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GEDANKEN is an experimental programming language with the 

following characteristics. (1) Any value which is permitted in 

some context of the language is permissible in any other mean- 

ingful context. In particular, functions and labels are permissible 

results of functions and values of variables. (2) Assignment and 

indirect addressing are formalized by introducing values, 

called references, which in turn possess other values. The as- 

signment operation always affects the relation between some 

reference and its value. (3) All compound data structures are 

treated as functions. (4) Type declarations are not permitted. 

The functional approach to data structures and the use of 

references insure that any process which accepts some data 

structure will accept any logically equivalent structure, regard- 

less of its internal representation. More generally, any data 

structure may be implicit; i.e. it may be specified by giving an 

arbitrary algorithm for computing or accessing its components. 

The existence of label variables permits the construction of co- 

routines, quasi-parallel processes, and other unorthodox control 

mechanisms. 

A variety of programming examples illustrates the generality 

of the language. Limitations and possible extensions are dis- 

cussed briefly. 
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I n t r o d u c t i o n  

The recent development of programming languages 

suggests that the simultaneous achievement of simplicity 

and generality in language design is a serious unsolved 

problem. This paper describes an experimental language, 

called GEDANKEN, which was developed to attack this 

problem. 

GEDANKEN is not intended to be a generally useful 

language, althoughit could be effective in situations where a 

fair degree of object program inefficiency is tolerable. Its 

major purpose (reflected in its name, which is meant as an 

analogy to gedankenexperiments in physics) is to explore 

the consequences of two basic design principles: 

(1) Completeness. Any value which is permitted in some 
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context of the language is permissible in any other mean- 

ingful context. In particular, functions and labels are per- 

mitted to be results of functions or values of references 

(e.g. variables), without imposing restrictions which main- 

tain a stack discipline for run-time storage allocation. 

(2) The Reference Concept. Assignment and indirect 

addressing are formalized in the following manner: among 

the possible values which may occur in a program are 

objects called references, which in turn possess other values. 

The assignment operation always affects the relation be- 

tween some reference and its value. 

Neither of these principles is novel. LISP [la and lb] 

(in its interpretive implementations), IswIM [2], and PAL 

[3] all satisfy the principle of completeness, and the refer- 

ence concept is used in ALGOL 68 [4] and BASEL [5]. But 

GEDANKEN goes beyond these languages in exploiting the 

power of these principles, i.e. in eliminating other language 

features which are rendered redundant by completeness 

and references. SpecificMly: 

(1) The existence of function-returning and reference- 

returning functions allows all compound data structures to 

be treated as functions. For example, a one-dimensional 

ALGoL-like array is treated as a function whose domain is a 

finite set of consecutive integers and which maps each of 

these integers into a unique reference. This approach in- 

sures that any process which accepts some data structure 

will accept any logically equivalent structure, regardless of 

its internal representation. More generally, any data struc- 

ture may be implicit; i.e. it may be specified by giving an 

arbitrary algorithm for computing or accessing its compo- 

nents. (Functional data structures have been suggested by 

Balzer [6], but his realization of the concept is quite differ- 

ent than GEDANKEN.) 

(2) The existence of label variables permits the construc- 

tion of coroutines, quasi-parallel processes, and other un- 

orthodox control mechanisms. This is a direct consequence 

of not imposing a stack discipline on the program control 

information. 

The main limitation of GEDANKEN is that declara- 

tions are not allowed to restrict the value ranges of identi- 

fiers, references, or function results. Languages with this 

property are usually called "typeless," although the types 

of values may be tested during execution. We do not sug- 

gest that type declarations are unimportant or that it is 

trivial to add them to GEDANKEN without destroying 

the generality of the language; this is a major theoretical 

problem. 

The originality of GEDANKEN lies primarily in the 

language features which have been excluded, and the main 

aim of this paper is to demonstrate that these exclusions 

(except typelessness) do not impair generality. For this 

purpose, we include extensive programming examples. 

A formal definition of GEDANKEN is given in [7]. A 

complete but extremely inefficient implementation has 

been produced by translating this formal definition into 

LisP; this implementation has been used to check all 

examples given in this paper. 
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After describing the syntax of the language and the types 

of values which are manipulated during program execution, 

we discuss the applicative part  of the language, i.e. the 

evaluation of expressions and the application of functions. 

Finally, the imperative aspects, such as references, assign- 

ment, labels, and jumps, will be introduced. 

S y n t a x  

Mthough the importance of G E D A N K E N  lies in its 

semantics, a definite syntax must be specified so that  pro- 

gramming examples can be given. A G E D A N K E N  program 

is a sequence of tokens separated by zero or more blanks, 

with at least one blank used as a separator whenever the 

juxtaposition would otherwise be ambiguous. The tokens 

are sequences of characters classified as follows: 

constants digit strings (denoting integers), quoted strings 

reserved words AND, OR, IF, T H E N ,  ELSE,  CASE, OF, 

IS, ISR 

identifiers all other alphanumeric strings beginning with 

a letter 

punctuation tokens k,  = : ( )  ; := 

Certain predefined identifiers have standard meanings. 

These include: TRUE,  FALSE, LL, and UL, which denote 

specific primitive values; ERROR,  which denotes a built-in 

label value causing program termination; and the names of 

all built-in functions. (These predefined identifiers differ 

from reserved words in tha t  the programmer can override 

the standard meanings by  declarations.) 

The set of token sequences which are well-formed 

G E D A N K E N  programs is specified by the context-free 

grammar (over an infinite vocabulary of tokens) in Table 

I. The syntactic variables in this grammar are subscripted 

to distinguish among phrases with a similar semantic role 

but  different levels of precedence. Thus phrases of the 

classes (exp0), . . .  , (exps) are all called expressions, while 

phrases of the classes (pform0) and (pform~) are called 

parameter forms. The notation {a} * is used to indicate an 

arbitrary number (including zero) of occurrences of the 

string a. 

