
Received March 30, 2019, accepted May 20, 2019, date of publication June 3, 2019, date of current version June 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920405

Gecko: A Resilient Dispersal Scheme for
Multi-Cloud Storage

MENG YAN , JIAQI FENG, TRENT G. MARBACH, REBECCA J. STONES , GANG WANG ,
AND XIAOGUANG LIU
Nankai-Baidu Joint Laboratory, College of Computer, Nankai University, Tianjin 300350, China

Corresponding author: Gang Wang (wgzwp@nbjl.nankai.edu.cn)

This work was supported in part by the National Science Foundation of China under Grant 61872201, 61702521, 61602266, and

U1833114, the Science and Technology Development Plan of Tianjin under Grant 17JCYBJC15300, 16JCYBJC41900,

18ZXZNGX00140, and 18ZXZNGX00200, the Fundamental Research Funds for the Central Universities, SAFEA: Overseas Young

Talents in Cultural and Educational Sector, KLMDASR, and KLNDST in Tianjin.

ABSTRACT We have entered an era where copious amounts of sensitive data are being stored in the cloud.

To meet the rising privacy, reliability, and verifiability needs, we propose Gecko, a multi-cloud dispersal

scheme where: (a) the key used to encrypt the data file is the secret in a Latin-square-autotopism secret-

sharing scheme, (b) data files and encryption keys are dispersed separately to multiple clouds, and (c) a

blockchain-based integrity-check protocol is devised to pinpoint faulty data. Gecko enables fast and thorough

key renewal: when a portion of the key (the secret) is leaked, we replace all shares of the partially-leaked

secret without replacing the secret itself; this immediately resists targeted attack to certain file without re-

encrypting the data file itself. Key renewal is further accelerated by the blockchain-based integrity check.We

evaluate Gecko theoretically and experimentally against the traditional AONT-RS dispersal scheme, drawing

two conclusions: 1) Gecko admits powerful key renewal and identification of damaged data, with a minor

transfer overhead; and 2) Gecko performs key renewal three to five times faster than AONT-RS hybrid-slice

renewal (the closest thing AONT-RS has to key renewal).

INDEX TERMS Blockchain, data recovery, dispersal scheme, integrity check, Latin square, multi-cloud.

I. INTRODUCTION

Cloud storage is convenient but gives rise to multiple con-

cerns, such as privacy [1], fault tolerance [2], and verifiable

integrity [3], particularly when the stored data is sensitive

and large-scale. As one example among many, CareCloud1

stores information such as electronic health records using

Amazon S3 and Amazon Glacier [4]; for privacy protection

and accuracy of analysis, CareCloud requires the outsourced

data to be kept confidential, retrievable, and intact.

For sensitive systems such as CareCloud, a multi-cloud

dispersal scheme [2] is beneficial, in which a sensitive file

is fragmented into file slices and each of file slices (with

corresponding integrity credentials) is dispersed to a dis-

tinct cloud service provider (CSP). With proper redundancy,

the file remains retrievable even when some CSPs fail or are

malicious. To fragment data files, symmetric encryption can

The associate editor coordinating the review of this manuscript and
approving it for publication was Jun Huang.

1www.carecloud.com

be combined with erasure codes to balance security and the

consequential overhead [5]–[7]. Regrettably, key-protection

methods in current schemes are insufficient.

Ideally an encryption key that has been dispersed should

have stronger protection than an encrypted file does, so the

two dispersals should be performed independently; thus,

combining file and key then dispersing, as in [6], [7], is not the

most secure option. In [5], secret sharing is utilized indepen-

dently for encryption keys, which guarantees high-level key

secrecy; however, key recovery in case of failures or accidents

is not efficient due to the recovery procedure requiring too

much computation. In addition, a leaked key in some schemes

may be useful in a number of attacks.

In this paper, we propose a multi-cloud dispersal scheme

called Gecko, featuring a fast and thorough key-recovery

process called key renewal, in which all slices of the key

in danger are promptly discarded and renewed, just like a

gecko discarding its tail when attacked. Using key renewal,

a leaked key slice becomes permanently useless and a bro-

ken key slice is rapidly cured; it does not involve replac-

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

77387

https://orcid.org/0000-0001-5280-6653
https://orcid.org/0000-0002-9991-2995
https://orcid.org/0000-0003-0387-2501
https://orcid.org/0000-0002-9010-3278
www.carecloud.com

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

ing the encryption key, thus data files do not need to be

re-encrypted. Our key renewal is based on a secret sharing

scheme in which the secret is an autotopism of a Latin

square, the secret shares do not reveal partial information

of the secret, and fragmentation of the autotopism can be

performed many times. A blockchain-based protocol called

NAP-check is devised to pinpoint faulty downloaded slices,

reinforcing and accelerating recovery process; by publishing

double signatures on a blockchain, NAP-check achieves non-

repudiation, accountability, and public verifiability without

trusting any third party. For data files Gecko offers the same

level of security compared to the state-of-the-art [6].

In summary, Gecko:

• offers different levels of protection for files and encryp-

tion keys, in terms of secrecy and recoverability;

• utilizes symmetric encryption combined with a Reed-

Solomon code for files, offering file-slice recovery;

• utilizes Latin-square-autotopism secret sharing for

encryption keys, and

• uses a blockchain-based integrity-check protocol,

to give fast and thorough key renewal.

The rest of this paper is organized as follows. Section II

reviews related work and background. Section III explains the

secret-sharing scheme used in Gecko. Section IV introduces

Gecko in detail. Section V analyzes the threats against and

the security of Gecko. Latency is evaluated theoretically in

Section VI-A and experimentally in Section VI-B, in a simu-

lated multi-cloud storage system. Section VII concludes this

paper with some ideas for extending this research.

II. RELATED WORK AND BACKGROUND

A. SINGLE-CLOUD VS. MULTI-CLOUD STORAGE

In recent years, established cloud servers such as Google

Docs [8], Amazon S3 [9], Microsoft Azure [10], and iCloud

[11] have incurred malfunctions, indicating that single-cloud

storage is not completely secure or reliable. Multi-cloud stor-

age, where we disperse data to different clouds, is a trend-

ing way to solve single-cloud problems such as availability

failures, malicious insiders [12], and vendor lock-in [13].

Further, multi-cloud storage requires a lower level of trust:

instead of trusting a single provider, users trust that several

providers do not collude.

We propose a dispersal scheme based on the multi-cloud

such that: 1) each cloud stores a piece of ciphertext and a piece

of the encryption key, which secures confidentiality; and 2) a

(k, n) erasure code keeps data retrievable even if n− k clouds

fail.

