
GEDANKEN-A Simple Typeless

Language Based on the

Principle of Completeness and the

Reference Concept

JOHN C. REYNOLDS

Argonne National Laboratory,* Argonne, Illinois

GEDANKEN is an experimental programming language with the

following characteristics. (1) Any value which is permitted in

some context of the language is permissible in any other mean-

ingful context. In particular, functions and labels are permissible

results of functions and values of variables. (2) Assignment and

indirect addressing are formalized by introducing values,

called references, which in turn possess other values. The as-

signment operation always affects the relation between some

reference and its value. (3) All compound data structures are

treated as functions. (4) Type declarations are not permitted.

The functional approach to data structures and the use of

references insure that any process which accepts some data

structure will accept any logically equivalent structure, regard-

less of its internal representation. More generally, any data

structure may be implicit; i.e. it may be specified by giving an

arbitrary algorithm for computing or accessing its components.

The existence of label variables permits the construction of co-

routines, quasi-parallel processes, and other unorthodox control

mechanisms.

A variety of programming examples illustrates the generality

of the language. Limitations and possible extensions are dis-

cussed briefly.

KEY WORDS AND PHRASES: programming language, data structure, refer-

ence, assignment, coroutine, quasi-parallel process, typeless language, applica-

tive language, lambda calculus, list processing, nondetermlnlstlc algorithm

CR CATEGORIES: 4.20, 4.22, 5.23, 5.24

I n t r o d u c t i o n

The recent development of programming languages

suggests that the simultaneous achievement of simplicity

and generality in language design is a serious unsolved

problem. This paper describes an experimental language,

called GEDANKEN, which was developed to attack this

problem.

GEDANKEN is not intended to be a generally useful

language, althoughit could be effective in situations where a

fair degree of object program inefficiency is tolerable. Its

major purpose (reflected in its name, which is meant as an

analogy to gedankenexperiments in physics) is to explore

the consequences of two basic design principles:

(1) Completeness. Any value which is permitted in some

* Applied Mathematics Division. Work performed under the
auspices of the US Atomic Energy Commission.

context of the language is permissible in any other mean-

ingful context. In particular, functions and labels are per-

mitted to be results of functions or values of references

(e.g. variables), without imposing restrictions which main-

tain a stack discipline for run-time storage allocation.

(2) The Reference Concept. Assignment and indirect

addressing are formalized in the following manner: among

the possible values which may occur in a program are

objects called references, which in turn possess other values.

The assignment operation always affects the relation be-

tween some reference and its value.

Neither of these principles is novel. LISP [la and lb]

(in its interpretive implementations), IswIM [2], and PAL

[3] all satisfy the principle of completeness, and the refer-

ence concept is used in ALGOL 68 [4] and BASEL [5]. But

GEDANKEN goes beyond these languages in exploiting the

power of these principles, i.e. in eliminating other language

features which are rendered redundant by completeness

and references. SpecificMly:

(1) The existence of function-returning and reference-

returning functions allows all compound data structures to

be treated as functions. For example, a one-dimensional

ALGoL-like array is treated as a function whose domain is a

finite set of consecutive integers and which maps each of

these integers into a unique reference. This approach in-

sures that any process which accepts some data structure

will accept any logically equivalent structure, regardless of

its internal representation. More generally, any data struc-

ture may be implicit; i.e. it may be specified by giving an

arbitrary algorithm for computing or accessing its compo-

nents. (Functional data structures have been suggested by

Balzer [6], but his realization of the concept is quite differ-

ent than GEDANKEN.)

(2) The existence of label variables permits the construc-

tion of coroutines, quasi-parallel processes, and other un-

orthodox control mechanisms. This is a direct consequence

of not imposing a stack discipline on the program control

information.

The main limitation of GEDANKEN is that declara-

tions are not allowed to restrict the value ranges of identi-

fiers, references, or function results. Languages with this

property are usually called "typeless," although the types

of values may be tested during execution. We do not sug-

gest that type declarations are unimportant or that it is

trivial to add them to GEDANKEN without destroying

the generality of the language; this is a major theoretical

problem.

The originality of GEDANKEN lies primarily in the

language features which have been excluded, and the main

aim of this paper is to demonstrate that these exclusions

(except typelessness) do not impair generality. For this

purpose, we include extensive programming examples.

A formal definition of GEDANKEN is given in [7]. A

complete but extremely inefficient implementation has

been produced by translating this formal definition into

LisP; this implementation has been used to check all

examples given in this paper.

308 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / Number 5 / May, 1970

After describing the syntax of the language and the types

of values which are manipulated during program execution,

we discuss the applicative part of the language, i.e. the

evaluation of expressions and the application of functions.

Finally, the imperative aspects, such as references, assign-

ment, labels, and jumps, will be introduced.

S y n t a x

Mthough the importance of G E D A N K E N lies in its

semantics, a definite syntax must be specified so that pro-

gramming examples can be given. A G E D A N K E N program

is a sequence of tokens separated by zero or more blanks,

with at least one blank used as a separator whenever the

juxtaposition would otherwise be ambiguous. The tokens

are sequences of characters classified as follows:

constants digit strings (denoting integers), quoted strings

reserved words AND, OR, IF, T H E N , ELSE, CASE, OF,

IS, ISR

identifiers all other alphanumeric strings beginning with

a letter

punctuation tokens k, = : () ; :=

Certain predefined identifiers have standard meanings.

These include: TRUE, FALSE, LL, and UL, which denote

specific primitive values; ERROR, which denotes a built-in

label value causing program termination; and the names of

all built-in functions. (These predefined identifiers differ

from reserved words in tha t the programmer can override

the standard meanings by declarations.)

The set of token sequences which are well-formed

G E D A N K E N programs is specified by the context-free

grammar (over an infinite vocabulary of tokens) in Table

I. The syntactic variables in this grammar are subscripted

to distinguish among phrases with a similar semantic role

but different levels of precedence. Thus phrases of the

classes (exp0), . . . , (exps) are all called expressions, while

phrases of the classes (pform0) and (pform~) are called

parameter forms. The notation {a} * is used to indicate an

arbitrary number (including zero) of occurrences of the

string a.

I t should be noted that a block can consist of a single

expression; this permits any expression to be parenthesized

without changing its semantics.

P r i m i t i v e V a l u e s a n d F u n c t i o n s

The items of data which are manipulated during the

execution of a G E D A N K E N program are called values.

The set of all values is partitioned into seven types: inte-
gers, Booleans, characters, and atoms (collectively called

primitive values), and functions, references, and label values
(collectively called nonprimitive values). (Floating-point

numbers are excluded, but their inclusion would not raise

any significant problems.) Although the language does not

contain type declarations, a complete set of built-in func-

tions is available for testing the type of a value during

program execution.

Among the primitive values, only atoms are unusual;

TABLE I. A GRAMMAI¢ FOR GEDANKEN

(expo) ::= (constant> [(identifier) I ((block))
(expl) ::= (expo)] (function designator>
(function designator) ::= (expc> (expl)
(exp2) ::= (expl) [(expl) = (exp2)
(expa) ::= (exp2)] (exp2) AND (exp,)
(exp4) ::= (exp3)] (exp3> OR (exp4)
(exp.> ::= (exp4)] (conditional exp) [(lambda exp>[(exp4) := (exps)
(conditional exp) ::= IF (exp6) THEN (exps) ELSE (exps)
(lambda exp) ::= k (pform0) (exp,)
(exp6) ::= (exps) I (sequence exp)] (case exp)
(sequence exp) ::= (empty> [(exp,), (exps> {, (exp6>}*
(case exp) ::= CASE (exp6) OF (exp6) {, (exps)}*
(pform¢> ::= (identifier) [((pforml))
(pforml) ::= (pform6) [(sequence pform)
(sequence pform) ::= (empty>] (pform¢), (pform0) [, (pform0)}*
(decl) ::= (pforml> IS (exp6)
(recursive decl) ::= (identifier> ISR (lambda exp)
(label> ::= (identifier> :
(statement> ::= {(label>}* (exp6)
(block) :: = {(decl) ;}* { (recursive decl); }* { (statement>; }*

(statement>
(program> ::= (block)

they are similar to atoms in LisP, except tha t they lack

property lists and print names, l~Iore precisely, the atoms
are a denumerably infinite set of values which may be

tested for equality, but which do not possess any ordering

or arithmetic operations. Two particular atoms, denoted

by the predefined identifiers LL and UL, play a special role

in the language. Additional atoms are created by the

built-in function ATOM, which returns a distinct atom

each time it is applied.