I t  should be noted that  a block can consist of a single 

expression; this permits any expression to be parenthesized 

without changing its semantics. 

P r i m i t i v e  V a l u e s  a n d  F u n c t i o n s  

The items of data which are manipulated during the 

execution of a G E D A N K E N  program are called values. 

The set of all values is partitioned into seven types: inte- 
gers, Booleans, characters, and atoms (collectively called 

primitive values), and functions, references, and label values 
(collectively called nonprimitive values). (Floating-point 

numbers are excluded, but  their inclusion would not raise 

any significant problems.) Although the language does not 

contain type declarations, a complete set of built-in func- 

tions is available for testing the type of a value during 

program execution. 

Among the primitive values, only atoms are unusual; 

TABLE I. A GRAMMAI¢ FOR GEDANKEN 

(expo) ::= (constant> [ (identifier) I ((block)) 
(expl) ::= (expo) ] (function designator> 
(function designator) ::= (expc> (expl) 
(exp2) ::= (expl) [ (expl) = (exp2) 
(expa) ::= (exp2) ] (exp2) AND (exp,) 
(exp4) ::= (exp3) ] (exp3> OR (exp4) 
(exp.> ::= (exp4) ] (conditional exp) [ (lambda exp>[ (exp4) := (exps) 
(conditional exp) ::= IF (exp6) THEN (exps) ELSE (exps) 
(lambda exp) ::= k (pform0) (exp,) 
(exp6) ::= (exps) I (sequence exp) ] (case exp) 
(sequence exp) ::= (empty> [ (exp,), (exps> {, (exp6>}* 
(case exp) ::= CASE (exp6) OF (exp6) {, (exps)}* 
(pform¢> ::= (identifier) [ ((pforml)) 
(pforml) ::= (pform6) [ (sequence pform) 
(sequence pform) ::= (empty> ] (pform¢), (pform0) [, (pform0)}* 
(decl) ::= (pforml> IS (exp6) 
(recursive decl) ::= (identifier> ISR (lambda exp) 
(label> ::= (identifier> : 
(statement> ::= {(label>}* (exp6) 
(block) :: = {(decl) ;}* { (recursive decl); }* { (statement>; }* 

(statement> 
(program> ::= (block) 

they are similar to atoms in LisP, except tha t  they lack 

property lists and print names, l~Iore precisely, the atoms 
are a denumerably infinite set of values which may be 

tested for equality, but  which do not possess any ordering 

or arithmetic operations. Two particular atoms, denoted 

by  the predefined identifiers LL and UL, play a special role 

in the language. Additional atoms are created by  the 

built-in function ATOM, which returns a distinct atom 

each time it  is applied. 

A function is a value which may be applied to another 

value called its argument. When so applied, the function 

will either: (i) return a value called its result, (ii) transfer 

control to a label value without returning a result, (iii) 

cause an error stop, or (iv) initiate a nonterminating com- 

putation. (The application of a function may also alter the 

state of a computation by  producing various side effects, 
which will be discussed later.) The set of arguments for 

which a function will return a result is called the domain 

of the function. A number of built-in functions are pro- 

vided which may be used without being defined; additional 

"user-defined" functions are produced by  the evaluation of 

various expressions. 

(Proper procedures, in the sense of ALGOL, are not  pro- 

vided in G E D A N K E N ,  since they are equivalent to func- 

tions which execute useful side effects but  return an irrele- 

vant  result. Functions with multiple arguments are not 

provided, since they are equivalent to functions whose 

arguments are sequences, as described below.) 

The functional approach to data structures is reflected in 

the absense of a distinct type of value corresponding to the 

conventional notion of a vector or array; the analogous 

values in G E D A N K E N  are functions. Thus we will use 

the word "vector"  to denote those functions which are 

logically equivalent to conventional vectors. 
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It  is evident that the domain of a GEDANKEN function 

which is a vector must include a finite set of consecutive 

integers; these integers are the analogue of the subscripts of 

a conventional vector. But a conventional vector also has 

the property that its set of subscripts is explicit; i.e. there 

must be some method of testing the vector to determine its 

least and greatest subscripts. To reflect this property in 

GEDANKEN, we require that the domain of a vector 

must include, in addition to the subscript set, the atoms 

LL and UL, and that the results of applying the vector to 

LL and UL must be the least and greatest subscripts. 

This leads to the following definition. A function F is 

called a vector whenever: (1) its domain includes the atoms 

LL and UL; (2) the results of applying F to LL and UL 

are integers such that F(UL) _> F(LL) -- 1; (3) the domain 

of F includes all integers i such that F(LL) < i < F(UL). 

If F is a vector, then the integers F(LL), F(UL), and 

F(UL) -- F(LL) -Jr 1 are called the lower limit, upper limit, 

and length of F, respectively, and for each integer i such 

that F(LL) < i < F(UL), the result of applying F to i 

is called the ith component of F. 

A vector is called a sequence if its lower limit is 1. 

Although a vector is a kind of function, and a sequence 

is a kind of vector, neither "vector" nor "sequence" is a 

"type" in the usual sense, since one cannot write a program 

which will test whether an arbitrary function is a vector or 

a sequence. Certain operations in GEDANKEN (e.g. 

evaluation of sequence expressions or application of the 

built-in function VECTOR) are guaranteed to produce 

vectors, but equally valid vectors may also be produced by 

more general mechanisms (e.g. evaluation of lambda ex- 

pressions). Vectors produced in the latter manner are said 

to be implicit. 