B. DISPERSAL SCHEMES

Dispersal schemes are generally applied to distributed sys-

tems for data security. An (n, k, r) dispersal scheme frag-

ments data D into n slices, each of which is dispersed to a

different server or a different cloud. Any k of n slices can

be used to reconstruct D, and without at least r slices it is

impossible to deduce any information about D.

Many dispersal schemes aim to balance security against

overhead. Secret sharing is characterized by high security

and high overhead [14], whereas information dispersal algo-

rithms (IDAs) are the contrary; it has been proposed to com-

bine these two techniques. For example, in SSMS [5] the

encryption key is fragmented via Shamir’s secret sharing

scheme (SSSS) [15] to get key slices, and the encrypted

file is encoded using Rabin’s IDA [16] to get file slices.

AONT-RS [6] achieved lower overhead than SSMS by com-

bining the file and the encryption key together via all-or-

nothing transforms (AONT) [17] to get an AONT package

(a hybrid data block), which is encoded by systematic Reed-

Solomon (RS) erasure codes [18] to get hybrid slices (some

of which contain both a part of the file and a part of the

encryption key).

Gecko is similar to SSMS in terms of dispersing encryp-

tion keys independently, but we use a novel Latin-square-

autotopism secret sharing (LASS) instead of SSSS, to offer

powerfully fast and thorough key renewal which is not found

in either SSMS or AONT-RS.

Note that although many keyless dispersal schemes have

been proposed to avoid key management [19]–[21], key-

based methods are still the primary technique as long as we

design key-protection strategies cautiously, as Gecko does.

Table 1 presents the comparison.

C. SECRET SHARING SCHEMES

In 1979, Blakley [22] and Shamir [15] independently intro-

duced the concept of secret sharing, used to protect important

but small-sized secrets such as encryption keys. In Blakley’s

scheme, the secret is the unique intersection point of (suitably

chosen) hyperplanes in a vector space, and the shares are

the hyperplanes. Shamir’s Secret Sharing Scheme (SSSS) is

based on polynomial interpolation, which achieves a high

level of security at the expense of computational complexity

and storage cost. In general, a (k, n) secret sharing scheme

splits a secret into n shares, any k of which can be used to

reconstruct the secret.

An early Latin-square secret-sharing scheme was given by

Cooper, Donovan, and Seberry [23] (see also [24]) based on

critical sets in 1994, but it was subsequently harshly criticized

[25]–[27]. Afterward, changing the secret from the Latin

square to one of its autotopisms was suggested in [28] and

developed in [29]. Compared with critical sets, autotopisms

of Latin squares are better understood [30]–[33] and are more

practical to work with (e.g., determining if a partial Latin

square has a completion as required by the original Latin

square secret-sharing scheme is NP-complete [34]).

This paper applies the autotopism-based schemeLASS[29]

to the proposed dispersal scheme, for a high-level of key

protection. We introduce the basic notions and properties of

LASS, as well as why we use it in Section III.

D. BLOCKCHAINS AND INTEGRITY CHECK

A blockchain is a distributed and tamper-resistant database

composed of numerous identical copies of its entries, each

77388 VOLUME 7, 2019

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

TABLE 1. Building blocks and properties of various dispersal schemes. Note that ‘‘LASS’’ is short for Latin-square-autotopism secret sharing, ‘‘RS code’’ is
short for Reed-Solomon code, and bkey and b are the number of bytes of the key and the data.

copy being maintained by a node in the blockchain net-

work. All honest nodes comply with a consensus proto-

col instead of following a central party, where: (1) nodes

need not trust each other, (2) even if a substantial minority

of the nodes are dishonest or out of order, consensus still

succeeds.

Many researchers have proposed to utilize blockchains

to reform third-party-based systems involving access con-

trol [35], [36], public key infrastructure [37], and integrity

checks [38]. In [38] Liu et al proposed blockchain-based

integrity check for IoT data, where data owners publish

encrypted data-block hashes on Ethereum’s blockchain while

simultaneously uploading data to the cloud. During down-

load from the cloud, the corresponding encrypted data-block

hashes are used by the data owners (or authorized data con-

sumers) to verify data-block integrity. However, Liu et al’s

scheme only offers client-managed verification and fails

to satisfy non-repudiation, which is very important as an

integrity check for outsourced data.

Compared to [38], the blockchain-based NAP-check in

Gecko not only offers client-initiated and CSP-initiated

integrity check, but also achieves non-repudiation, account-

ability, and public verifiability simultaneously (which is

why we call it NAP-check). Compared to traditional hash-

based or signature-based methods [39], [40], NAP-check uti-

lizes a decentralized network instead of a single trusted party,

thus features higher reliability.

In industry, the decentralized storage network called File-

coin [41] stores data-auditing proofs in a blockchain to ensure

that data is actually stored. Gecko is similar to Filecoin in

that it stores ‘‘signatures’’ in the blockchain. Also similar

to Gecko, Storj [42] locally encrypts and splits client data

via erasure codes, and distributes the pieces to peers (storage

nodes in a peer-to-peer network). However, Storj does not use

a blockchain for verification (although they use Ethereum for

payments of ‘‘Storj’’ tokens), and instead use probabilistic

challenges called ‘‘audits.’’ Filecoin’s and Storj’s networks

involvemany (untrusted) storage participants, whereasGecko

is aimed at storing data on a small number of clouds.

Although clouds are also untrusted, they are more reli-

able than network participants, and Gecko also inherits the

security and erasure-tolerance functionality of the individual

clouds.

III. LATIN-SQUARE-AUTOTOPISM SECRET SHARING

Here we introduce basic notions about Latin squares. Partic-

ularly, we give special properties of LASS, which explains

the benefits of dispersing encryption keys based on LASS.

To ease understanding, we give an example of a 6-order Latin

square and an autotopism.

A. NOTIONS ABOUT LATIN SQUARES

A Latin square L = (li,j) of order r is an r×r matrix with cells

filled with symbols from the set Zr , such that each symbol

occurs exactly once in each row and each column. An entry

(i, j, li,j) implies the symbol li,j is in the cell (i, j) in Latin

square L.

A partial Latin square is a generalized Latin square which

allows the possibility of empty cells, denoted ·, and where we

require only that symbols occur at most once in each row and

each column.

Let Sr be the symmetric group acting on Zr . An isotopism

θ = (α, β, γ) ∈ Sr×Sr×Sr is a kind of mapping that

permutes each entry (i, j, li,j) 7→
(

α(i), β(j), γ (li,j)
)

, thereby

permuting L to θ (L). If θ (L) = L, we call θ an autotopism

of L.

