of weights, but a di	erent input
rectangular patch, is associated with neurons at di	erent
locations.

Figure 1 presents the architecture of typical convolutional
neural networks, in which the early analysis consists of
alternating convolution and subsampling operations, while
the last stage of the architecture consists of a generic mul-
tilayer network: the last few layers (closest to the outputs)
will be fully connected 1-dimensional layers. CNNs work
on the 2-dimensional data, so called maps, directly, unlike
normal neural networks which would concatenate these
into vectors. Typically convolutional layers are interspersed
with subsampling layers to reduce computation time and to
gradually build up further spatial and con�gural invariance.
A small subsampling factor is desirable in order to maintain
speci�city at the same time.

Convolutional layers move forward with deriving the
back propagation updates in a network, which compose
feature maps by convolving kernels over feature maps in
layers below them. At a convolution layer, the previous layer’s
feature maps are convolved with learnable kernels and put
through the activation function to form the output feature
map. Each output map may combine convolutions with
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Figure 1: Architecture of convolutional neural networks.

multiple input maps. In general, it is calculated as follows
[41]:

x
�
� = �( ∑

�∈��
x
�−1
� ∗ k��� + ���) , (1)

where�� represents a selection of input feature maps; 	 is the	th layer in a network, k is a matrix of 
 × 
; here, 
 is the size
of convolutional kernels; � is a nonlinearity active function,
typically hyperbolic tangent or sigmoid function. Each output
map is given an additive bias; for a particular output map, the
input maps will be convolved with distinct kernels k. �at is
to say, if output map � and map � both sum over input map
, then the kernels applied to map 
 are di	erent for output
maps� and �.

A subsampling layer produces downsampled versions of
the input maps. If there are � input maps, then, there will
be exactly� output maps, although the output maps will be
smaller. More formally [41],

x
�
� = � (��� down (x�−1� ) + ���) , (2)

where down(⋅) represents a subsampling function. Typically
this function will sum over each distinct �-by-� block in the
input feature map so that the output feature map is � times
smaller along both spatial dimensions. Each output map is
given its own multiplicative bias � and an additive bias �.

To discriminate between � classes a fully connected
output layer with � neurons is added. �e output layer takes
as input the concatenated feature maps of the layer below it,
denoting the feature vector, �

V
,� = � (�� + ���V) , (3)

where �� is a bias vector and �� is a weight matrix.

k
�
��, ���, ��, and �� of the model are learnable parameters.

Learning is done using gradient descent which can be imple-
mented e�ciently using a convolutional implementation of

the backpropagation algorithm as shown in [41]. It should
be clear that because kernels are applied over entire input
maps, there are many more connections in the model than
weights; that is, the weights are shared. �is makes learning
deep models easier, as compared to normal feedforward-
backpropagation neural nets, as there are fewer parameters,
and the error gradients goes to zero slower because each
weight has greater in�uence on the �nal output.

2.2. Statistical Features of the Gearbox Vibration Signals.
�e gearbox condition can be re�ected by the information
included in di	erent features in frequency and time domain.
From the set of signals obtained from the measurements of
the vibrations at di	erent speeds and loads, the features in
frequency and time domain are obtained. From the group of
graphs the values that can be used as input parameters for the
CNN are selected. Sixty percent of the samples set are used
for the training of the CNN, and forty percent are used for
testing.

2.2.1. Time Data Statistical Features. Usually, statistical
parameters are good indices for extracting the condition
information. In this research, statistical measurements such
as standard deviation, skewness, and kurtosis for each node
are used. Standard deviation, skewness, and kurtosis are
computed from the acquired time domain data; the formulas
used for this are shown in Table 1, where �(�) is the expected
value of �. Correction bias is used for the evaluation of
skewness and kurtosis.�e standard deviation, skewness, and
kurtosis evaluated on each of the vibration signals are used
for training and testing of the CNN. �e evaluation of these
is done using standard MATLAB functions.

2.2.2. Fast Fourier Transform Banded RMS Value. Figure 2
shows the vibration signal spectrum obtained during the test
under the following condition patterns: gear �4 with face
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Table 1: Formula for the evaluation of statistical values.
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Figure 2: Frequency spectrum in function of the speed, under the
following condition patterns: 375W load, �1 with face wear 0.4
[mm], �2 with face wear 0.5 [mm], �2 with 2 pitting on inner ring,
and �3 with 2 pitting on outer ring.

wear 0.4 [mm], gear�3 with face wear 0.5 [mm], bear�3 with
2 pits on inner ring, and bear �2 with 2 pits on outer ring for
5 di	erent rotation speeds, and load at 375W. Figure 3 shows
frequency spectrum under �ve combinations of di	erent
condition patterns. �e time domain signal was multiplied
by a Hanning window to obtain the FFT spectrum, in which
a shi
 in the frequency and an increment in the amplitude
in function of the speed increment are noticeable during the
test.�edi	erent spectrumgraphs showed that the amplitude
of each component increases in a proportional manner to the
load variation. Also in the spectra some accentuations and
attenuations were observed on certain spectral component,
which suggests dependency of the fault features with respect
to the amount of load applied.