(The realization of vectors in GEDANKEN is in con- 

trast to several languages, such as PAL, in which subscript 

limits are obtained by applying built-in functions to vec- 

tors. In the latter approach vectors are not purely func- 

tional, since they are amenable to other operations than 

application. The practical effect is to prohibit implicit 

vectors.) 

The existence of sequences in GEDANKEN justifies the 

elimination of functions with multiple arguments. The 

analogue of a conventional function with k arguments, 

when either k = 0 or/c _> 2, is a function whose single 

argument is a sequence of length k. For example, the do- 

main of the built-in function ADD is the set of sequences 

of length two whose components are both integers. (This 

approach is a direct borrowing from PAL.) 

The remaining types of nonprimitive values, references 

and label values, will be defined later. 

A p p l i c a t i v e  S e m a n t i c s  

To describe the semantics of GEDANKEN, we follow 

Landin [2] and Evans [3] in dividing the language into an 

applicative part, involving the evaluation of expressions 

and the application of functions, and an imperative part, 

involving assignment and control jumps. We first consider 
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the applicative sublanguage, which is obtained by dis- 

regarding references, label values, and the operations which 

manipulate them. 

Within this sublanguage, the basic operation is the 

evaluation of expressions. Since the evaluation of an ex- 

pression will usually involve the evaluation of its sub- 

expressions, the definition of this operation is inherently 

recursive. Also, when an expression contains freeidentifiers, 

its evaluation is only meaningful in the presence of some 

mapping of these identifiers into values; such a mapping is 

called an environment and is said to bind each identifier to a 

value. 

A complete program is always evaluated in an environ- 

ment which binds the predefined identifiers into their 

standard values. Whenever the evaluation of an expression 

e involves the evaluation of an immediate subexpression 

d, then, unless e is a lambda expression or a block, e' is 

evaluated in the same environment as e. The evaluation of 

lambda expressions and blocks (described in detail below) 

involves the concept of extension: if i is an identifier, v is a 

value, and 7 and 7' are environments such that n' binds i 

to v and specifies the same binding as 7 for all other identi- 

fiers, then n' is called the extension of n formed by binding 

i t o  v. 

We now describe the evaluation of each nontrivial form 

of expression. The application of a function to an argument 

is performed by a function designator: 

(function designator) ::= (exp0) (expl) 

function argument  
par t  par t  

which is evaluated by first evaluating its function part and 

its argument part to obtain values vf (which must be a 

function) and va, and then applying vf to v~. (Since the 

argument part is evaluated before the function is applied, 

this form of evaluation is similar to call by value in ALGOL, 

rather than call by name.) Since function designators have 

a right-associative syntax, the usual composition of func- 

tions may be written without parentheses; e.g. F(G(X)) 

may be written as F G X. 

Functions may be produced by the evaluation of lambda 

expressions: 

(lambda exp) ::= k (pformo) (exp.} 

body 

Basically, the value of a lambda expression is a function 

which (when it is applied to an argument at some later 

point during the computation) computes its result by 

binding the parameter form to its argument and then eval- 

uating the body. More precisely, if f is the function ob- 

tained by evaluating k(p)e in the environment n, then the 

result of applying f to an argument a will be obtained by 

evaluating e in an environment which is the extension of 

formed by binding p to a. (The meaning of binding p to a, 

when p is not an identifier, will be defined below.) 

This binding mechanism is quite conventional (it is 

called FUNARG binding in LisP and is similar to the 

mechanism used in ALGOL and in PL/I) ,  but a clear under- 
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standing of its implications is vital. There are two separate 

actions: (i) the evaluation of the lambda expression to 

produce a function, and (ii) the application of this function 

to its arguments. The body of the lambda expression is not 

evaluated until (ii), but  the environment in which the body 

is evaluated is an extension of the environment used during 

(i) rather than (ii). As a result, when a lambda expression 

contains free identifiers, its evaluation in different environ- 

meats will produce different functions. For example, in an 

environment where Y is bound to an integer k, the evalua- 

tion of h(X) ADD(X, Y) produces a function which in- 

creases its argument by k. 

Functions which are sequences may also be produced by 

the evaluation of sequence expressions: 

(sequence exp) ::= (empty) ] (exp,), (exps) {, (exps)}* 

Let n be the number of subexpressions. Then the sequence 

expression is evaluated by first evaluating its subexpres- 

sions to obtain values vl,  . . .  , v~ and then producing a 

sequence of length n whose i th component (for 1 < i < n) 

is v~. 

Because of their low precedence, sequence expressions 

are usually parenthesized, but the parentheses themselves 

do not indicate a sequence expression. Thus the expressions 

()  and (X, Y) both produce sequences, but  (X) has the 

same value as X. There is no sequence expression which 

produces a sequence of length one, but  such sequences can 

be produced by the built-in function UNITSEQ, which 

returns a sequence whose only component is the value of its 

argument. 

As noted earlier, a function of n arguments (n ~ 1) is 

treated in G E D A N K E N  as a function of a sequence of 

length n. This suggests that  when a function produced by a 

lambda expression expects to receive a sequence as its 

argument, the parameter form within the lambda expres- 

sion should be able to bind several different identifiers to 

the components of the sequence. To provide this capability 

we extend the notion of a parameter form to include a 

sequence parameter form (which is a rough analogue of a 

formal parameter list in ALGOL) : 

(sequence pform) ::= (empty) I (pformo), (pform0) {, (pform0)}* 

The relevant semantics are given by defining (recur- 

sively) the extension of an environment n formed by bind- 

ing an arbitrary parameter form p to a value v. This 

extension is computed as follows: 

(1) If p is an identifier, then n is extended by binding 

p tov .  

(2) If  p has the form (p'), then ~ is extended by binding 

p' to v. 