A function is a value which may be applied to another

value called its argument. When so applied, the function

will either: (i) return a value called its result, (ii) transfer

control to a label value without returning a result, (iii)

cause an error stop, or (iv) initiate a nonterminating com-

putation. (The application of a function may also alter the

state of a computation by producing various side effects,
which will be discussed later.) The set of arguments for

which a function will return a result is called the domain

of the function. A number of built-in functions are pro-

vided which may be used without being defined; additional

"user-defined" functions are produced by the evaluation of

various expressions.

(Proper procedures, in the sense of ALGOL, are not pro-

vided in G E D A N K E N , since they are equivalent to func-

tions which execute useful side effects but return an irrele-

vant result. Functions with multiple arguments are not

provided, since they are equivalent to functions whose

arguments are sequences, as described below.)

The functional approach to data structures is reflected in

the absense of a distinct type of value corresponding to the

conventional notion of a vector or array; the analogous

values in G E D A N K E N are functions. Thus we will use

the word "vector" to denote those functions which are

logically equivalent to conventional vectors.

Volume 13 / Number 5 / May, 1970 Communicat ions of the ACC~I 309

It is evident that the domain of a GEDANKEN function

which is a vector must include a finite set of consecutive

integers; these integers are the analogue of the subscripts of

a conventional vector. But a conventional vector also has

the property that its set of subscripts is explicit; i.e. there

must be some method of testing the vector to determine its

least and greatest subscripts. To reflect this property in

GEDANKEN, we require that the domain of a vector

must include, in addition to the subscript set, the atoms

LL and UL, and that the results of applying the vector to

LL and UL must be the least and greatest subscripts.

This leads to the following definition. A function F is

called a vector whenever: (1) its domain includes the atoms

LL and UL; (2) the results of applying F to LL and UL

are integers such that F(UL) _> F(LL) -- 1; (3) the domain

of F includes all integers i such that F(LL) < i < F(UL).

If F is a vector, then the integers F(LL), F(UL), and

F(UL) -- F(LL) -Jr 1 are called the lower limit, upper limit,

and length of F, respectively, and for each integer i such

that F(LL) < i < F(UL), the result of applying F to i

is called the ith component of F.

A vector is called a sequence if its lower limit is 1.

Although a vector is a kind of function, and a sequence

is a kind of vector, neither "vector" nor "sequence" is a

"type" in the usual sense, since one cannot write a program

which will test whether an arbitrary function is a vector or

a sequence. Certain operations in GEDANKEN (e.g.

evaluation of sequence expressions or application of the

built-in function VECTOR) are guaranteed to produce

vectors, but equally valid vectors may also be produced by

more general mechanisms (e.g. evaluation of lambda ex-

pressions). Vectors produced in the latter manner are said

to be implicit.

(The realization of vectors in GEDANKEN is in con-

trast to several languages, such as PAL, in which subscript

limits are obtained by applying built-in functions to vec-

tors. In the latter approach vectors are not purely func-

tional, since they are amenable to other operations than

application. The practical effect is to prohibit implicit

vectors.)

The existence of sequences in GEDANKEN justifies the

elimination of functions with multiple arguments. The

analogue of a conventional function with k arguments,

when either k = 0 or/c _> 2, is a function whose single

argument is a sequence of length k. For example, the do-

main of the built-in function ADD is the set of sequences

of length two whose components are both integers. (This

approach is a direct borrowing from PAL.)

The remaining types of nonprimitive values, references

and label values, will be defined later.

A p p l i c a t i v e S e m a n t i c s

To describe the semantics of GEDANKEN, we follow

Landin [2] and Evans [3] in dividing the language into an

applicative part, involving the evaluation of expressions

and the application of functions, and an imperative part,

involving assignment and control jumps. We first consider

310 Communications of the ACM

the applicative sublanguage, which is obtained by dis-

regarding references, label values, and the operations which

manipulate them.

Within this sublanguage, the basic operation is the

evaluation of expressions. Since the evaluation of an ex-

pression will usually involve the evaluation of its sub-

expressions, the definition of this operation is inherently

recursive. Also, when an expression contains freeidentifiers,

its evaluation is only meaningful in the presence of some

mapping of these identifiers into values; such a mapping is

called an environment and is said to bind each identifier to a

value.

A complete program is always evaluated in an environ-

ment which binds the predefined identifiers into their

standard values. Whenever the evaluation of an expression

e involves the evaluation of an immediate subexpression

d, then, unless e is a lambda expression or a block, e' is

evaluated in the same environment as e. The evaluation of

lambda expressions and blocks (described in detail below)

involves the concept of extension: if i is an identifier, v is a

value, and 7 and 7' are environments such that n' binds i

to v and specifies the same binding as 7 for all other identi-

fiers, then n' is called the extension of n formed by binding

i t o v.

We now describe the evaluation of each nontrivial form

of expression. The application of a function to an argument

is performed by a function designator:

(function designator) ::= (exp0) (expl)

function argument
par t par t

which is evaluated by first evaluating its function part and

its argument part to obtain values vf (which must be a

function) and va, and then applying vf to v~. (Since the

argument part is evaluated before the function is applied,

this form of evaluation is similar to call by value in ALGOL,

rather than call by name.) Since function designators have

a right-associative syntax, the usual composition of func-

tions may be written without parentheses; e.g. F(G(X))

may be written as F G X.

Functions may be produced by the evaluation of lambda

expressions:

(lambda exp) ::= k (pformo) (exp.}

body

Basically, the value of a lambda expression is a function

which (when it is applied to an argument at some later

point during the computation) computes its result by

binding the parameter form to its argument and then eval-

uating the body. More precisely, if f is the function ob-

tained by evaluating k(p)e in the environment n, then the

result of applying f to an argument a will be obtained by

evaluating e in an environment which is the extension of

formed by binding p to a. (The meaning of binding p to a,

when p is not an identifier, will be defined below.)

This binding mechanism is quite conventional (it is

called FUNARG binding in LisP and is similar to the

mechanism used in ALGOL and in PL/I) , but a clear under-

Volume 13 / Number 5 / May, 1970

standing of its implications is vital. There are two separate

actions: (i) the evaluation of the lambda expression to

produce a function, and (ii) the application of this function

to its arguments. The body of the lambda expression is not

evaluated until (ii), but the environment in which the body

is evaluated is an extension of the environment used during

(i) rather than (ii). As a result, when a lambda expression

contains free identifiers, its evaluation in different environ-

meats will produce different functions. For example, in an

environment where Y is bound to an integer k, the evalua-

tion of h(X) ADD(X, Y) produces a function which in-

creases its argument by k.

Functions which are sequences may also be produced by

the evaluation of sequence expressions:

(sequence exp) ::= (empty)] (exp,), (exps) {, (exps)}*

Let n be the number of subexpressions. Then the sequence

expression is evaluated by first evaluating its subexpres-

sions to obtain values vl, . . . , v~ and then producing a

sequence of length n whose i th component (for 1 < i < n)

is v~.