The orbit of any entry (i, j, li,j) under an autotopism

(α, β, γ) is the set of entries {
(

αk (i), βk (j), γ k (li,j)
)

: k ≥ 0}.

Orbits of a Latin square are mutually exclusive (i.e., their

intersections are empty sets). If we choose exactly one entry

from each orbit, we obtain a partial Latin square called a

contour. With a contour and its corresponding autotopism,

we can reconstruct the Latin square.

VOLUME 7, 2019 77389

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

FIGURE 1. An example: the autotopism θ maps the entry (0, 0, 5) to the entry (1, 1, 3), which is in L; the
isotopism σ (not an autotopism) maps the entry (0, 0, 5) to the entry (1, 3, 5), which is not in L. A contour C
constructs a Latin square L under the respec autotopism θ .

FIGURE 2. Fragmentation in LASS: a secret (an autotopism) is split into k
secret shares, each of which is combined with a shard of contour to
achieve verifiability.

B. A SUCCINCT EXAMPLE

Figure 1 gives an example based on a Latin square L. The

entry (0, 0, 5) denotes the element of Latin square L that is

in row 0 and column 0 with the value of 5. The isotopism

σ and autotopism θ both consist of three parts, each of

which defines the permutation of row/column/value of an

element. Under the autotopism θ , which is an automorphic

permutation for Latin squares, the entry (0, 0, 5) becomes

entry (1, 1, 3), which is an element that is also in Latin square

L. However, under the isotopism σ , which is a permutation

too, the same entry (0, 0, 5) becomes entry (1, 3, 5), which

is not in Latin square L. The contour C, which is a partial

Latin square generated by selecting one entry from each orbit,

constructs the Latin square L by three permutations under the

autotopism θ , like θ (C) = L.

C. PROPERTIES OF LASS

In LASS, a secret θ is an autotopism. The k secret shares

σ1, . . . , σk are random isotopisms generated by the following

steps: 1) randomly generate k − 1 isotopisms σ1, . . . , σk−1;

2) compute σk = σk−1
−1σk−2

−1 · · · σ1
−1θ , so we have

θ = σ1σ2 · · · σk . Figure 2 plots the fragmentation process,

in which a contour shard Ci is appended to each secret share.

Reconstruction is the inverse process of fragmentation. Here

we introduce some important properties of LASS.

1) VERIFIABILITY

With the corresponding autotopism θ , a contour C constructs

a Latin square L; whereas, with a faulty autotopism θ , a con-

tour C is unlikely to construct a Latin square L. Thus, during

reconstruction we can verify that whether the autotopism θ ′

reconstructed from downloaded secret shares is correct or not.

Verifiability is one of the primary benefits of LASS over both

SSSS and Blakey’s secret sharing scheme [29].

2) CONFIDENTIALITY

In Blakley’s scheme, a leaked hyperplane permanently

reveals partial information about the secret (i.e., a sub-

hyperplane it belongs to). In LASS, a share σi is a random

isotopism and does not reveal partial information about the

secret θ . Thus, when a share σi of a secret θ is leaked, if we

re-fragment θ again and replace all shares of θ , the leaked σi
becomes permanently useless even if subsequent leaks occur.

Confidentiality of LASS enables Gecko to resist targeted

attacks (see Section V-A).

3) EFFICIENCY

Since reconstruction and re-fragmentation of secret and

replacement of shares are very fast in LASS, we can effi-

ciently and periodically perform replacement to provide a

high-level of protection for the secret. Efficiency is another

benefit of LASS compared to SSSS.

D. DISPERSION VIA LASS

Using an autotopism to generate an encryption key and using

LASS to fragment the autotopism to give key slices, in Gecko:

1) a key slice does not reveal partial information of the

encryption key;

2) we can verify whether the encryption key reconstructed

from key slices is correct or not (whether θ ′ = θ or not);

77390 VOLUME 7, 2019

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

FIGURE 3. Uploading data under Gecko: we obtain n file slices and n key slices respectively, which are dispersed appended
with signatures to n distinct CSPs. Double signatures are generated and uploaded to the blockchain by CSPs.

3) fast and thorough key renewal is possible, in which all

slices of the key in danger are replaced.

However, if during key reconstruction we learn that θ ′ 6= θ

(implying an incorrect key slice exists), we cannot directly

identifywhich key slicewas incorrect due to tampering. Thus,

we instead utilize blockchain-based NAP-check to identify

incorrect slices exactly. Furthermore, LASS is a (k, k) scheme

which does not offer fault tolerance. Thus, we combine a

systematic Reed-Solomon code with LASS.

IV. GECKO DESIGN

In this section, we present the design details of Gecko,

in which slices of the key in danger are discarded and

renewed. In Gecko, uploading data includes slice gener-

ation and double-signature generation; downloading data

involves reconstruction and possibly involves recovery. The

NAP-check and key renewal are explained in detail. Gecko is

utilized in a multi-cloud system with n CSPs in total, with a

fault-tolerance of (k, n).

A. SLICE GENERATION

As Figure 3 plots, slice generation includes three stages as

follows.

1) INITIALIZE THE ENCRYPTION KEY

We generate an autotopism θ and a contour C from a Latin

square L, then convert the autotopism θ into a 256-bit key

suitable for AES-256:

(a) convert θ into a string, e.g.

043,125*024,153*035,124;

(b) encode the above string as a positive integer, and use

the SHA-256 hash function to generate a 256-bit encryption

key K := SHA-256(pre-key).

2) GENERATE FILE SLICES

We split the plaintext F into k partial files F1,F2, . . . ,Fk of

approximately equal sizes. We compute a hash Hi for each Fi
via SHA-256 and have

F ′ := [F1|H1|F2|H2| · · · |Fk |Hk].

HereHi can be used for integrity verification after recovering

F ′ (if needed).We useAES-256 to encrypt fileF ′ with the key

K generated in Stage 1, yielding the ciphertext C . For fault

tolerance we use an IDA based on systematic Reed-Solomon

code RS(k, n) on C and give n file slices.

3) GENERATE KEY SLICES

According to LASS given in Figure 2, from an autotopism

θ we generate k isotopisms σ1, . . . , σk , each of which is

appended with a shard of contour C to get:

θ̂ := [σ1|C1|σ2|C2| · · · |σk |Ck].

For fault tolerance, we use RS(k, n) on θ̂ and give n key slices,

each of which does not reveal partial information about the

encryption key K .

B. DOUBLE-SIGNATURE GENERATION

As Figure 3 plots, double-signature generation contains two

steps and needs both the client and the CSP to participate.