(3) If p is a sequence parameter form, p l , . . . ,  p .  

(n ~ 1), then v, which must be a function, is applied 

to each integer from 1 to n, and ~/ is repeatedly 

extended by binding each p~ to the result of v(i). 

The syntax of sequence expressions and sequence param- 

eter forms preserves conventional notation for functions 

of several arguments. Thus in the evaluation of (h(X, Y) 

body) (3, 4), X is bound to 3 and Y is bound to 4. However, 

the sequence argument approach also provides useful 

unconventional capabilities, e.g. (k(X, Y) body) (IF P 

T H E N  (3, 4) ELSE (5, 6)). More importantly, the ability 

to bind a single identifier to an entire sequence provides 

the equivalent of a function with an indefinite number of 

arguments, e.g. (XX body) (IF P T H E N  (3, 4) ELSE 

(5, 6, 7)). 
G E D A N K E N  is similar to EUL~R [8] in treating all 

types of unlabeled statements as expressions. In particular, 

a block is a form of expression with a meaningful value: 

(block) ::= {(decl);}* {(recursive decl);}* 
{(statement);}* (statement) 

where 

(decl) ::= (pforml) IS (exp,) 
(reeursive decl) ::= (identifier) ISt~ (lambda exp) 

Basically, a block is evaluated by first carrying out the 

bindings indicated by its declarations, recursive declara- 

tions, and labels, and then evaluating the statements in 

order from left to right. The value of the block is the value 

of the rightmost statement. The values of preceding state- 

ments are ignored; in the absence of imperative features, 

these statements have no effect. 

More precisely, a block is evaluated as follows (we in- 

clude the binding of labels although it is an imperative 

aspect of the language): 

(1) For each declaration ((decl)), in order from left to 

right: the right side of the declaration is evaluated, and 

then the current environment is extended by binding the 

left side of the declaration to the value of the right side. 

(2) The current environment is further extended by 

binding each identifier which occurs on the left of a recur- 

sire declaration ((recursive decl)), or as the label of a 

statement, to a distinct "d u mmy "  value. 

(3) The right side of each recursive declaration is 

evaluated, and its value replaces the corresponding dummy 

value. 

(4) For each label, an apropriate label value is created 

and replaces the corresponding dummy value. 

(5) The statements are evaluated in order from left to 

right. 

(6) The value of the block is the value of the rightmost 

statement. 

In steps 2 to 4, the device of binding identifiers to 

dummy values and then replacing the dummy values 

allows an environment to be cyclic, i.e. to bind an identifier 

to a value which is produced by evaluating a lambda 

expression (or label) in the same environment. 

The essential difference between (nonrecursive) declara- 

tions and recursive declarations is that  the right side of a 

declaration "feels" only the bindings caused by preceding 

declarations, while the right side of a recursive declaration 

feels the bindings caused by all declarations in the block, 

including implicit label declarations. Recursive declara- 

tions are needed to define recursive functions conveniently, 

including families of functions which call one another. 
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(They also permit  the definition of functions which jump 

into the immediately enclosing block.) 

Nonrecursive declarations are less essential, bu t  they 

permit  convenient constructions such as X IS A D D ( X ,  

1). More important ,  their existence allows the right sides 

of recursive declarations to be limited to lambda expres- 

sions, so tha t  meaningless constructions such as X I S R  

ADD(X,  1) are syntactically illegal. 

Conditional expressions have the same meaning as in 

ALGOL. Case expressions have a rather  unorthodox mean- 

ing (which is convenient for defining implicit sequences): 

CASE e0 OF e l ,  . . . ,  en is evaluated by  first evaluating e0 

to obtain a value i; then if i is an integer satisfying 1 _< i 

< n, the value of the case expression is obtained by  

evaluating e~ ; if i is LL or UL the value is 1 or n respec- 

t ively; all other values of i give an error stop. 

The remaining forms of expressions are most  easily 

defined as abbreviations. Except  for coercion (discussed 

later), they  can be eliminated f rom a program by  applying 

the following transformations:  

el = e2 ~ EQUAL(el , e2) 

el AND e~ ~ (IF el THEN e~ ELSE FALSE) 

el OR e2 ~ (IF el THEN TRUE ELSE e2) 

el := e2 ~ SET(el , e2) 

The built-in function S E T  will be defined later. EQUAL 

tests the equality of primit ive data,  bu t  if either com- 

ponent  of its a rgument  is a function or a label value, it 

will return FALSE. I t s  action on references will be de- 

scribed later. 

Theoretically, nonrecursive declarations, sequence pa- 

rameter  forms, and sequence expressions can also be 

regarded as abbreviations. Their  occurrences in a program 

can be eliminated by  repeated application of the following 

equivalences: 

p IS e; b ~ (k(p)(b))(e) 
k(pl , .-. , p,) b (when n~  1) 

ki(p~ I S i l ;  . . .  ; p~ I S i n ' ;  b) 
el , .-- , e, (when n ~ 1) 

(il ISe~; -.- ; i . I S e , ;  X i ( C A S E i O F i l , . - .  , i , ) )  

where n '  is an integer constant whose value is n, and i, i~, 

. . . ,  i~ are distinct identifiers which do not occur in the 

program being transformed. 

I t  should be noted tha t  G E D A N K E N  does not  include 

certain features, such as infix ari thmetic operators or fo r  

statements,  which would enhance the conciseness of the 

language without  expanding the range of programs which 

could be expressed. Such features could be added easily, 

but  they are not  germane to the basic purposes of the 

language. 

F u n c t i o n a l  D a t a  S t r u c t u r e s  

Even the applicative par t  of G E D A N K E N  is sufficient 

to demonstrate  the power and flexibility which can be 

obtained by  treat ing data  structures functionally. 