Because of their low precedence, sequence expressions

are usually parenthesized, but the parentheses themselves

do not indicate a sequence expression. Thus the expressions

() and (X, Y) both produce sequences, but (X) has the

same value as X. There is no sequence expression which

produces a sequence of length one, but such sequences can

be produced by the built-in function UNITSEQ, which

returns a sequence whose only component is the value of its

argument.

As noted earlier, a function of n arguments (n ~ 1) is

treated in G E D A N K E N as a function of a sequence of

length n. This suggests that when a function produced by a

lambda expression expects to receive a sequence as its

argument, the parameter form within the lambda expres-

sion should be able to bind several different identifiers to

the components of the sequence. To provide this capability

we extend the notion of a parameter form to include a

sequence parameter form (which is a rough analogue of a

formal parameter list in ALGOL) :

(sequence pform) ::= (empty) I (pformo), (pform0) {, (pform0)}*

The relevant semantics are given by defining (recur-

sively) the extension of an environment n formed by bind-

ing an arbitrary parameter form p to a value v. This

extension is computed as follows:

(1) If p is an identifier, then n is extended by binding

p tov .

(2) If p has the form (p'), then ~ is extended by binding

p' to v.

(3) If p is a sequence parameter form, p l , . . . , p .

(n ~ 1), then v, which must be a function, is applied

to each integer from 1 to n, and ~/ is repeatedly

extended by binding each p~ to the result of v(i).

The syntax of sequence expressions and sequence param-

eter forms preserves conventional notation for functions

of several arguments. Thus in the evaluation of (h(X, Y)

body) (3, 4), X is bound to 3 and Y is bound to 4. However,

the sequence argument approach also provides useful

unconventional capabilities, e.g. (k(X, Y) body) (IF P

T H E N (3, 4) ELSE (5, 6)). More importantly, the ability

to bind a single identifier to an entire sequence provides

the equivalent of a function with an indefinite number of

arguments, e.g. (XX body) (IF P T H E N (3, 4) ELSE

(5, 6, 7)).
G E D A N K E N is similar to EUL~R [8] in treating all

types of unlabeled statements as expressions. In particular,

a block is a form of expression with a meaningful value:

(block) ::= {(decl);}* {(recursive decl);}*
{(statement);}* (statement)

where

(decl) ::= (pforml) IS (exp,)
(reeursive decl) ::= (identifier) ISt~ (lambda exp)

Basically, a block is evaluated by first carrying out the

bindings indicated by its declarations, recursive declara-

tions, and labels, and then evaluating the statements in

order from left to right. The value of the block is the value

of the rightmost statement. The values of preceding state-

ments are ignored; in the absence of imperative features,

these statements have no effect.

More precisely, a block is evaluated as follows (we in-

clude the binding of labels although it is an imperative

aspect of the language):

(1) For each declaration ((decl)), in order from left to

right: the right side of the declaration is evaluated, and

then the current environment is extended by binding the

left side of the declaration to the value of the right side.

(2) The current environment is further extended by

binding each identifier which occurs on the left of a recur-

sire declaration ((recursive decl)), or as the label of a

statement, to a distinct "d u mmy " value.

(3) The right side of each recursive declaration is

evaluated, and its value replaces the corresponding dummy

value.

(4) For each label, an apropriate label value is created

and replaces the corresponding dummy value.

(5) The statements are evaluated in order from left to

right.

(6) The value of the block is the value of the rightmost

statement.

In steps 2 to 4, the device of binding identifiers to

dummy values and then replacing the dummy values

allows an environment to be cyclic, i.e. to bind an identifier

to a value which is produced by evaluating a lambda

expression (or label) in the same environment.

The essential difference between (nonrecursive) declara-

tions and recursive declarations is that the right side of a

declaration "feels" only the bindings caused by preceding

declarations, while the right side of a recursive declaration

feels the bindings caused by all declarations in the block,

including implicit label declarations. Recursive declara-

tions are needed to define recursive functions conveniently,

including families of functions which call one another.

Volume 13 / Number 5 / May, 1970 Communications of the ACM 311

(They also permit the definition of functions which jump

into the immediately enclosing block.)

Nonrecursive declarations are less essential, bu t they

permit convenient constructions such as X IS A D D (X ,

1). More important , their existence allows the right sides

of recursive declarations to be limited to lambda expres-

sions, so tha t meaningless constructions such as X I S R

ADD(X, 1) are syntactically illegal.

Conditional expressions have the same meaning as in

ALGOL. Case expressions have a rather unorthodox mean-

ing (which is convenient for defining implicit sequences):

CASE e0 OF e l , . . . , en is evaluated by first evaluating e0

to obtain a value i; then if i is an integer satisfying 1 _< i

< n, the value of the case expression is obtained by

evaluating e~ ; if i is LL or UL the value is 1 or n respec-

t ively; all other values of i give an error stop.

The remaining forms of expressions are most easily

defined as abbreviations. Except for coercion (discussed

later), they can be eliminated f rom a program by applying

the following transformations:

el = e2 ~ EQUAL(el , e2)

el AND e~ ~ (IF el THEN e~ ELSE FALSE)

el OR e2 ~ (IF el THEN TRUE ELSE e2)

el := e2 ~ SET(el , e2)

The built-in function S E T will be defined later. EQUAL

tests the equality of primit ive data, bu t if either com-

ponent of its a rgument is a function or a label value, it

will return FALSE. I t s action on references will be de-

scribed later.

Theoretically, nonrecursive declarations, sequence pa-

rameter forms, and sequence expressions can also be

regarded as abbreviations. Their occurrences in a program

can be eliminated by repeated application of the following

equivalences:

p IS e; b ~ (k(p)(b))(e)
k(pl , .-. , p,) b (when n~ 1)

ki(p~ I S i l ; . . . ; p~ I S i n ' ; b)
el , .-- , e, (when n ~ 1)

(il ISe~; -.- ; i . I S e , ; X i (C A S E i O F i l , . - . , i ,))

where n ' is an integer constant whose value is n, and i, i~,

. . . , i~ are distinct identifiers which do not occur in the

program being transformed.

I t should be noted tha t G E D A N K E N does not include

certain features, such as infix ari thmetic operators or fo r

statements, which would enhance the conciseness of the

language without expanding the range of programs which

could be expressed. Such features could be added easily,

but they are not germane to the basic purposes of the

language.

F u n c t i o n a l D a t a S t r u c t u r e s

Even the applicative par t of G E D A N K E N is sufficient

to demonstrate the power and flexibility which can be

obtained by treat ing data structures functionally.

As a first example, consider LisP-like list structures. To

define analogues of the Lisp functions CONS, CAR, and

CDR, we t rea t the two-field list cell produced by CONS as

a function whose domain contains two elements (e.g. 1

and 2) and which maps these elements into the values of its

CAR and C D R fields. This viewpoint leads directly to the

definitions:

CONS IS X(X, Y) XZ IF Z = 1 THEN X ELSE Y;

CAR ISXXX 1;

CDR IS XX X 2;

These definitions imply an ability to do list processing

without special built-in functions. In a conventional list-

processing system (e.g. compiled Lisp 1.5 [la and lb] or

some extensions of ALGOL [4, 9]) user-defined functions are

restricted so tha t storage for the wdues of their identifiers

obeys a stack discipline. Then list structures, which do not

obey a stack discipline, must be allocated in a separate

storage area, and built-in functions or operations must be

provided for accessing this area. Bu t in G E D A N K E N , the

user may develop list-processing by defining function-

returning functions (such as CONS above) which violate

a stack discipline. In effect, all storage is potentially list-

structured.