Double signatures are published on the blockchain for giving

NAP-check. We first define two functions of a deterministic

signature algorithm:

• Sign(sk,msg): to sign messagemsg using private key sk;

it outputs signature sig.

• Veri(pk, sig,msg): to verify a signature sig using public

key pk and the original message msg; it outputs 1 when

verification fails and outputs 0 else.

As Algorithm 1 presents, the client signs each generated

slice to get a signature. During dispersion, the generated n

file slices along with signatures, and n key slices along with

signatures, are dispersed independently to n distinct CSPs.

Receiving a slice with the corresponding signature, a CSP

stores the slice if verification succeeds, and signs the signa-

tures to create double signatures, which are uploaded to the

blockchain.

C. RECONSTRUCTION

To reconstruct a file, the client downloads k file slices and

k key slices from the n CSPs, applying NAP-check to each

slice. If any slice fails NAP-check, the client performs key

VOLUME 7, 2019 77391

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

renewal or file-slice recovery. Essentially this is a test-and-

recover mechanism. When we obtain 2k correct slices, either

at first or after the recovery process, then:

1) we decode the Reed-Solomon-encoded slices, to obtain

θ̂ and the ciphertext C ;

2) from θ̂ , we compute the autotopism θ and the contour

C, and use θ and C to generate the corresponding Latin

square, thereby verifying that the key is correct and

untampered;

3) we regenerate the AES key K from θ , and decrypt the

ciphertext C to give F ′ and thus the plaintext F ; and

4) wemay also verify that the decrypted file’s contents are

correct by using the hash Hi.

Algorithm 1 Double-Signature Generation

// step 1: client-side generation

sig← Sign(skCLIENT, slice)

Disperse to CSPs

// step 2: CSP-side generation

if Veri(pkCLIENT, sig, slice) then
SendToClient(errMsg)

else
Store(sig, slice)

sigd ← Sign(skCSP, sig)

receipt ← SendToBlockchain(sigd)

SendToClient(receipt)

D. KEY RENEWAL AND FILE-SLICE RECOVERY

During reconstruction, when a faulty key slice is detected

through NAP-check, key renewal is performed, replacing all

the slices of the key without changing the key itself, thereby

avoiding re-encrypting files. The detailed steps are as follows:

1) discard a downloaded faulty key slice and download

another key slice;

2) retain the downloaded key slice if correct, and proceed

to download the next key slice;

3) continue step 1) and 2) until we obtain k correct key

slices;

4) reconstruct the autotopism θ via LASS; and

5) re-disperse θ , including key-slice generation which is

Stages 3 in Section IV-A, and double-signature gener-

ation (Section IV-B), thus to overwrite the previously

stored key slices and corresponding signatures.

Thanks to NAP-check, which is used in step 1)–3), we avoid

reconstructing θ with faulty key slices, which is a waste

of time. In the experiment section we prove that although

requesting double signatures entailing some additional time

cost, key renewal in Gecko is still computationally fast since

LASS is used. We envisage that it will be beneficial to per-

form key renewal periodically.

Having identified a corrupted file slice via NAP-check,

we perform file-slice recovery:

1) download k correct file slices like the above step 1)–3);

2) compute the correct value of the corrupted file slice

through Reed-Solomon coding; and

3) upload the corrected file slice along with its signature

to the CSP, as in step 1 of Algorithem 1, replacing the

corrupted file slice.

During this process, we do not decode the ciphertext C and

do not replace the corresponding double signatures (as we do

not renew the file slice).

E. BLOCKCHAIN-BASED INTEGRITY CHECK

In this part we present the workflow of NAP-check and

explain how it meets non-repudiation, accountability, and

public verifiability. NAP-check is useful in reconstruction;

especially it accelerates key renewal and file-slice repair.

Algorithm 2 Client-Initiated NAP-Check

sig′← Sign(skCLIENT, slice′)

if Veri(pkCSP, sigd , sig
′) then

return fail

else
return success

1) NAP-CHECK WORKFLOW

In client-initiated NAP-check, a cloud client downloads a

slice slice′ from the cloud and access the corresponding

double signature sigd from the blockchain, then perform

Algorithm 2. If the output is ‘‘fail,’’ the slice is possibly tam-

pered or damaged so we perform either key renewal or file-

slice recovery. Downloading a file slice may be time-

consuming as the file slice size may be large. Thus, we prefer

a client to perform NAP-check on file slices only when they

access the file. Client-initiated NAP-check on key slices is

efficient since key slices are small, which is suitable for

periodical checks.

In CSP-initiated NAP-check, a CSP reads the to-be-

checked slice slice′ and its signature sig′ stored on data

servers, and accesses the corresponding double signature sigd
from the blockchain, then performAlgorithem 3. If the output

is ‘‘fail,’’ the CSP performs its own recovery mechanisms.

Algorithm 3 CSP-Initiated NAP-Check

if Veri(pkCSP, sigd , sig
′) then

return fail

else

if Veri(pkCLIENT, sig′, slice′) then
return fail

NAP-check else
return success

2) NAP-CHECK FEATURES

• Non-repudiation. A double signature is signed by both

the client and the CSP, thus it is an integrity credential

77392 VOLUME 7, 2019

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

admitted by both parties, and is reliable as they are stored

in a blockchain to guarantee they remain tamper-free.

Utilizing such credentials, NAP-check results convince

both parties. In other words, NAP-check achieves non-

repudiation.

• Accountability. By generating and publishing a double

signature, the CSP claims that the received slice is intact

(there is no error during dispersion). Thus, if NAP-check

fails, we can immediately conclude that the error was

caused by the CSP’s weak protection of data.

• Public verifiability. As mentioned, both of clients and

CSPs can perform the NAP-check. The client can pin-

point incorrect slices when downloading them. CSPs

can periodically check integrity to offer reliable storage

service.

An additional feature granted due to the public verifiability

of NAP-check is the ability to prove the authenticity of data

to outside parties, such as insurance companies or regula-

tory organizations. In the scenario we grant access of any

particular data to a third party, this third party can perform

NAP-check and thereby verify the data’s authenticity.

V. SECURITY ANALYSIS

We analyze the security of Gecko based on the threat model

where:
1) there are n CSPs and the client utilizes a (k, n)-erasure

code when generating key slices or file slices;

2) some CSPs may be temporarily lost due to accidents,

whereas a proper (k, n) ensures the availability of data;

and

3) data on servers of CSPs may be stolen, erased or cor-

rupted (due to accidents or malicious operations).