As a first example, consider LisP-like list structures. To 

define analogues of the Lisp functions CONS, CAR, and 

CDR, we t rea t  the two-field list cell produced by  CONS as 

a function whose domain contains two elements (e.g. 1 

and 2) and which maps these elements into the values of its 

CAR and C D R  fields. This viewpoint leads directly to the 

definitions: 

CONS IS X(X, Y) XZ IF Z = 1 THEN X ELSE Y; 

CAR ISXXX 1; 

CDR IS XX X 2; 

These definitions imply an ability to do list processing 

without  special built-in functions. In  a conventional list- 

processing system (e.g. compiled Lisp 1.5 [la and lb] or 

some extensions of ALGOL [4, 9]) user-defined functions are 

restricted so tha t  storage for the wdues of their identifiers 

obeys a stack discipline. Then list structures, which do not  

obey a stack discipline, must  be allocated in a separate  

storage area, and built-in functions or operations must  be 

provided for accessing this area. Bu t  in G E D A N K E N ,  the 

user may  develop list-processing by  defining function- 

returning functions (such as CONS above) which violate 

a stack discipline. In  effect, all storage is potentially list- 

structured. 

Although the above approach is workable and theoreti- 

cally at tract ive,  i t  is more convenient to use sequence 

expressions to create list elements and direct application 

to obtain their  subfields. Thus,  we write (X, Y) instead of 

CONS (X, Y), X 1 instead of CAR X, and X 2 instead of 

C D R  X. Following this approach, we introduce lists by  

first creating an a tom to denote the empty  list: 

NIL IS ATOM( ); 

and then defining a list to be either the a tom N I L  or a 

sequence of length two whose second component  is a list. 

The following functions will return the length of a list, 

find the i th  element of a list, and append one list to 

another:  

LISTLENGTH ISR XL IF L = NIL THEN 0 
ELSE INC LISTLENGTH L 2; 

LISTELEM IStL x(I, L) IF L = NIL THEN GOTO ERROR 
ELSE IF I = 1 THEN L 1 ELSE LISTELEM(DEC I, L 2); 

APPEND ISR X(X, Y) IF X = NIL THEN Y 
ELSE (X 1, APPEND(X 2, Y)); 

Hence I N C  and D E C  are built-in functions which increase 

or decrease an integer by  one. 

As a second example, consider one-dimensional arrays. 

We have defined a type  of function called a vector  which is 

the analogue of a one-dimensional array,  and we have  

introduced sequence expressions for creating vectors. Bu t  

a sequence expression can only produce a vector  which is a 

sequence, and it is inconvenient for producing very  long 

vectors. W h a t  is needed is a function which will produce a 

vector  from a functional specification of its components,  

i.e. which will accept another  function, tabulate  its results 

over  a finite range, and return a " lookup"  function for the 

resulting table. 

Thus we define a function V E C T O R  which accepts an 

argument  (L, U, F), where L and U are integers and F is a 
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function. I f  U < L, V E C T O R  returns an empty  vector V 

such tha t  V(LL) = L and V(UL) = L -- 1. Otherwise, 

V E C T O R  evaluates F(I)  for each integer I between L and 

U inclusive, and returns a vector  V such tha t  V(LL) = L, 

V(UL) = U and for L < I < U, V(I)  is the value of F(I ) .  

The  basic approach is to recur on the length of the vector, 

tabulat ing a single value (bound to T) at  each level of 

recursion. 

VECTOR ISR X(L, U, F) 
IF GREATER(L, U) THEN 

x I IF I = LL THEN L ELSE IF I = UL THEN DEC L 
ELSE GOTO ERROR 

ELSE (V IS VECTOR(L, DEC U, F); T IS F U; 
X I I F I =  U L T H E N U E L S E I F I  = U T H E N T E L S E V I ) ;  

I t  is evident tha t  this function, although theoretically 

correct, will be extremely inefficient in any reasonable 

implementation.  For this reason, a built-in function 

V E C T O R  is provided which is defined to be equivalent to 

the function above (except for coercion). 

(This question of efficiency may  be clarified by  consider- 

ing implementat ion mechanisms. In  a simple implementa-  

tion, functions would possess two distinct internal repre- 

sentations: I f  a function was produced by  evaluating a 

lambda expression, i t  would be represented by  a " l ambda  

record" containing a pointer to code which was compiled 

from the lambda expression plus values for each free 

identifier in the lambda expression (i.e. a representation of 

the environment in which the lambda expression was 

evaluated). On the other hand, if a function was created by  

evaluating a sequence expression or by  the application of 

VECTOR,  it would be represented by  a "vector  record" 

containing domain limit and indexing information plus a 

contiguous array of component  values. I t  is evident tha t  

the above definition of V E C T O R  would yield a vector  

whose internal representation was a linked list of lambda  

records, each containing one component  value, ra ther  than  

a contiguous array.) 

Using lists and vectors, we may  illustrate our assertion 

tha t  any process which accepts some data structure will 

accept any logically equivalent structure. Suppose tha t  P 

is a function which expects a sequence as its argument,  and 

VALUES 

IDENTIFIERS 

~'1 FUNCTIONS t / 

r~ 

[IDENTIFIERS] IIDENTIFIERS I 

J] REFERENCESvALUES li ~ °  I%}1 / ~ 28} VALUES 

FUNCTIONS~ 

28 

/ IREFERENCESF 

~FUNCTIONS~ / 

(i) (2) (3) 
Fzo. 1. Three approaches to assignment 

tha t  we wish to give it  a sequence whose i th component  is 

the i th element of a list L. This can be done in a conven- 

tional manner  by  evaluating P V E C T O R  (1, L IST-  

L E N G T H  L, ~, I L I S T E L E M ( I ,  L)), which copies the 

elements of L into a contiguous array. But  it is also possible 

to evaluate P M A K E S E Q F R O M L I S T  L, where 

MAKESEQFROMLIST IS X L 
k I IF I = LL THEN 1 ELSE IF I = UL THEN LISTLENGTH L 

ELSE LISTELEM(I, L); 

M A K E S E Q F R O M L I S T  does not copy the components of 

L; instead, i t  returns an implicit sequence which will look 

up the appropriate element of L each t ime one of its com- 

ponents is accessed. 