Although the above approach is workable and theoreti-

cally at tract ive, i t is more convenient to use sequence

expressions to create list elements and direct application

to obtain their subfields. Thus, we write (X, Y) instead of

CONS (X, Y), X 1 instead of CAR X, and X 2 instead of

C D R X. Following this approach, we introduce lists by

first creating an a tom to denote the empty list:

NIL IS ATOM();

and then defining a list to be either the a tom N I L or a

sequence of length two whose second component is a list.

The following functions will return the length of a list,

find the i th element of a list, and append one list to

another:

LISTLENGTH ISR XL IF L = NIL THEN 0
ELSE INC LISTLENGTH L 2;

LISTELEM IStL x(I, L) IF L = NIL THEN GOTO ERROR
ELSE IF I = 1 THEN L 1 ELSE LISTELEM(DEC I, L 2);

APPEND ISR X(X, Y) IF X = NIL THEN Y
ELSE (X 1, APPEND(X 2, Y));

Hence I N C and D E C are built-in functions which increase

or decrease an integer by one.

As a second example, consider one-dimensional arrays.

We have defined a type of function called a vector which is

the analogue of a one-dimensional array, and we have

introduced sequence expressions for creating vectors. Bu t

a sequence expression can only produce a vector which is a

sequence, and it is inconvenient for producing very long

vectors. W h a t is needed is a function which will produce a

vector from a functional specification of its components,

i.e. which will accept another function, tabulate its results

over a finite range, and return a " lookup" function for the

resulting table.

Thus we define a function V E C T O R which accepts an

argument (L, U, F), where L and U are integers and F is a

312 Communications of the ACM Volume 13 / Number 5 / May, 1970

function. I f U < L, V E C T O R returns an empty vector V

such tha t V(LL) = L and V(UL) = L -- 1. Otherwise,

V E C T O R evaluates F(I) for each integer I between L and

U inclusive, and returns a vector V such tha t V(LL) = L,

V(UL) = U and for L < I < U, V(I) is the value of F(I) .

The basic approach is to recur on the length of the vector,

tabulat ing a single value (bound to T) at each level of

recursion.

VECTOR ISR X(L, U, F)
IF GREATER(L, U) THEN

x I IF I = LL THEN L ELSE IF I = UL THEN DEC L
ELSE GOTO ERROR

ELSE (V IS VECTOR(L, DEC U, F); T IS F U;
X I I F I = U L T H E N U E L S E I F I = U T H E N T E L S E V I) ;

I t is evident tha t this function, although theoretically

correct, will be extremely inefficient in any reasonable

implementation. For this reason, a built-in function

V E C T O R is provided which is defined to be equivalent to

the function above (except for coercion).

(This question of efficiency may be clarified by consider-

ing implementat ion mechanisms. In a simple implementa-

tion, functions would possess two distinct internal repre-

sentations: I f a function was produced by evaluating a

lambda expression, i t would be represented by a " l ambda

record" containing a pointer to code which was compiled

from the lambda expression plus values for each free

identifier in the lambda expression (i.e. a representation of

the environment in which the lambda expression was

evaluated). On the other hand, if a function was created by

evaluating a sequence expression or by the application of

VECTOR, it would be represented by a "vector record"

containing domain limit and indexing information plus a

contiguous array of component values. I t is evident tha t

the above definition of V E C T O R would yield a vector

whose internal representation was a linked list of lambda

records, each containing one component value, ra ther than

a contiguous array.)

Using lists and vectors, we may illustrate our assertion

tha t any process which accepts some data structure will

accept any logically equivalent structure. Suppose tha t P

is a function which expects a sequence as its argument, and

VALUES

IDENTIFIERS

~'1 FUNCTIONS t /

r~

[IDENTIFIERS] IIDENTIFIERS I

J] REFERENCESvALUES li ~ ° I%}1 / ~ 28} VALUES

FUNCTIONS~

28

/ IREFERENCESF

~FUNCTIONS~ /

(i) (2) (3)
Fzo. 1. Three approaches to assignment

tha t we wish to give it a sequence whose i th component is

the i th element of a list L. This can be done in a conven-

tional manner by evaluating P V E C T O R (1, L IST-

L E N G T H L, ~, I L I S T E L E M (I , L)), which copies the

elements of L into a contiguous array. But it is also possible

to evaluate P M A K E S E Q F R O M L I S T L, where

MAKESEQFROMLIST IS X L
k I IF I = LL THEN 1 ELSE IF I = UL THEN LISTLENGTH L

ELSE LISTELEM(I, L);

M A K E S E Q F R O M L I S T does not copy the components of

L; instead, i t returns an implicit sequence which will look

up the appropriate element of L each t ime one of its com-

ponents is accessed.

I t is equally possible to produce an implicit list f rom a

sequence:

MAKELISTFROMSEQ ISR X S MLFSI(1, S);
MLFS1 ISR x(I, S) IF GREATER (I, S UL) THEN NIL

ELSE X K (CASE K OF S I, MLFSI(INC I, S));

(Here MLFS1 is a subsidiary function which produces an

implicit list from the subsequence of S tha t begins with

the I t h component.)

The data structures shown so far have the l imitation tha t

once a structure has been created, its components or ele-

ments cannot be altered. To overcome this l imitation we

must introduce the imperat ive aspects of G E D A N K E N .

References

In any programming language which permits assign-

ment, there is a class of objects which are affected by

assignment. We will call these objects references; other

terms used commonly in the li terature are " n ame" and

"L-value." At any t ime during the execution of a program,

each reference possesses some value. The effect of an assign-

ment operation r: = v is to cause the reference denoted by

r to possess the value denoted by v.

Within this definitional framework, there are at least

three distinct approaches to assignment (see Figure 1):

(1) Identifiers are used as references. This approach is

used in SNOBOL [10], where a form of indirect addressing

is achieved by allowing identifiers to occur as values. Un-

fortunately, the approach does not mesh well with block

structure; a discussion of the difficulties is given by Kain

[11].

(2) References are distinct from either identifiers or

values, and are interposed between all other value-denoting

entities and their values. Thus the bindings of identifiers,

the arguments and results of functions, and the com-

ponents of vectors are all references, and the values

denoted by these entities are actually the values possessed

by the references. This approach is used in PAL, and to a

large extent in FORTnAN and P L / I , except tha t in the lat ter

languages function results are values, and identifiers may

be bound directly to functions and label values, but not to

primitive values. The approach meshes well with block

structure but is ra ther inflexible; one moves from the

applicative situation, where assignment is impossible, to

Volume 13 / Number 5 / May, 1970 Communications of the ACM 313

the opposite extreme, where every value-denoting entity

can be affected by assignment.

(3) References are treated as a distinct type of value, so

that any value-denoting entity can denote either a con-

ventionalvalue or a reference which in turn possesses a

value. This approach is used in ALGOL 68 and BASEL.

(BASEL also permits a form of assignment which alters

identifier binding.) I t is compatible with block structure

and is more flexible than the previous approach, since the

programmer can introduce references in just those con-

texts where he intends to do assignment. Advantages

should accrue in both the optimization of data representa-

tions and the checking of erroneous assignment statements.

(The above categorization must be qualified by the fact

that FORTRAN, PL/I , ALGOL 68, and BASEL all have type-

declaration mechanisms which affect their treatment of

assignment. A discussion of this interaction is beyond the

scope of this paper.)