With the objective of reducing the amount of input data
to the CNN the spectrumwas split inmultiple bands, because
with this number of bands the rootmean square (RMS) values
keep track of the energy in the spectrum peaks [42], where
the RMS value is evaluated with (4), and� is the number of
samples of each frequency band. Consider

FFTrms = �∑
	=1

FFT (�) . (4)

Vectors of the features of the preprocessed signal are
formed as input parameters for the CNN as follows: �RMS
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Figure 3: Frequency spectrum under �ve combinations of di	erent
condition patterns.

Table 2: Test’s conditions.

Characteristic (�1) Value

Sample frequency 44100 [Hz] (16 bits)

Sampled time 10 [s]

Power 1000 [W]

Minimum speed 700 [RPM]

Maximum speed 1600 [RPM]

Minimum load 250 [W]

Maximum load 750 [W]

Speeds 1760, 2120, 2480, 2840, 3200 [mm/s]

Loads 375, 500, 625, 750 [W]

Number of loads per test 10

Type of accelerometer Uniaxial

Trademark ACS

Model ACS 3411LN

Sensibility 330 [mV/g]

RMS values, standard deviation, skewness, kurtosis, rotation
frequency, and applied load measurements. In this work, the
frequency range is 0 to 22050Hz and the size of the data
vector in the frequency is 18000 samples. �e spectrum is
divided into�RMS frequency bands,�RMS = 251.
3. Experimental Setup

To validate the e	ectiveness of the proposed method, we
carried out the experiments on a gearbox fault experimental
platform. Figure 4 indicates the internal con�guration of
the gearbox and positions for accelerometers. �ere are 3
sha
s and 4 gears composing a two-stage transmission of
the gearbox. An input gear (�4 = 27, modulus = 2, andΦ of pressure = 20) was installed on the input sha
. Two
intermediate gears (�2 = �3 = 53) were installed on an
intermediate sha
 for the transmission between the input
gear and the output gear (�1 = 80, installed on the output
sha
). �e faulty components used in the experiments
included gears �1, �2, �3, and �4 and bearings �1, �2,�3, and �4 as labeled in Figure 4(a). Test’s conditions are
described in the Table 2.�e vibration signal is obtained from
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Figure 4: (a) �e internal con�guration of the gearbox; (b) positions for accelerometers.

the measurements of a vertically allocated accelerometer in
the gearbox case. Tables 3 and 4 present the description of
each fault condition of each component of the gearbox used
in the experiment. We call them basic condition pattern. In
our experiment, a test case includes several basic condition
patterns, which is a combination of multiple component
faults. For example, the test case A shown in Table 5 includes
the following information of faults:

Gear �4: gear with pitting on teeth.

Gear �3: gear with face wear 0.5 [mm].

Bear �2: bearing with 4 pits on outer ring.

Bear �3: bearing with 2 pits on outer ring.

Gears �1 and �2 and bears �1 and �4: normal.

To evaluate the performance of the proposed method for
gearbox fault diagnosis, �rst, we constructed 12 condition
patterns as listed in Table 5. Each pattern with 4 di	erent load
conditions and 5 di	erent input speeds was applied during
the experiments. For each pattern, load and speed condition,
we repeated the tests for 5 times. In each time of the test,
the vibratory signals were collected with 24 durations each
of which covered 0.4096 sec.

4. Implemented Classifier Based on CNN and
Statistical Features

In this section, the implementation of classi�er based on
CNN will be introduced. Figure 5 shows the block diagram
of the process followed in the processing of the signal. �e
CNN-based classi�er includes parameters as follows:

(1) �e size of input feature map, 
in, depends on the
feature representation of the preprocessed signal.

(2) �e number of alternating convolution and subsam-
pling layers that decides the architecture of CNN is as
follows. Two schemes are investigated: one is two con-
volutional layers and two subsampling layers; another
is one convolutional layer and one subsampling layer.

Table 3: Nomenclature of gears fault.

Designator Description

1 Normal

2 Gear with face wear 0.4 [mm]

3 Gear with face wear 0.5 [mm]

4 Gear with cha�ng on tooth 50%

5 Gear with cha�ng on tooth 100%

6
Gear with pitting on tooth depth 0.05 [mm],
width 0.5 [mm], and large 0.05 [mm]

7 Gear with pitting on teeth

8
Gear with incipient �ssure on 4mm teeth to 25%
of profundity and angle of 45∘

9 Gear teeth breakage 20%

10 Gear teeth breakage 50%

11 Gear teeth breakage 100%

Table 4: Nomenclature of bears fault.