I t  is equally possible to produce an implicit list f rom a 

sequence: 

MAKELISTFROMSEQ ISR X S MLFSI(1, S); 
MLFS1 ISR x(I, S) IF GREATER (I, S UL) THEN NIL 

ELSE X K (CASE K OF S I, MLFSI(INC I, S)); 

(Here MLFS1 is a subsidiary function which produces an 

implicit list from the subsequence of S tha t  begins with 

the I t h  component.) 

The  data  structures shown so far have the l imitation tha t  

once a structure has been created, its components or ele- 

ments cannot be altered. To overcome this l imitation we 

must  introduce the imperat ive aspects of G E D A N K E N .  

References 

In  any programming language which permits assign- 

ment,  there is a class of objects which are affected by  

assignment. We will call these objects references; other 

terms used commonly in the li terature are " n ame"  and 

"L-value."  At  any t ime during the execution of a program, 

each reference possesses some value. The effect of an assign- 

ment  operation r: = v is to cause the reference denoted by  

r to possess the value denoted by  v. 

Within this definitional framework, there are at  least 

three distinct approaches to assignment (see Figure 1): 

(1) Identifiers are used as references. This approach is 

used in SNOBOL [10], where a form of indirect addressing 

is achieved by  allowing identifiers to occur as values. Un- 

fortunately,  the approach does not mesh well with block 

structure; a discussion of the difficulties is given by  Kain 

[11]. 

(2) References are distinct from either identifiers or 

values, and are interposed between all other value-denoting 

entities and their values. Thus the bindings of identifiers, 

the arguments and results of functions, and the com- 

ponents of vectors are all references, and the values 

denoted by  these entities are actually the values possessed 

by  the references. This approach is used in PAL, and to a 

large extent in FORTnAN and P L / I ,  except tha t  in the lat ter  

languages function results are values, and identifiers may  

be bound directly to functions and label values, but  not to 

primitive values. The approach meshes well with block 

structure but  is ra ther  inflexible; one moves from the 

applicative situation, where assignment is impossible, to 
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the opposite extreme, where every value-denoting entity 

can be affected by assignment. 

(3) References are treated as a distinct type of value, so 

that any value-denoting entity can denote either a con- 

ventionalvalue or a reference which in turn possesses a 

value. This approach is used in ALGOL 68 and BASEL. 

(BASEL also permits a form of assignment which alters 

identifier binding.) I t  is compatible with block structure 

and is more flexible than the previous approach, since the 

programmer can introduce references in just those con- 

texts where he intends to do assignment. Advantages 

should accrue in both the optimization of data representa- 

tions and the checking of erroneous assignment statements. 

(The above categorization must be qualified by the fact 

that FORTRAN, PL/I ,  ALGOL 68, and BASEL all have type- 

declaration mechanisms which affect their treatment of 

assignment. A discussion of this interaction is beyond the 

scope of this paper.) 

In GEDANKEN we have chosen to use the third ap- 

proach to assignment. Thus we introduce a new, denum- 

erably infinite set of values called references, and stipulate 

that each reference possesses some other value (which may 

itself be a reference). Three built-in functions are provided 

to manipulate references: REF, SET, and VAL. REF X 

returns a distinct reference each time it is applied; this 

reference is initialized to possess the value X. SET(R, X) 

(which can be abbreviated R := X) causes R (which must 

be a reference) to possess the value X, and also returns X; 

its action on R is an example of a side effect. VAL R returns 

the value possessed by R (which must be a reference). 

For example, under the scope of the declaration X IS 3, 

the identifier X is bound to the integer 3, and this binding 

cannot be altered by assignment. Evaluation of the expres- 

sion X := 4 would give an error, since 3 is not a reference. 

Analogously, under the scope of the declaration X IS 

REF 3, the identifier X is bound to the reference created 

by REF, and this binding cannot be changed by assign- 

ment. But now evaluation of X := 4 is legitimate, and 

causes the value possessed by the reference bound to X to 

change from 3 to 4. Thus in the execution of the block 

(x ISREF3;VALX = 3;X := 4;VALX = 4) 

both equality predicates will be true. 

The major difficulty with this approach is the frequent 

necessity for using the function VAL. For example, under 

the scope of the declarations X IS REF 3; Y IS REF 4; 

one would write ADD(VAL X, VAL Y) rather than 

ADD(X, Y), since ADD acts upon integers rather than 

references. To alleviate this difficulty, we introduce 

coercion conventions into GEDANKEN;  i.e. we stipulate 

that references will be replaced by their values in certain 

contexts which would otherwise be meaningless. 

Specifically, let COERCE be the function 

COERCE ISR k X IF ISREF X THEN COERCE VAL X ELSE X; 

(which is available as a built-in function), and define "to 

coerce X "  to mean the replacement of X by COERCE X. 

Then: 

(1) All built-in functions which would otherwise be 

meaningless coerce their argument or the appropriate 

components of their arguments. For example, ADD(X, Y) 

is equivalent to ADD(COERCE X, COERCE Y), but 

ISREF X is not equivalent to ISREF COERCE X, nor 

VAL X to VAL COERCE X. 