In GEDANKEN we have chosen to use the third ap-

proach to assignment. Thus we introduce a new, denum-

erably infinite set of values called references, and stipulate

that each reference possesses some other value (which may

itself be a reference). Three built-in functions are provided

to manipulate references: REF, SET, and VAL. REF X

returns a distinct reference each time it is applied; this

reference is initialized to possess the value X. SET(R, X)

(which can be abbreviated R := X) causes R (which must

be a reference) to possess the value X, and also returns X;

its action on R is an example of a side effect. VAL R returns

the value possessed by R (which must be a reference).

For example, under the scope of the declaration X IS 3,

the identifier X is bound to the integer 3, and this binding

cannot be altered by assignment. Evaluation of the expres-

sion X := 4 would give an error, since 3 is not a reference.

Analogously, under the scope of the declaration X IS

REF 3, the identifier X is bound to the reference created

by REF, and this binding cannot be changed by assign-

ment. But now evaluation of X := 4 is legitimate, and

causes the value possessed by the reference bound to X to

change from 3 to 4. Thus in the execution of the block

(x ISREF3;VALX = 3;X := 4;VALX = 4)

both equality predicates will be true.

The major difficulty with this approach is the frequent

necessity for using the function VAL. For example, under

the scope of the declarations X IS REF 3; Y IS REF 4;

one would write ADD(VAL X, VAL Y) rather than

ADD(X, Y), since ADD acts upon integers rather than

references. To alleviate this difficulty, we introduce

coercion conventions into GEDANKEN; i.e. we stipulate

that references will be replaced by their values in certain

contexts which would otherwise be meaningless.

Specifically, let COERCE be the function

COERCE ISR k X IF ISREF X THEN COERCE VAL X ELSE X;

(which is available as a built-in function), and define "to

coerce X " to mean the replacement of X by COERCE X.

Then:

(1) All built-in functions which would otherwise be

meaningless coerce their argument or the appropriate

components of their arguments. For example, ADD(X, Y)

is equivalent to ADD(COERCE X, COERCE Y), but

ISREF X is not equivalent to ISREF COERCE X, nor

VAL X to VAL COERCE X.

(2) REF X coerces X, SET(R, X) (and therefore R

:= X) coerces X, and EQUAL(X, Y) (and therefore X =

Y) coerces both X and Y. Since these functions would each

be meaningful for references without coercion, analogous

noncoercing functions, named NCREF, NCSET, and

NCEQUAL, are also provided. NCREF and NCSET

permit references to possess values which are also refer-

ences. NCEQUAL can be used to determine whether two

values are the same reference.

(3) Conditional and case expressions coerce the values

of their leftmost subexpressions.

(4) Expressions involving AND and OR coerce the

values of both their subexpressions.

(5) A function designator coerces the value of its function

part.

(6) When a sequence parameter form pl , . . . , p. is

bound to a value a, each p~ will be bound to (COERCE a)

(i).

(7) Vectors which are created by evaluating sequence

expressions or by application of the built-in functions

VECTOR or UNITSEQ will coerce their argument.

Despite their ad hoc appearance, most of these coercion

rules are instances of the general principle that coercion

should only occur in situations which would otherwise give

an error termination. The exceptions are rules (2) and

(4), which are simply concessions to conventional nota-

tion.

D a t a S t r u c t u r e s w i t h E m b e d d e d R e f e r e n c e s

The utility of references becomes apparent when refer-

ence-returning functions are used to embed references

within data structures, yielding structures which can be

altered by assignment.

This approach provides precise control over the ways in

which data structures can be altered. Thus the GEDAN-

KEN equivalent of an ALGOL-like one-dimensional array

is a vector whose components are references, e.g.

X IS VECTOR(i, 100, X I REF 0);

Under the scope of this declaration, assignment can be

made to the components of X, e.g. X(7) := 10, but not to

X itself. In particular, the subscript limits X LL and X

UL are fixed by the declaration.

On the other hand, the equivalent of a string variable is

provided by a reference whose value is a vector:

S IS REF VECTOR(i, 100, F);

Here assignment can be made to S itself (possibly changing

the subscript limits) but not to its components.

A second consequence of the reference concept is the

314 Communications of the ACCM Volume 13 / Number 5 / May, 1970

ability to define data structures or sets of data structures

which share elements, in the sense tha t assignment to one

element will affect another. Consider a square matr ix M.

We could define M as a vector of vectors, i.e.

M IS VECTOR(l, 10, k I VECTOR(l, 10, k J REF 0));

bu t this leads to the inconvenience of referring to an ele-

ment of 1Vi by (M I) J. I t is more natural to define I~{[as a

reference-returning function of pairs of integers:

M IS (M1 IS VECTOR(l, 10, k I VECTOR(l, 10, k J REF 0));
~(I, J) (M1 I) J);

so tha t an element is referred to as M(I , J). Now consider

the additional declarations:

MT IS k(I, J) M(J, I); MD IS k I M(I, I);

Here M T and M D denote the transpose and diagonal of hi,

in the sense tha t assignment to an element of one matrix

affects the corresponding elements of the others.

Elements may also be shared within the same data

structure. For example,

S IS(S1 IS VECTOR(l, 10, k I VECTOR(l, I, k J REF 0));
x(I, J) IF NOT GREATER(J, I) THEN (S1 I) J ELSE (S1 J) I);

defines a symmetric matrix in which assignment to S(I, J)

also alters S(J, I).

The embedding of references in list structures also pro-

vides control over the ways in which these structures may

be altered. An example is the proper ty list, which is a list

of property-value pairs subject to two operations: the

value paired with a given property may be looked up; or

the value paired with a given proper ty may be changed,

adding a new pair to the list if the proper ty is not already

present. I t is evident tha t references must occur in the

property list at two points: each value must be a reference,

so tha t it can be changed; and the entire list must be a

reference, so tha t new pairs can be added.

The following function manipulates such proper ty lists.

Given a property P and a (reference to a) proper ty list L,

PROPVAL(P, L) searches L for an occurrence of P. I f P is

found, the reference paired with P is returned. Otherwise,

a pair consisting of P and a new reference (initialized to

zero) is added to L, and the new reference is returned. The

argument P is coerced.

PROPVAL IS k(P, L)
(P IS COERCE P;
SEARCHL ISR ~ X

IF X = NIL THEN
(NEWV IS REF 0; L := ((P, NEWV), VAL L); NEWV)

ELSE IF (X 1) 1 = P THEN (X 1) 2 ELSE SEARCHL X 2;
SEARCHL VAL L);

An application of this function can occur on either side of

an assignment operation; on the right side it will act to

look up a value, on the left side it will act to alter a value.

A further step can be taken by viewing the proper ty list

itself as a reference-returning function which accepts a

property and returns a reference to the corresponding

value. The following function (of no arguments) returns

such functional proper ty lists:

MAKEPROPLIST IS k() (L IS REF NIL; k P PROPVAL(P, L));

Each application of M A K E P R O P L I S T returns a now

instance of PROPVAL, with L bound to a private "own

variable." Since a proper ty can be any primitive value, a

functional proper ty list is similar to a reference-valued

vector, except tha t it has an indefinite domain. Indeed,

functional proper ty lists can be used to provide an efficient

implementat ion of sparse vectors.

As a final example of the use of references, suppose tha t

R E A D is a function such tha t each application of R E A D

produces the next i tem of da ta f rom some input stream,

and tha t we wish to produce an implicit list of the succes-

sive i tems in the stream. The following function (of no

arguments) returns such a list:

MAKERLIST ISR k()
(B I S R E F 0 ; k I

(IF B = 0 THEN B := (READ (),MAKERLIST()) ELSE ();
B I));

The result of M A K E R L I S T is an implicit list (whose

implicit length is infinite) which only applies R E A D as

items of data are actually needed, and only stores pre-

viously read items which are still accessible.