Designator Description

1 Normal

2 Bearing with 2 pits on outer ring

3 Bearing with 4 pits on outer ring

4 Bearing with 2 pits on inner ring

5 Bearing with 4 pits on inner ring

6 Bearing with race on inner ring

7 Bearing with 2 pits on ball

8 Bearing with 2 pits on ball

(3) �e number of output feature maps of convolution
layer, ��, expresses 
th convolution layer. ��� is as the
number of output feature maps of ��.

(4) �e scale of subsampling layer, 
, which means the

size of output featuremap of subsampling layer, is 1/
2
of that of the input featuremap. 
� expresses that of 
th
subsampling layer; and 
�� is as the scale of layer 
�.
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Table 5: Condition patterns of the experiment.

Number of patterns

Basic faults

Gear faults Bear faults�4 �3 �2 �1 �4 �3 �2 �1
A 7 3 1 1 1 2 3 1

B 7 3 6 8 1 1 1 1

C 5 5 1 1 6 7 2 1

D 7 1 1 1 6 7 2 1

E 1 2 1 1 1 6 3 1

F 1 3 1 1 1 5 3 1

G 2 9 1 1 6 7 3 1

H 5 5 1 1 6 3 2 4

I 2 6 1 1 6 5 2 1

J 1 11 1 1 1 3 4 1

K 1 1 1 1 1 6 3 1

L 1 1 1 1 1 1 3 1

(5) For each input map convolve with corresponding
kernel and add to output map; the convolutional
kernel is usually a matrix of ! × !, where ! is called
convolutional kernel size.

To con�rm the optimal architecture of CNN-based clas-
si�er for gearbox fault diagnosis, some parameter tunings
are performed. Table 6 presents 11 schemes with di	erent
parameters of the CNN-based classi�er.�ey are applied to a
test case with the 12 patterns indicated in Table 5, using data
with 12000 sample signals, where sixty percent of the samples
set are used for the training of the CNN, and forty percent are
used for testing.�e classi�cation rate and computation time
(Intel Core i7-4710MQ CPU @2.50GHz 2.50GHz, Memory
8.00GB) of each epoch training are recorded in Table 6.
From Table 6, we can assume that the cases of 16 × 16
input feature map are superior to those of 28 × 28. �e
cases with one convolutional layer and one subsampling layer
are superior to those of two convolutional layers and two
subsampling layers. #7∼#11 cases have very good classi�cation
accuracy. #9∼#11 cases have less computation times. So we
select a con�guration for the proposed CNN-based classi�er
as follows: one convolutional layer and one subsampling layer,
in = 16 × 16, ��1 = 8, 
�1 = 2, and ! = 5. �e suggested
architecture of the CNN-based classi�er for gearbox fault
diagnosis is described in Figure 6.

5. Experiment Evaluations

�e training is done in �rst instance with the 12 patterns
indicated in Table 5.�e used data have 12000 sample signals,
where sixty percent of the samples set are used for the
training of the CNN, and forty percent are used for testing.
For further tuning parameters, we consider the #9∼#11 cases
in Table 6 with di	erent number of iteration epochs: 50,
100, 150, 200, 250, and 300, respectively. Table 7 indicates
the classi�cation rate for the �rst instance. As shown in
Table 7, each parameters pair has excellent performance for
the gearbox faults classi�cation. �e least classi�cation rate
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Figure 5: Training and testing process block diagram.

Table 6: Parameters tuning of the architecture of CNN.

Number
Architecture of CNN Classi�cation

rate
Time

(s/epoch)
in ��1 
�1 ��2 
�2 !
#1 28 × 28 6 2 12 2 5 86.73% 11.6 s

#2 28 × 28 8 2 8 2 5 88.48% 12.8 s

#3 28 × 28 12 2 12 2 5 92.50% 21.7 s

#4 28 × 28 8 4 — — 5 86.71% 8.00 s

#5 16 × 16 6 2 12 2 5 90.23% 3.90 s

#6 16 × 16 8 2 8 2 5 89.50% 3.80 s

#7 16 × 16 6 2 6 1 5 95.71% 2.40 s

#8 16 × 16 6 1 6 1 5 98.77% 4.50 s

#9 16 × 16 6 2 — — 5 96.71% 1.04 s

#10 16 × 16 8 2 — — 5 98.35% 1.30 s

#11 16 × 16 12 2 — — 5 98.20% 2.02 s

is 89.46% of the pair of ��1 = 12 and epochs = 50; the best
one is 98.35% of the pair of ��1 = 8 and epochs = 200. In
the following experiment, ��1and epochs are set to 8, 200,
respectively.

Confusionmatrix is an e	ective tool and is a visualization
tool of the performance of a classi�cation algorithm. Each
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Table 7: Parameters tuning of CNN.