A. THEFT

Under Gecko, a key slice does not reveal partial information

about the key due to the use of LASS. A file slice reveals

partial information of the ciphertext C , which we consider

inconsequential. We conclude that with a Gecko slice (no

matter whether a key slice or file slice), an attacker cannot

infer any information. Thus, an attacker running targeted

attack to steal a file has to steal k key slices and k file slices to

access the plaintext.We assume that a targeted-attack attacker

will at first attempt to reconstruct the encryption key, with

which he or she then tries to decrypt file slice(s).

Let us focus on key theft. In a multi-cloud storage system,

to steal a key an attacker needs to access at least k different

CSPs using varying protocols and hardware, which is already

an arduous task. Moreover, in Gecko we provide more pow-

erful key protection: an attempt to access k key slices must

access all k key slices before any key renewal is performed,

and so is time-limited if key renewal is performed periodi-

cally. This is due to the fact that LASS shares are randomly

generated and we can replace LASS shares σ1 · · · σk without

replacing the original autotopism θ , which means we can

replace all slices of a leaked encryption key without replacing

the key itself.

For comparison, in AONT-RS, each hybrid slice contains

both a part of the file and a part of the encryption key, and any

k slices are sufficient to obtain the plaintext, thereby requiring

fewer successful attacks thanGecko. Furthermore, AONT-RS

did not offer mechanism similar to key renewal, and we have

to renew the AONT package (which is the combination of

the ciphertext and the encryption key) to achieve the same

protection as Gecko. AONT renewal requires a replacement

of the encryption key and a re-encryption and upload of the

file, which is much less flexible than Gecko.

In SSMS, since encryption keys are independently dis-

persed, key renewal is possible. However, key renewal based

on SSSS is much less efficient than key renewal in Gecko; a

key renewal that is slow gives attackers more chances to steal

key slices.

In terms of files, Gecko offers the same level of protection

as AONT-RS, in terms of secrecy and recovery: it uses AES

to encrypt the file for confidentiality and uses Reed-Solomon

codes to fix the incorrect file slices. As SSMS uses a 16-bit

encryption key, file protection in SSMS is weaker than in both

Gecko and AONT-RS.

B. ERASURE

In Gecko, data is only irretrievably lost when erasures (or

corruption, tampering, etc.) occur to the relevant data on at

least n− k + 1 CSPs simultaneously, which is unlikely given

that CSPs themselves are independent and tolerate erasures

through, e.g., data replication (i.e., storing multiple copies of

data) or erasure coding, and run processes like data scrubbing

for error detection. Thus, data loss through random erasures

is a negligible concern.

Supposing deliberate or systematic erasure occurs (e.g.,

through an attack or collusion, or CSPs failing to

renew or repair correctly), if n− k or fewer CSPs selectively

erase the client’s data, the client is still capable of recovering

the data via the other CSPs. Moreover, the inaccessible data

enable the client to identify problematic CSPs and to take

remedial steps.

If n − k + 1 or more CSPs selectively erase the client’s

data, then the client’s data are irretrievably lost, so n and k

should be chosen to suit the level of risk. (The client should

also choose more trustworthy clouds.)

VI. LATENCY ANALYSIS

A. THEORETICAL LATENCY ANALYSIS

We derive mathematical formulas for the recovery latency of

Gecko, and compare them against AONT-RS. Table 2 tab-

ulates the variables we include. We make some simplifying

assumptions: (a) the per-MB download and upload latency

are equal, (b) latency scales linearly with the transfer volume,

(c) the cloud-blockchain latency is the same for each cloud,

and is the same as the client-blockchain latency, (d) we ignore

the contribution of generating signatures, and (e) actions are

performed sequentially. However, we allow the possibility

that different CSPs have different client-cloud latencies.

VOLUME 7, 2019 77393

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

TABLE 2. Latency variables. All sizes are in MB, and latencies are
in seconds per MB.

Here we present a running example to compare theoretical

recovery latency of Gecko and AONT-RS. There are 5 CSPs

C1, . . ., C5 and we use the Reed-Solomon code RS(3, 5) for

both Gecko and AONT-RS. We download 3 slices s1, s2, s3
from C1, C2, and C3 among which C1 is dishonest.

In AONT-RS, only after reconstructing |F | can we detect

that there is incorrect downloaded slice(s) and we cannot

know which one is incorrect. To continue reconstructing,

we need to download other slices and try other combinations

(such as s1, s3, and s5). In worst case, we need to try
(

5
3

)

= 10

times, which gives the latency:

ℓ̂step1 = 10 · d̂ |Ĉ| + (c1 + · · · + c5)f̂.

To renew all slices, we need to re-encrypt the file using a new

key, then upload the five new slices to the CSPs, taking total

time:

ℓ̂step2 = ê|F | + (c1 + · · · + c5)f̂.

Thus, the renewal latency of AONT-RS is:

ℓ̂renewal = 10d̂ |Ĉ| + 2

5
∑

i=1

ci f̂+ ê|F |.

In Gecko, we detect that s1 is incorrect by NAP-check just

after downloading. We discard s1 and perform recovery. If

s1 is a file slice, we download three other slices, perform

NAP-check and reconstruct F , which gives the latency:

ℓfile-step1 = d |C| + (c1 + · · · + c4)f+ 4 · Bs.

We then fix the incorrect slice s1 alongwith the corresponding

signature on C1, which takes time:

ℓfile-step2 = e|F | + c1(f+ s).

Thus, the file-slice-recovery latency in Gecko is:

ℓfile-slice-recovery=d |C|+(2c1+

4
∑

i=2

ci)f+ e|F | + 4Bs+ c1s.

If s1 is a key slice, we download three other slices, perform

NAP-check and reconstruct θ , which takes time:

ℓkey-step1 = (c1 + · · · + c4)k+ 4 · Bs.

Here we ignore the latency of decoding the key, as key slices

are small-sized. We then replace s1, . . ., s5 and the five

corresponding double signatures on the blockchain, which

takes time:

ℓkey-step2 = (c1 + · · · + c5)(k+ s)+ 5 · Bs.

Here we ignore the latency of re-encoding the key. Thus,

the key-recovery latency in Gecko are:

ℓkey-renewal =
(

2

4
∑

i=1

ci + c5
)

k+ 9Bs+

5
∑

i=1

cis.

Assuming f is large, the ℓkey-renewal (which does not have

an f term) is far smaller than ℓ̂renewal which is dominated

by the term 2
∑5

i=1 ci f̂. Moreover, the ℓfile-slice-recovery is

dominated by (2c1 +
∑4

i=2 ci)f, which we expect is smaller

than 2(c1+· · ·+c5)f ≃ 2(c1+· · ·+c5)f̂. This indicates how

key renewal and file-slice recovery is faster than hybrid-slice

renewal in AONT-RS, and we expect this behavior to become

more significant as f grows (or equivalently as |F | grows).