I m p l i c i t R e f e r e n c e s

The util i ty of implicit data structures suggests the

introduction of an analogous facility for references. Thus

we introduce the concept of an implicit reference, i.e. a

value whose external appearance is the same as a reference,

but which may carry out an arbi t rary computat ion each

t ime it is set or evaluated. (Implicit references are related

to doublets in POP-2 [12].)

To specify an implicit reference, the programmer must

provide two functions: a "sett ing funct ion" S which will

be executed each t ime a value is assigned to the implicit

reference, and an "evaluat ing funct ion" V which will be

executed each t ime the implicit reference is evaluated. Thus

an implicit reference is produced by applying the built-in

function IMMPREF(S, V), where S and V may be arbi t rary

functions of one and zero arguments respectively. Each

application of I M P R E F produces a distinct implicit

reference, and these implicit references satisfy the predicate

I S R E F and are coerced in the same manner as conven-

tional references. Bu t the effect of S E T or VAL on an

implicit reference is to execute S or V. Specifically, if R

is the result of I M P R E F (S , V), then

NCSET(R, X) = (S X; X)
SET(R,X) = (X IS C O E R C E X ; S X ; X)
VALR = V ()

To illustrate the use of implicit references, consider the

problem of protecting a reference-valued vector. Suppose

tha t P is a function which accepts a vector whose com-

ponents are references. We wish to apply P to such a

vector V, but to protect the components of V from being

Volume 13 / Number 5 / May, 1970 Communicat ions of the ACM 315

affected by P; i.e. we want these components to revert to

their original values after the application of P is finished.

The simplest approach is to copy V by executing P

V E C T O R (V LL, V UL, X I R E F V I), but this will be

inefficient if V is large and only a few components are reset

by P. An alternative approach is to maintain a "change

list" of the components of V which have been altered by

P. This may be done by executing P P S E U D O C O P Y V,

where

PSEUDOCOPY IS x V
(CL IS REF NIL;
SEARCHCL ISg X(X, I, F, G) IF X = NIL THEN G()

ELSE IF (X1) 1 = I T H E N F (X1) 2
ELSE SEARCHCL(X 2, I, F, G);

x I (I IS COERCE I;
IF I = LL THEN V LL ELSE IF I = IJL THEN V UL
ELSE IF NOT ISINTEGER I OR GREATER(V LL, I)

OR GREATER(I, V UL)
THEN GOTO ERROR

ELSE IMPREF (
X X SEARCHCL(VAL CL, I, X R NCSET(R, X),

x() (CL := ((I, NCREF X), VAL CL)),
X() SEARCHCL(VAL CL, I, VAL, X() VAL V I))));

The result of P S E U D O C O P Y is an implicit vector

whose components are implicit references. Internally, CL

is a reference to the change list, which is a list of pairs, each

containing an integer argument of some altered com-

ponent and a reference to the current value of tha t com-

ponent. S E A R C H C L is a subsidiary function which

searches a change list X for a pair beginning with the

integer I. I f such a pair is found, S E A R C H C L returns the

result of F applied to the reference paired with I; otherwise

S E A R C H C L returns the result of G, which is a function

of no arguments. (The noncoercing functions N C S E T and

N C R E F are used to allow the values possessed by the

components of V to be references.)

L a b e l V a l u e s

The final type of value used in G E D A N K E N is the

label value. These values are created during execution of a

block containing labeled statements, and are used as

arguments to the built-in function GOTO, which never

returns but instead causes a transfer of control to the

computat ional s tate represented by the label value.

A more precise description requires introducing a model

of the interpretat ion of G E D A N K E N by an abstract

machine. A complete description of such a model (given

in [7]) is beyond the scope of this paper, bu t the following

aspects are relevant to an understanding of the label and

GOTO mechanisms:

During the execution of a program (at any instant when

a s ta tement is about to be evaluated) the state of the

abs t rac t interpreter will include the following entities:

(1) A conlrol, which gives a list of the s ta tements re-

maining to be evaluated in the current block.

(2) An environment, which gives the identifier bindings

to be used in the current block.

(3) A dump, which specifies the computat ions to be

performed after the current block is completed. The

dump is a pushdown stack containing an entry for

each block and lambda-expression body whose

evaluation is incomplete; each entry contains a

control and an environment (plus additional in-

formation which is needed to describe part ial ly

evaluated compound expressions).

(4) A memory, which specifies the mapping of references

into their values.

A label value consists of a control, an environment, and

a dump. During the evaluation of a block, immediately

before the first s ta tement is evaluated, a label value is

created for each label in the block; each label value con-

tains a list of the s tatements between the corresponding

label and the block end, plus the current environment

(including the bindings of the labels themselves) and dump.

When the built-in function GOTO is applied to a label

value, the current control, environment, and dump are

replaced by the constituents of the label value, and execu-

tion continues with the first s ta tement of the new control.

The memory is not altered.

This mechanism permits jumps within the same block

(which leave the environment and dump unchanged) or to

higher level blocks, with the same effect as in ALGOL. But

the fact tha t label values can be possessed by references or

returned by functions also provides the ability to jump

back into a block after it has been exited from. I t is this

capabil i ty which allows the construction of coroutines.

C o r o u t i n e s

A coroutine is a procedure which can relinquish control

to its calling program and later be react ivated to continue

computat ion. The simplest situation is tha t of two pro-

cedures, each of which t reats the other as a subroutine.

As an example, suppose tha t C O M P I L E is a procedure

which produces a succession of data items called instruc-

tions, output t ing each instruction by applying a function

OUT, and tha t A S S E M B L E is a procedure which accepts

a succession of instructions, inputt ing each instruction by

applying a function IN. If OUT and I N are arguments to

C O M P I L E and A S S E M B L E respectively, we have

COMPILE ISRXOUT (. . . O U T X . . .);
ASSEMBLE ISI~ X IN (... X := IN() .. .);

We now want to couple these procedures so tha t

ASSEMBLE receives the output of C O M P I L E . Speci-

fically, we want to run A S S E M B L E until it requests input,

than run C O M P I L E until i t produces the required output,

then run A S S E M B L E again, etc. The necessary program

can be writ ten by using label-valued references which are

global to both I N and OUT:

(LC IS REF 0; LA IS I~EF 0; INST IS REF 0;
LC := LC1;ASSEMBLE(X() (LA := LA1; GOTOLC;

LAI: VAL INST)); GOTO DONE;
LCi: COMPILE(XX (LC := LC2; INST := X; GOTO LA;

LC2:)) ; GOTO ERROR;
DONE :) ;

3 1 6 C o m m u n i c a t i o n s o f t h e ACCM V o l u m e 13 / N u m b e r 5 / M a y , 1970

Here LA and LC are label-valued references saving the

current states of ASSEMBLE and COMPILE, and INST

is a third reference used to hold the instruction being

transmitted from C O M P I L E to ASSEMBLE. If COM-

P I L E finishes while ASSEMBLE is still waiting for another

instruction, an error stop occurs.

1Nondeterministie Algorithms

Label values in G E D A N K E N are closely related to

"processes" in simulation languages such as SIMULA. [13a

and 13b]; both are mechanisms which allow the state of a

suspended computation to be saved as an item of data. The

essential difference is tha t further execution of a computa-

tion which was saved as a process causes the process to be

updated, while further execution of a computation saved

as a label value leaves the label value unchanged. Thus

label values can be used to repeatedly initiate execution

from the same state.

This capability can be used to program a mode of execu-

tion for nondeterministic algorithms [14] in which alterna-

tive paths are pursued concurrently. A simple example is

nondeterministie parsing. I t is fairly straightforward to

convert a context-free grammar into a recursive parsing

function. Unfortunately, for many grammars this function

will contain nondeterministic branches, i.e. points at which

a conditional branch must be performed although the cur-

rent state of the parse is insufficient to determine this

branch.