��1 Epochs

300 250 200 150 100 50

12 97.98% 98.0% 98.02% 96.71% 95.35% 89.46%

8 97.92% 98.19% 98.35% 97.98% 96.31% 91.19%

6 97.98% 97.27% 96.71% 96.71% 96.25% 93.1%

column of the confusion matrix represents the instances in
a predicted class (output class), while each row represents

the instances in an actual class (target class). Figure 7 presents
the confusion matrix using CNN model for 12 patterns indi-
cated in Table 5. As shown in Figure 7, the global percentage
of true positive classi�cation of the 12 condition patterns
of faults is 98.4% and the total error is 1.6%. �e smallest
percentage of true positive classi�cations is obtained for type
3; this is because this kind of conditions patterns with 6 basic
faults. �is is evident by observing the confusion matrix in
which 30 times of type 4 are classi�ed as type 3, noticing that
mostly there is confusion between type 4 and type 3, in which
they have 4 same basic faults.�e percentages of true positive
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Figure 8: Confusion matrix using SVM.

Table 8: Comparisons of classi�cation rate with SVM using 20 test cases.

Number 1 2 3 4 5 6 7 8 9 10

CNN 91.4% 98.5% 97.1% 98.0% 98.4% 98.6% 97.2% 98.8% 97.4% 98.9%

SVM 73.8% 77.4% 65.9% 67.5% 65.5% 79.2% 69.1% 81.5% 66.8% 72.0%

Number 11 12 13 14 15 16 17 18 19 20

CNN 98.5% 98.7% 94.2% 97.7% 93.5% 98.7% 97.7% 94.7% 92.7% 97.4%

SVM 72.3% 66.4% 55.9% 64.7% 63.5% 67.0% 62.1% 61.3% 64.0% 60.9%

Mean Std. Least Most Median

CNN 96.8% 2.57% 91.4% 98.9% 97.7%

SVM 67.8% 6.49% 55.9% 81.5% 66.8%

classi�cation of Type 1, Type 6, and Type 12 are all 100%.
Confusionmatrix in Figure 7 shows that the presenting CNN
model has very high percentage of true positive classi�cation.

To further validate the robustness of the present CNN
model, a fault condition pattern library was constructed,
which has 58 kinds of combinations based on the basis
patterns described in Tables 3 and 4. 20 test cases are used
to test the robustness of the present CNN method; each test
case has 12 kinds of combinations that are randomly selected
from the pattern library. �e experiment results of 20 test
cases using the CNN are shown in Table 8.With regard to the
CNNmethod, its smallest classi�cation rate is 91.4% of 1st test
case, and the largest one reaches 98.9% of 10th test case. �e
mean, standard deviation, and median of classi�cation rate
using CNN are 96.8%, 2.57%, and 97.7%, respectively.

In addition, the CNN method was compared with “shal-
low” learning algorithms SVM. As for the SVM, one of
the most important representatives in the “shallow” learning
community, good classi�cation results can be found for the
gearbox fault diagnosis, which is similar with some existing
researches (e.g., [43]). �e algorithm SVM is applied using
the LibSVM [44]. �e parameters for SVM are chosen as� = 137.187 and core (kernel) given by a radial basis�(#, V) = exp(−$|# − V|2) function where $ = 1910.852.

�ese parameters were found through a search, aiming at
the best model for the SVM. Figure 8 shows the confusion
matrix using SVM method for 12 patterns indicated in
Table 5. �e experiment results of 20 test cases using the
SVM method are shown in Table 8. Its global percentage
of true positive classi�cation of the 12 condition patterns of
faults is only 69.0% and the total error is 31.0%. �e smallest
percentage of true positive classi�cations is 30% of type 3.
�e mean, standard deviation, and median of classi�cation
rate using SVM for the 20 test cases are 67.8%, 6.49%, and
66.8%, respectively. Comparing with the deep learning CNN
method, the SVM method exhibits inferior performance for
the gearbox fault diagnosis.

6. Conclusions

In this paper, a deep learning technique based CNN for
the vibration measurements has been proposed to diag-
nose the fault patterns of the gearbox. �e present CNN
method identi�es and classi�es faults in gearbox by using
the vibration signals measured with an accelerometer. Fea-
ture representations are selected as the input parameters of
the CNN with a vector formed by RMS values, standard
deviation, skewness, kurtosis, rotation frequency, and applied
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load. For evaluating the proposed CNNmethod, the gearbox
fault diagnosis experiments were carried out using di	erent
techniques. �e results show that the present method has
the outstanding performance of the gearbox fault diagnosis,
comparing with peer methods. �is type of classi�ers could
make a contribution to maintenance routines for industrial
systems, towards lowering costs and guarantying a continu-
ous production system, and, with the appropriate equipment,
online diagnostics could be performed.
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