(2) REF X coerces X, SET(R, X) (and therefore R 

:= X) coerces X, and EQUAL(X, Y) (and therefore X = 

Y) coerces both X and Y. Since these functions would each 

be meaningful for references without coercion, analogous 

noncoercing functions, named NCREF, NCSET, and 

NCEQUAL, are also provided. NCREF and NCSET 

permit references to possess values which are also refer- 

ences. NCEQUAL can be used to determine whether two 

values are the same reference. 

(3) Conditional and case expressions coerce the values 

of their leftmost subexpressions. 

(4) Expressions involving AND and OR coerce the 

values of both their subexpressions. 

(5) A function designator coerces the value of its function 

part. 

(6) When a sequence parameter form pl ,  . . . ,  p.  is 

bound to a value a, each p~ will be bound to (COERCE a) 

(i). 

(7) Vectors which are created by evaluating sequence 

expressions or by application of the built-in functions 

VECTOR or UNITSEQ will coerce their argument. 

Despite their ad hoc appearance, most of these coercion 

rules are instances of the general principle that coercion 

should only occur in situations which would otherwise give 

an error termination. The exceptions are rules (2) and 

(4), which are simply concessions to conventional nota- 

tion. 

D a t a  S t r u c t u r e s  w i t h  E m b e d d e d  R e f e r e n c e s  

The utility of references becomes apparent when refer- 

ence-returning functions are used to embed references 

within data structures, yielding structures which can be 

altered by assignment. 

This approach provides precise control over the ways in 

which data structures can be altered. Thus the GEDAN- 

KEN equivalent of an ALGOL-like one-dimensional array 

is a vector whose components are references, e.g. 

X IS VECTOR(i, 100, X I REF 0); 

Under the scope of this declaration, assignment can be 

made to the components of X, e.g. X(7) := 10, but not to 

X itself. In particular, the subscript limits X LL and X 

UL are fixed by the declaration. 

On the other hand, the equivalent of a string variable is 

provided by a reference whose value is a vector: 

S IS REF VECTOR(i, 100, F); 

Here assignment can be made to S itself (possibly changing 

the subscript limits) but not to its components. 

A second consequence of the reference concept is the 
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ability to define data  structures or sets of data  structures 

which share elements, in the sense tha t  assignment to one 

element will affect another.  Consider a square matr ix  M. 

We could define M as a vector  of vectors, i.e. 

M IS VECTOR(l, 10, k I VECTOR(l, 10, k J REF 0)); 

bu t  this leads to the inconvenience of referring to an ele- 

ment  of 1Vi by  (M I) J. I t  is more natural  to define I~{[ as a 

reference-returning function of pairs of integers: 

M IS (M1 IS VECTOR(l, 10, k I VECTOR(l, 10, k J REF 0)); 
~(I, J) (M1 I) J); 

so tha t  an element is referred to as M(I ,  J).  Now consider 

the additional declarations: 

MT IS k(I, J) M(J, I); MD IS k I M(I, I); 

Here M T  and M D  denote the transpose and diagonal of hi,  

in the sense tha t  assignment to an element of one matrix 

affects the corresponding elements of the others. 

Elements may  also be shared within the same data  

structure. For example, 

S IS(S1 IS VECTOR(l, 10, k I VECTOR(l, I, k J REF 0)); 
x(I, J) IF NOT GREATER(J, I) THEN (S1 I) J ELSE (S1 J) I); 

defines a symmetric  matrix in which assignment to S(I,  J) 

also alters S(J, I).  

The embedding of references in list structures also pro- 

vides control over the ways in which these structures may  

be altered. An example is the proper ty  list, which is a list 

of property-value pairs subject to two operations: the 

value paired with a given property may  be looked up; or 

the value paired with a given proper ty  may  be changed, 

adding a new pair to the list if the proper ty  is not already 

present. I t  is evident tha t  references must  occur in the 

property list at  two points: each value must  be a reference, 

so tha t  it can be changed; and the entire list must  be a 

reference, so tha t  new pairs can be added. 

The following function manipulates such proper ty  lists. 

Given a property P and a (reference to a) proper ty  list L, 

PROPVAL(P,  L) searches L for an occurrence of P. I f  P is 

found, the reference paired with P is returned. Otherwise, 

a pair consisting of P and a new reference (initialized to 

zero) is added to L, and the new reference is returned. The  

argument  P is coerced. 

PROPVAL IS k(P, L) 
(P IS COERCE P; 
SEARCHL ISR ~ X 

IF X = NIL THEN 
(NEWV IS REF 0; L := ((P, NEWV), VAL L); NEWV) 

ELSE IF (X 1) 1 = P THEN (X 1) 2 ELSE SEARCHL X 2; 
SEARCHL VAL L); 

An application of this function can occur on either side of 

an assignment operation; on the right side it  will act  to 

look up a value, on the left side it will act  to alter a value. 

A further  step can be taken by  viewing the proper ty  list 

itself as a reference-returning function which accepts a 

property and returns a reference to the corresponding 

value. The following function (of no arguments) returns 

such functional proper ty  lists: 

MAKEPROPLIST IS k( ) (L IS REF NIL; k P PROPVAL(P, L)); 

Each application of M A K E P R O P L I S T  returns a now 

instance of PROPVAL,  with L bound to a private "own 

variable."  Since a proper ty  can be any primitive value, a 

functional proper ty  list is similar to a reference-valued 

vector, except tha t  it has an indefinite domain. Indeed, 

functional proper ty  lists can be used to provide an efficient 

implementat ion of sparse vectors. 