When such nondeterminism exists, parsing can be ac-

complished by simulating a finite set of independent

parsers, all accepting the same input string and obeying

the same program, but with different control states. When

a parser encounters a nondeterministic branch, it expands

into two separate parsers; when a parser reads an input

character which is inconsistent with its control state, it is

deleted.

Specifically, we assume that PARSE(IN, AMB, FAIL)

is a function which accepts two functions IN and AMB,

and a label value FAIL, and returns some representation

of a successful parse. The function IN, of no arguments, is

applied by PARSE to read each character of the input

string. The function AMB, whose argument is a label

value, is applied to execute a nondeterministic branch; one

side of the branch returns from AMB while the other

jumps to the label-valued argument. PARSE jumps to the

label value FAIL when it encounters an inconsistent

character. We assume that PARSE does not set any

references, or at least tha t it does not expect the value of

any reference to be preserved across an application of IN

or AMB.

The following program carries out the concurrent execu-

tion of PARSE, synchronizing the independent parsers by

their reading of characters:

(C IS R E F N I L ; W IS R E F N I L ; R IS R E F N I L ;

CHAR IS R E F NIL ;

C := (P A R S E (k () (W := (L1, V A L W) ; GOTO CONT;

L i : VAL CHAR) ,

k L2 (R := (L2, VAL R)) , CONT),

VAL C);

CONT: IF R = NIL AND W = N I L T H E N GOTO D O N E

ELSE IF R = N I L

T H E N (CHAR : = R E A D C H A R () ; R : = W ; W := NIL)

ELSE () ;

(L IS 1~ 1; R := R 2; GOTO L);

D O N E : VAL C)

Each independent parser is represented by a label value if

it has not completed its parse, or by its result if it has

completed its parse. The finite set of parsers is main-

tained by the values of the references C, W, and R. C gives

a list of the results of completed parses, W gives a list of

label values representing the parsers which are waiting for

the next character, and R gives a similar list for the parsers

which are ready for execution before reading the next

character. The reference CHAR keeps track of the current

character, and is updated by the built-in function READ-

CHAR. The label CONT is reached whenever execution is

to be switched from one parser to another. The final value

of the block is the list of completed parses; the input

string is ill formed, well formed, or ambiguous depending

upon whether this list has zero, one, or more than one

element.

(This approach to parsing is basically the same as tha t

used in the COGENT programming system [15a and 15b].

I t is presented here as an illustration of the generality of

G E D A N K E N , but it does not represent a significant

advance in the field of parsing techniques. Although it is

reasonably efficient for a large class of unambiguous gram-

mars, at least if the function PARSE is carefully con-

structed, some ambiguous grammars will cause an ex-

ponential growth in the number of parsers and are bet ter

treated by other methods, such as tha t of Earley [16].)

Limitations and Possible Extensions

The goal of applying the basic principles of GEDANKEN"

to the design of an efficient general purpose programming

language raises several interesting research problems:

(1) Addition of Type Declarations. The most natural

approach is probably an extension of Hoare's concept of

record classes [9]. The programmer would be able to

declare an arbitrary number of disjoint function, reference,

and label classes, and would specify the range of each

identifier, function result, and reference value to be some

union of such classes (and/or predefined classes of primi-

tive values). All functions in the same class would have the

same domain-range relation, and all references in the same

class would have the same set of possible values.

However, the functional approach to data structures will

require unusual flexibility in the specification of the do-

main-range relations of functions. If an inhomogeneous

data structure such as a record is to be treated as a func-

tion, then it must be possible to specify tha t the range

of such a function depends on its argument. For example,

the set of lists of integers would be the ~.mion of the set

{NIL} with a class of functions with domain (1, 2) which

map 1 into an integer but map 2 into a list of integers.

An elaboration of this approach to type, limited to a

purely applicative language, is described in [17].

V o l u m e 13 / N u m b e r 5 / M a y , 1970 C o m m u n i c a t i o n s o f t h e ACM 317

(2) Open Functions. Efficient implementation of func-

tional data structures will require that certain functions be

compiled into open code, i.e. that function designators

should be replaced by modified copies of the corresponding

lambda-expression body, and that these copies should then

be simplified to take advantage of constant arguments.

This capability could be provided by a macro-definitional

facility. A second approach, more in keeping with the spirit

of GEDANKEN, would be to permit certain lambda

expressions to be given an OPEN attribute.

This raises the question of whether a compiler could

determine automatically when a designator of a lambda-

defined function should be replaced by a copy of the func-

tion body. One might conjecture that such an expansion

could be performed for any function which was defined by

a nonrecursive declaration. Unfortunately, this conjecture

is disproved by the existence of a nonrecursive fixed-point

function:

Y IS xG (U IS xV G(xX (V V) X); U U);

which can be used to convert any simply recursive function

(i.e. a function which calls itself directly but not indirectly

via other functions) into an equivalent nonrecursive func-

tion [18].

Thus suppose a recursive function F is defined by F

ISR b, where F is the only identifier which occurs free in b.

Let F1 be the nonrecursive function defined by F1 IS XF

(b). Then the function (Y F1) can be shown to be equi-

valent to F, with the same domain of termination. More-

over, the expansion of a function designator such as (Y

F1) X by repeated substitution of the definitions of Y and

F1 will never terminate.

(3) Storage Allocation. A serious drawback of the

principle of completeness is the elimination of any run-

time stack discipline, so that all data storage must be

recovered by garbage collection. This problem might be

alleviated by adding language facilities for indicating

contexts where a stack discipline is applicable. Even with-

out such facilities, it may be possible to determine by

program analysis, particularly with appropriate type

declarations, situations where storage can be recovered

without garbage collection.

(4) Side Effects. In the applicative subset of GEDAN-

KEN, the immediate subexpressions of a function designa-

tor or a sequence expression can be evaluated in any order,

or the steps of their evaluation can be intermixed, without

affecting the result or termination of any program. This

property, which is obviously desirable for code optimiza-

tion or multiprocessing, is destroyed by the introduction

of assignment, since subexpressions can execute interfering

side effects.

The situation is exacerbated by the introduction of

label values, since then the order of evaluation can affect

the number of times a subexpression is executed. The

program

(X I S R E F 0 ; (X : = I N C X , GOTOL); L: VALX)

produces one with left-to-right evaluation of the sequence

expression, but produces zero with right-to-left evaluation.

Label-valued references lead to more paradoxical pro-

grams, such as

(x IS iILEF 0; L IS R.EF 0; M IS ILEF 0; L : = L1;
(X := INC X, (iV[:= Mi; Mi: GOTO L));
LI: L := L2;GOTOM;L2: VALX)

which produces one with left-to-right evaluation, zero with

right-to-left evaluation, and possibly two with intermixed

evaluation.

This problem is common to a wide variety of languages.

One either imposes a fixed order of evaulation, as in

ALGOL 60 or GEDANKEN, or permits a significant class

of well-formed programs to have indeterminate inter-

pretations, as in A.~GOL 68 or PL/I. But a more flexible

approach might be possible, e.g. a limited form of impera-

tive features which could be added to an applicative lan-

guage without destroying order-of-evaluation indepen-

dence.

(5) Other Label-Value Problems. Label-valued refer-

ences can easily cause the preservation of data which will

no longer be accessed by a computation. If L is a label-

valued reference, then GOTO L will cause execution to

proceed from the computational state denoted by L. But

the unchanged state must also be saved in case GOTO L is

executed again before the value of L is changed. If, in fact,

such a repeated jump cannot occur, then information

will be saved unnecessarily unless the programmer goes to

the trouble of resetting L immediately after the original

jump. (As an example, the program for linking the co-

routines COMPILE and ASSEMBLE will preserve the

states of these routines unnecessarily.)