Compared to SSMS, key-slice generation for SSMS is O(kn ·

|K |) and for Gecko is O
(

(n − k)|K | + k
)

, whereas double-

signature generation in Gecko may add a small overhead.

We observe that the cloud latencies ci along with the

blockchain latency B play a significant role in how efficient

Gecko is in practice. These latencies will be an essential

consideration in the conclusions in this section and the sub-

sequent experimental simulations in Section VI-B: one slow

cloud may be a bottleneck for the whole system, and may

radically affect these latencies.

B. EXPERIMENTAL LATENCY ANALYSIS

Motivated by the theoretical latency analysis, we experimen-

tally evaluate: (a) that key renewal in Gecko is significantly

more efficient than hybrid-slice recovery in AONT-RS, and

(b) that the upload and download latency of Gecko is only

slightly more than that of AONT-RS.

1) EXPERIMENTAL SETUP

We use one computer as the client and another as the cloud

server, with FTP servers used to simulate multiple CSPs. The

cloud client has an 8-core Intel i7-6700 processor (2.60 GHz)

and 8 GB RAM running 64-bit Windows 10, and the cloud

server has an AMD Phenom processor (2.60 GHz) and 4GB

RAM running 32-bit Windows 7. The source code is imple-

mented in C and C# and compiled by Visual Studio 2012. The

network between the client and the server consists of a gigabit

Ethernet switch, and we use a TL-WR847N router to limit the

bandwidth to 100MB/s between the components to simulate

aWAN connection. Various listener ports are set to accept the

77394 VOLUME 7, 2019

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

FIGURE 4. Slice-generation speed for AONT-RS and Gecko.

FIGURE 5. Upload and download time for AONT-RS and Gecko, for an
8MB unencrypted file (averaged over three runs).

data which are sent to different CSPs, where the server reads

the data and verifies the signature from the client.

Encoding speeds when using Latin squares of differing

orders makes a negligible difference, so we only present

results for order-10 Latin squares. Where relevant, the file

size is 8 MB. The IDA uses systematic Reed-Solomon

RS(k, n) coding and we vary k and n. For Reed-Solomon

coding, we use Luigi Rizzo’s open source library [43] over

GF(28). We use an elliptic curve digital signature algorithm

(ECDSA) to generate signatures.

Gecko uses a public blockchain: public blockchains feature

higher reliability than private blockchains. We use the API

provided by Tierion [44] to join the Bitcoin blockchain; we

post a double signature into Tierion, and it returns a record

ID. When performing NAP-check, Tierion returns the double

signature and its location in the Bitcoin blockchain to a

requester who holds the corresponding record ID.

2) UPLOAD AND DOWNLOAD LATENCY

Figure 4 plots the speed of fragmenting a file into: 1) hybrid

slices for AONT-RS, and 2) file slices and key slices for

Gecko. Under various parameters (k, n), Gecko features a

slightly higher speed than AONT-RS. In [29] Stones made a

simple implementation of the LASS (which included every-

thing involved in the secret sharing scheme), and its runtime

was in the ballpark of milliseconds. Thus, we expect that most

of the time spent on Gecko is on file-slice generation.

Figure 5 plots the upload and download time of AONT-RS

and Gecko, in the simulated multi-cloud storage system.

FIGURE 6. The hybrid-slice renewal time for AONT-RS, and key renewal
and file-slice recovery time for Gecko (averaged over three runs).

There is indeed additional overhead for Gecko in uploading

and downloading, due to the generation of double signa-

tures and transfer latency between CSPs and the blockchain.

The additional overhead is the trade-off for performing

NAP-check and efficient key renewal and file-slice recov-

ery. The fluctuation under various parameters (k, n) may be

due to: 1) the fluctuations in the blockchain response time,

2) the fluctuations in the cloud processing time, and 3) net-

work speed.

3) RENEWAL LATENCY

Figure 6 plots the renewal time for AONT-RS (which

requires that both the key and file be renewed), and the key

renewal time and the file-slice recovery time for Gecko. We

observe that the Gecko key renewal time is 3 to 5 times

faster than renewal in AONT-RS, and the Gecko file-slice

recovery time is about 2 times faster than renewal in

AONT-RS. This observation is consistent with the theoretical

analysis in Section VI-A. Importantly, AONT-RS does not

have a mechanism for detecting faulty files, unlike Gecko

(via NAP-check), so renewal in AONT-RS is mostly non-

effective.

We further evaluate the time cost for NAP-check during

key renewal. We split the key renewal time into two com-

ponents: (a) the time spent on LASS: reconstructing θ by

k correct key slices and then generating n new key slices;

and (b) the time spent involving NAP-check: the NAP-check

time for each downloaded key slice, and double-signature

VOLUME 7, 2019 77395

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

TABLE 3. The key renewal time split into two parts: (a) the time spent on
LASS and (b) the time spent involving NAP-check.

generation for each new generated key slice. Table 3 tabulates

the results.

We observe that NAP-check adds a noticeable overhead,

especially when we download k correct key slices. However,

as noted in Section VI-A, with NAP-check we avoid com-

putation during the reconstruction of θ when incorrect slices

exist. In summary, NAP-check accelerates key renewal and

file-slice recovery.

VII. CONCLUDING REMARKS

In this paper, we proposed Gecko, a multi-cloud disper-

sal scheme that utilizes a Latin-square autotopism secret

sharing scheme and blockchain technology. It improves on

the traditional AONT-RS by having additional functionality:

(a) distributed integrity verification, which is performed after

a slice is downloaded, and (b) key renewal and file-slice

repair, which are both faster than complete renewal. Exper-

imental results indicate that Gecko performs key renewal 3 to

5 times faster than AONT-RS performs complete renewal,

and the upload and download overhead is minor. It is also

important to note that cloud latency and the blockchain

latency plays a determining role in the latency of both Gecko

and AONT-RS.

One challenge of this work is deciding how to store proof-

of-data in the blockchain. We devise a double signature to

achieve non-repudiation, accountability, and public verifia-

bility. We envisage Gecko being used as a kind of storage

‘‘middleman’’ (such as a logical layer in a trusted server):

users send their data (either encrypted or unencrypted) to the

Gecko operator, who maintains the data on multiple clouds

on behalf of the users. This benefits the users, who may not

be particularly familiar with cloud storage, or may not wish

to implement multi-cloud storage themselves.