Presumably, it would be better to force the programmer

to extra trouble in order to preserve, rather than discard,

a reactivated computational state. This might be accom-

plished by adapting the concept of "process" used in

simulation languages, and providing a basic function for

copying processes. However, it is not clear how to combine

the process concept with an ALGoL-like use of label values

in a clean manner which does not violate the principle of

completeness.

A further difficulty is the inability of a label value to

preserve the values of references (i.e. the memory). In the

nondeterministic parser described earlier, the restriction

on the use of references in the function PARSE arises from

this problem.

(6) Secondary Storage and File Management. Even with

open functions and sophisticated code optimization, it

may be intolerably inefficient to impose a purely functional

approach on all data structures. But the functional ap-

proach still holds considerable promise for the treatment of

large structures which require secondary storage. A stated,

but usually unmet goal of most data management systems

is the complete separation of the logical properties of a file

from its physical representation. A natural approach to

this goal would be to equate a logical file with a collection

of functions for accessing the file, and to permit these

functions to be implicit.

318 C o m m u n i c a t i o n s o f t h e ACCM Volume 13 / Number 5 / May, 1970

Acknowledgments. T he au thor wishes to t hank Dr.

M. D. MacLaren of Argonne Nat iona l Labo ra to ry and

Professor A r t h u r Evans , Jr. , of Massachuse t t s Ins t i tu te

of Technology for their s t imulat ing discussions and helpful

suggestions.

RECEIVED APRIL, 1969; REVISED OCTOBER 1969; FEBRUARY, 1970

REFERENCES

la. McCARTrtY, J. Recursive functions of symbolic expressions
and their computation by machine, Pt. I. Comm. ACM 3, 4
(Apr. 1960), 184-195.

lb. , ET AL. LISP 1.5 programmers manual. MIT Press,
Cambridge, Mass., 1962.

2. LANDIN, P . J . The next 700 programming languages. Comm.
ACM 9, 3 (Mar. 1966), 157-166.

3. EVANS, A. PAL--Alanguage designed for teaching program-
ming linguistics. Proc. ACM 23rd Nat. Conf. 1968, Brandin
Systems Press, Princeton, N.J., pp. 395--403.

4. VAN WIJNGAARDEN, A. (Ed.), MAILLOUX, B. J., PECK, J. E. L.,

AND KOSTER, C. H.A. Report on the algorithmic language

ALGOL 68. MR 101, Mathematisch Centrum, Amsterdam,
Feb., 1969.

5. CHEATHAM, T. E., JR., FISCHER, A., AND JORRAND, P. On

basis for ELF--An extensible language facility. Proc.

AFIPS 1968 Fall Joint Comput. Conf., Vol. 33 Pt. 2, MDI

Publications, Wayne, Pa., pp. 937-948.

6. BALZER, R. M. Dataless programming. Proc. AFIPS 1967

Fall Joint Comput. Conf. Vol. 31, MDI Publications,

Wayne, Pa., pp. 535-544.

7. REYNOLDS, J .C . GEDANKEN--A simple typeless language

which permits functional data structures and coroutines.

ANL-7621, Argonne Nat. Lab., Argonne, Ill., Sept. 1969.

8. WIRTH, N., AND WEBER, H. EULER--A generalization of
ALGOL and its formal definition: Pt. I, Pt. II . Comm.
ACM 9, 1 and 2 (Jan., Feb. 1966), 13-25, 89-99.

9. WIRTH, N., AND HOARE, C. A. R. A contribution to the
development of ALGOL. Comm. ACM 9, 6 (June 1966),
413-432.

10. FARBER, D. J., GRISWOLD, R. E., AND POLONSKY, L P. The
SNOBOL3 programming language. Bell Syst. Tech. J. 45

(July-Aug. 1966), 895--944.
11. KAIN, R. Y. Block structures, indirect addressing, and

garbage collection. Comm. ACM lZ, 7 (July 1969), 395-398.
12. BURSTALL, R. M., AND POPPLESTONE, R . J . POP-2 reference

manual. In Machine Intelligence g, E. Dale and D. Michie
(Eds.), American Elsevier, New York, 1968, pp. 205-246.

13a. DAHL, O. J., AND NYGAARD g . SIMULA--An ALGOL-
based simulation language. Comm. ACM 9, 9 (Sept. 1966),
671-678.

13b. - - , MYrmHAU¢, B., AND NYGAARD, K. SIMULA 67 com-
mon base language. Publ. No. S-2, Norwegian Computing
Center, Oslo, May 1968.

14. FLOYD, R .W. Nondeterministic algorithms. J. ACM 15, 3
(Oct. 1967), 636-644.

15a. REYNOr,DS, J .C. An introduction to the COGENT program-
ming system. Proc. ACM 20th Natl. Conf., 1965, pp. 422-
436.

15b. - - , COGENT programming manual. ANL-7022, Argonne
Nat. Lab., Argonne, Ill., Mar. 1965.

16. EARLEY, J. An efficient context-free parsing algorithm.
Com. ACM 18:2 (Feb. 1970), 94-102.

17. REYNOLDS, J. C. A set-theoretic approach to the concept
of type. Working paper, NATO Conf. on Techniques in
Software Engineering, Rome, Oct. 1969.

18a. EVANS, A. Private communication.
18b. MORRIS, J. H. Lambda-calculus models of programming

languages. MAC-TR-57, Project MAC, MIT, Cambridge,
Mass., Dec. 1968.

v

A Language for Treating Graphs

S. CRESPI-REGHIZZI* AND R. MORPURGO

Politecnico di Milano, t Mi lan , I ta ly

A language for the representation of graphs is described, and

the formulation of graph operations such as node and/or link

deletion or insertion, union, intersection, comparison, and tra-

versal of graphs is given.

Graphs are represented by linked lists. The language is

syntactically defined as an extension to ALGOL 60, and it is

translated into ALGOL by means of a syntax-driven compiler.

Application areas for this language are operation research,

network problems, control theory, traffic problems, etc.

KEY WORDS AND PHRASES: graphs, oriented, nonoriented, multiple, colored
graph, language, extended ALGOL, operator-precedence, syntax-driven com-
piler, operation research, network, traffic
CR CATEGORIES: 3.2, 3.5, 4.2, 5.3

* Present address: University of California at Los Angeles, De-
partment of Engineering, Los Angeles, Calif.
t Istituto di Elettrotecnica ed Elettronica

Volume 13 / Number 5 / May, 1970

I n t r o d u c t i o n

Graphs are an impor tan t tool in applied mathemat ics .

Their use in engineering is f requent in such areas as auto-

mat ic control, electric networks, pr inted circuits design,

etc.

Even greater is the impor tance of graphs in operat ion

research, where m a n y impor t an t problems can be modeled

and solved b y means of graphs. A large number of these

problems are discussed by K a u f m a n n [1] and include t rans-

por ta t ion, distribution, and traffic problems. Still o ther

areas, like epidemiology and linguistics, f requent ly use

graphs.

Graphs, it is true, could be replaced b y other mathe-

matical t echn iques - -Boolean methods for instance [2]--

bu t we th ink t h a t graphs have the impor t an t advan tage of

making the solution of the problem more visual and more

intuitive.

Therefore it was felt t h a t a language for handl ing graphs

would be of enough interest to some groups of users to

war ran t the effort involved in its development .

The major goal for this language was t h a t it should en-

able the p rogrammer to formulate operat ions on graphs in

C o m m u n i c a t i o n s o f t h e ACCM 319