We also suggest some other directions for future work:

(a) the Latin-square-autotopism secret sharing schemewe use

has no fault tolerance. Future work could focus on adapt-

ing this scheme to tolerate faults. One possibility is using

the multi-level adaptation of the Latin-square secret sharing

scheme described in [29]; and (b) we could explore construct-

ing a blockchain specially designed for storing proof-of-data,

which may accelerate the transmission speeds involved in

using the blockchain.

REFERENCES

[1] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, ‘‘Security and privacy challenges

in cloud computing environments,’’ IEEE Security Privacy, vol. 8, no. 6,

pp. 24–31, Nov./Dec. 2010.

[2] D. K. Bowers, A. Juels, and A. Oprea, ‘‘HAIL: A high-availability and

integrity layer for cloud storage,’’ in Proc. CCS, Nov. 2008, pp. 187–198.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, ‘‘Provable data possession at untrusted stores,’’ in Proc. CCS,

Oct. 2007, pp. 598–609.

[4] A. W. Services. (2019). AWS Partner Story: CareCloud.

Accessed: Jan. 9. 2019. [Online]. Available: https://aws.

amazon.com/cn/partners/success/carecloud/

[5] H. Krawczyk, ‘‘Secret sharing made short,’’ in Proc. Annu. Int. Cryptol.

Conf. Berlin, Germany: Springer, 1993, pp. 136–146.

[6] J. K. Resch and J. S. Plank, ‘‘AONT-RS: Blending security and perfor-

mance in dispersed storage systems,’’ in Proc. FAST, 2011, pp. 1–12.

[7] M. Li, C. Qin, P. P. C. Lee, and J. Li, ‘‘Convergent dispersal: Toward

storage-efficient security in a cloud-of-clouds,’’ in Proc. HotStorage,

Jul. 2014, pp. 1–5.

[8] C. Cachin, I. Keidar, and A. Shraer, ‘‘Trusting the cloud,’’ ACM SIGACT

News, vol. 40, no. 2, pp. 81–86, Jun. 2009.

[9] J. Novet. (2017). Microsoft Confirms Azure Storage Issues Around the

World (Updated). Accessed: Feb. 15, 2018. [Online]. Available: https://

venturebeat.com/2017/03/15/microsoft-confirms-azure-storage-issues-

around-the-world/

[10] T. Robinson. (2018). Open AWS S3 Bucket Exposes Private info on Thou-

sands of Fedex Customers. Accessed: Nov. 6, 2018. [Online]. Available:

https://www.scmagazine.com/

[11] L. Razavi. (2014). The IC Cloud Leak: Weak Security isn’t Only a Problem

for Apple’s Backup Service. Accessed: Sep. 2, 2016. [Online]. Available:

https://www.newstatesman.com/sci-tech/

[12] M. A. AlZain, E. Pardede, B. Soh, and J. A. Thom, ‘‘Cloud comput-

ing security: From single to multi-clouds,’’ in Proc. HICSS, Jan. 2012,

pp. 5490–5499.

[13] H. Abu-Libdeh, L. Princehouse, and H.Weatherspoon, ‘‘RACS: A case for

cloud storage diversity,’’ in Proc. SoCC, Jun. 2010, pp. 229–240.

[14] W. M. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti, ‘‘POT-

SHARDS: A secure, recoverable, long-term archival storage system,’’

ACM Trans. Storage, vol. 5, no. 2, pp. 1–35, Jun. 2009.

[15] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,

pp. 612–613, Nov. 1979.

[16] M. O. Rabin, ‘‘Efficient dispersal of information for security, load balanc-

ing, and fault tolerance,’’ J. ACM, vol. 36, no. 2, pp. 335–348, Apr. 1989.

[17] R. L. Rivest, ‘‘All-or-nothing encryption and the package transform,’’ in

Proc. 4th Int. Workshop Fast Softw. Encryption, 1997, pp. 210–218.

[18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting

Codes. Amsterdam, The Netherlands: Elsevier, 1977.

[19] M. Li, C. Qin, and P. P. C. Lee, ‘‘CDStore: Toward reliable, secure, and

cost-efficient cloud storage via convergent dispersal,’’ in Proc. USENIX

Annu. Tech. Conf., Jul. 2015, pp. 111–124.

[20] L. Shen, S. Feng, J. Sun, Z. Li, M. Su, G. Wang, and X. Liu, ‘‘CloudS:

A multi-cloud storage system with multi-level security,’’ IEICE Trans. Inf.

Syst., vol. 99, no. 8, pp. 2036–2043, 2016.

[21] K. Kapusta, G. Memmi, and H. Noura, ‘‘POSTER: A keyless efficient

algorithm for data protection by means of fragmentation,’’ in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 1745–1747.

[22] G. R. Blakley, ‘‘Safeguarding cryptographic keys,’’ in Proc. NCC, vol. 48,

Jun. 1979, pp. 313–317.

[23] J. Cooper, D. Donovan, and J. Seberry, ‘‘Secret sharing schemes arising

from latin squares,’’ Bull. Inst. Combinatorics Appl., vol. 12, pp. 33–43,

1994.

[24] J. Cooper, D. Donovan, and J. Seberry, ‘‘Latin squares and critical sets of

minimal size,’’ Australas. J. Combin., vol. 4, pp. 113–120, 1991.

[25] D. M. Donovan, J. G. Lefevre, T. A. McCourt, N. J. Cavenagh,

and A. Khodkar, ‘‘Identifying flaws in the security of critical sets in

latin squares via triangulations,’’ Australas. J. Combinatorics, vol. 52,

pp. 243–268, 2012.

[26] M. Tompa and H. Woll, ‘‘How to share a secret with cheaters,’’ J. Cryptol.,

vol. 1, no. 3, pp. 133–138, Oct. 1989.

[27] J. Mike Grannell, S. Terry Griggs, and A. P. Street, ‘‘A flaw in the use of

minimal defining sets for secret sharing schemes,’’ Des., Codes Cryptogr.,

vol. 40, no. 2, pp. 225–236, Aug. 2006.

[28] R. M. F. Ganfornina, ‘‘Latin squares associated to principal autotopisms

of long cycles. Application in cryptography,’’ Transgressive Comput.,

pp. 213–230, 2006.

[29] R. J. Stones, M. Su, X. Liu, G. Wang, and S. Lin, ‘‘A latin square

autotopism secret sharing scheme,’’ Des., Codes Cryptogr., vol. 80, no. 3,

pp. 635–650, Sep. 2016.

77396 VOLUME 7, 2019

M. Yan et al.: Gecko: A Resilient Dispersal Scheme for Multi-Cloud Storage

[30] J. Browning, D. S. Stones, and I. M. Wanless, ‘‘Bounds on the number

of autotopisms and subsquares of a latin square,’’ Combinatorica, vol. 33,

no. 1, pp. 11–22, Feb. 2013.

[31] R. M. Falcón, ‘‘Cycle structures of autotopisms of the Latin squares of

order up to 11,’’ Ars Combinatoria, vol. 103, pp. 239–256, Oct. 2012.

[32] B. D. McKay, A. Meynert, and W. Myrvold, ‘‘Small latin squares, quasi-

groups, and loops,’’ J. Combinat. Des., vol. 15, no. 2, pp. 98–119,

Mar. 2007.

[33] D. S. Stones and P. Vojtěchovský, and I. M. Wanless, ‘‘Cycle structure of

autotopisms of quasigroups and Latin squares,’’ J. Combinat. Des., vol. 20,

no. 5, pp. 227–263, May 2012.

[34] C. J. Colbourn, ‘‘The complexity of completing partial latin squares,’’

Discrete Appl. Math., vol. 8, no. 1, pp. 25–30, Apr. 1984.

[35] N. Kaaniche and M. Laurent, ‘‘A blockchain-based data usage auditing

architecture with enhanced privacy and availability,’’ in Proc. IEEE 16th

Int. Symp. Netw. Comput. Appl. (NCA), Oct./Nov. 2017, pp. 1–5.

[36] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, ‘‘Towards

blockchain-based auditable storage and sharing of IoT data,’’ in Proc.

Cloud Comput. Secur. Workshop, Nov. 2017, pp. 45–50.

[37] S. Matsumoto and R. M. Reischuk, ‘‘IKP: Turning a PKI around with

decentralized automated incentives,’’ in Proc. IEEE Symp. Secur. Privacy

(SP), May 2017, pp. 410–426.

[38] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, ‘‘Blockchain based data

integrity service framework for IoT data,’’ in Proc. IEEE Int. Conf. Web

Services (ICWS), Jun. 2017, pp. 468–475.

[39] A. Juels and B. S. Kaliski, Jr., ‘‘PORs: Proofs of retrievability for large

files,’’ in Proc. CCS, Oct. 2007, pp. 584–597.

[40] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, ‘‘Scalable and

efficient provable data possession,’’ in Proc. SecureComm, Sep. 2008, p. 9.

[41] P. Labs. (2014). Filecoin: A Decentralized Storage Network. Accessed:

Aug. 14, 2017. [Online]. Available: https://filecoin.io/filecoin.pdf

[42] Storj Labs, Inc. (2018). Storj: A Decentralized Cloud Storage

Network Framework. Accessed: Oct. 30, 2018. [Online]. Available:

https://github.com/storj/whitepaper

[43] L. Rizzo. (2006). Reed-Solomon FEC Codes. Accessed:

Nov. 5, 2018. [Online]. Available: http://planete-bcast.inrialpes.fr/

rubrique1edb.html?id_rubrique=10

[44] Tierion. (2018). Hash API Documentation of Tierion. Accessed:

Nov. 5, 2018. [Online]. Available: https://v1.tierion.com/docs/hashapi

MENG YAN was born in Tianjin, China, in 1992.

She received the B.S. degree in applied physics

from the Tianjin University, Tianjin, China,

in 2014.

She is a doctoral student of Nankai-Baidu Joint

Laboratory, Nankai University, Tianjin, China. Her

research interests include security and privacy of

cloud-storage, blockchain technology, and data

integrity.

JIAQI FENG was born in Anhui, China, in 1995.

She received the B.S. degree in information

and computing science from Anhui University,

Hefei, China, in 2017. She is a graduate stu-

dent of Nankai-Baidu Joint Laboratory, Nankai

University, Tianjin, China. Her research interests

include security and privacy of storage, and image

processing.

TRENT G. MARBACH received the B.Sc., B.Sc.

(Honours), and Ph.D. degrees inmathematics from

The University of Queensland, Australia, in 2009,

2010, and 2016, respectively. He is currently a

post-doctoral fellowwith the College of Computer,

Nankai University, Tianjin, China. His research

interests include combinatorics and security.

REBECCA J. STONES received the Ph.D. degree

from Monash University in pure mathematics,

in 2010. Stones now has diverse research interests,

including combinatorics and graph theory, codes,

search engines and data storage, phylogenetics,

and quantitative psychology.

GANG WANG received the B.Sc., M.Sc., and

Ph.D. degrees in computer science from Nankai

University, Tianjin, China, in 1996, 1999, and

2002, respectively.

He is currently a professor with the College

of Computer, Nankai University, Tianjin, China.

His research interests include storage systems and

parallel computing.

XIAOGUANG LIU received the B.Sc., M.Sc., and

Ph.D. degrees in computer science from Nankai

University, Tianjin, China, in 1996, 1999, and

2002, respectively.

He is currently a professor at the College of

Computer, Nankai University, Tianjin, China. His

research interests include parallel computing, stor-

age systems, and search engines.

VOLUME 7, 2019 77397

	INTRODUCTION
	RELATED WORK AND BACKGROUND
	SINGLE-CLOUD VS. MULTI-CLOUD STORAGE
	DISPERSAL SCHEMES
	SECRET SHARING SCHEMES
	BLOCKCHAINS AND INTEGRITY CHECK

	LATIN-SQUARE-AUTOTOPISM SECRET SHARING
	NOTIONS ABOUT LATIN SQUARES
	A SUCCINCT EXAMPLE
	PROPERTIES OF LASS
	VERIFIABILITY
	CONFIDENTIALITY
	EFFICIENCY

	DISPERSION VIA LASS

	GECKO DESIGN
	SLICE GENERATION
	INITIALIZE THE ENCRYPTION KEY
	GENERATE FILE SLICES
	GENERATE KEY SLICES

	DOUBLE-SIGNATURE GENERATION
	RECONSTRUCTION
	KEY RENEWAL AND FILE-SLICE RECOVERY
	BLOCKCHAIN-BASED INTEGRITY CHECK
	NAP-CHECK WORKFLOW
	NAP-CHECK FEATURES

	SECURITY ANALYSIS
	THEFT
	ERASURE

	LATENCY ANALYSIS
	THEORETICAL LATENCY ANALYSIS
	EXPERIMENTAL LATENCY ANALYSIS
	EXPERIMENTAL SETUP
	UPLOAD AND DOWNLOAD LATENCY
	RENEWAL LATENCY

	CONCLUDING REMARKS
	REFERENCES
	Biographies
	MENG YAN
	JIAQI FENG
	TRENT G. MARBACH
	REBECCA J. STONES
	GANG WANG
	XIAOGUANG LIU