As a final example of the use of references, suppose tha t  

R E A D  is a function such tha t  each application of R E A D  

produces the next i tem of da ta  f rom some input stream, 

and tha t  we wish to produce an implicit list of the succes- 

sive i tems in the stream. The following function (of no 

arguments) returns such a list: 

MAKERLIST ISR k( ) 
(B I S R E F 0 ; k I  

(IF B = 0 THEN B := (READ ( ),MAKERLIST()) ELSE ( ); 
B I)); 

The  result of M A K E R L I S T  is an implicit list (whose 

implicit length is infinite) which only applies R E A D  as 

items of data  are actually needed, and only stores pre- 

viously read items which are still accessible. 

I m p l i c i t  R e f e r e n c e s  

The util i ty of implicit data  structures suggests the 

introduction of an analogous facility for references. Thus 

we introduce the concept of an implicit reference, i.e. a 

value whose external appearance is the same as a reference, 

but  which may  carry out an arbi t rary  computat ion each 

t ime it is set or evaluated. (Implicit  references are related 

to doublets in POP-2 [12].) 

To specify an implicit reference, the programmer must  

provide two functions: a "sett ing funct ion" S which will 

be executed each t ime a value is assigned to the implicit 

reference, and an "evaluat ing funct ion" V which will be 

executed each t ime the implicit reference is evaluated. Thus 

an implicit reference is produced by  applying the built-in 

function IMMPREF(S, V), where S and V may  be arbi t rary 

functions of one and zero arguments  respectively. Each 

application of I M P R E F  produces a distinct implicit 

reference, and these implicit references satisfy the predicate 

I S R E F  and are coerced in the same manner  as conven- 

tional references. Bu t  the effect of S E T  or VAL on an 

implicit reference is to execute S or V. Specifically, if R 

is the result of I M P R E F ( S ,  V), then 

NCSET(R, X) = (S X; X) 
SET(R,X) = (X IS C O E R C E X ; S X ; X )  
VALR = V ()  

To illustrate the use of implicit references, consider the 

problem of protecting a reference-valued vector. Suppose 

tha t  P is a function which accepts a vector  whose com- 

ponents are references. We wish to apply P to such a 

vector  V, but  to protect  the components of V from being 
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affected by P; i.e. we want  these components to revert  to 

their original values after the application of P is finished. 

The simplest approach is to copy V by  executing P 

V E C T O R ( V  LL, V UL, X I R E F  V I),  but  this will be 

inefficient if V is large and only a few components are reset 

by  P. An alternative approach is to maintain a "change 

list" of the components of V which have been altered by  

P. This may  be done by  executing P P S E U D O C O P Y  V, 

where 

PSEUDOCOPY IS x V 
(CL IS REF NIL; 
SEARCHCL ISg X(X, I, F, G) IF X = NIL THEN G( ) 

ELSE IF (X1) 1 = I T H E N F  (X1) 2 
ELSE SEARCHCL(X 2, I, F, G); 

x I (I IS COERCE I; 
IF I = LL THEN V LL ELSE IF I = IJL THEN V UL 
ELSE IF NOT ISINTEGER I OR GREATER(V LL, I) 

OR GREATER(I, V UL) 
THEN GOTO ERROR 

ELSE IMPREF ( 
X X SEARCHCL(VAL CL, I, X R NCSET(R, X), 

x( ) (CL := ((I, NCREF X), VAL CL)), 
X( ) SEARCHCL(VAL CL, I, VAL, X( ) VAL V I)))); 

The result of P S E U D O C O P Y  is an implicit vector 

whose components are implicit references. Internally,  CL 

is a reference to the change list, which is a list of pairs, each 

containing an integer argument  of some altered com- 

ponent  and a reference to the current value of tha t  com- 

ponent.  S E A R C H C L  is a subsidiary function which 

searches a change list X for a pair beginning with the 

integer I.  I f  such a pair is found, S E A R C H C L  returns the 

result of F applied to the  reference paired with I;  otherwise 

S E A R C H C L  returns the result of G, which is a function 

of no arguments.  (The noncoercing functions N C S E T  and 

N C R E F  are used to allow the values possessed by  the 

components of V to be references.) 

L a b e l  V a l u e s  

The final type  of value used in G E D A N K E N  is the 

label value. These values are created during execution of a 

block containing labeled statements,  and are used as 

arguments  to the built-in function GOTO, which never 

returns but  instead causes a transfer  of control to the 

computat ional  s tate  represented by  the label value. 

A more precise description requires introducing a model 

of the interpretat ion of G E D A N K E N  by an abstract  

machine. A complete description of such a model (given 

in [7]) is beyond the scope of this paper, bu t  the following 

aspects are relevant to an understanding of the label and 

GOTO mechanisms: 

During the execution of a program (at any  instant  when 

a s ta tement  is about  to be evaluated) the state of the 

abs t rac t  interpreter will include the following entities: 

(1) A conlrol, which gives a list of the s ta tements  re- 

maining to be evaluated in the current block. 

(2) An environment, which gives the identifier bindings 

to be used in the current block. 

(3) A dump, which specifies the computat ions to be 

performed after the current block is completed. The 

dump is a pushdown stack containing an entry for 

each block and lambda-expression body whose 

evaluation is incomplete; each entry contains a 

control and an environment  (plus additional in- 

formation which is needed to describe part ial ly 

evaluated compound expressions). 

(4) A memory, which specifies the mapping  of references 

into their values. 

A label value consists of a control, an environment,  and 

a dump. During the evaluation of a block, immediately  

before the first s ta tement  is evaluated, a label value is 

created for each label in the block; each label value con- 

tains a list of the s tatements  between the corresponding 

label and the block end, plus the current environment  

(including the bindings of the labels themselves) and dump. 

When the built-in function GOTO is applied to a label 

value, the current control, environment,  and dump are 

replaced by  the constituents of the label value, and execu- 

tion continues with the first s ta tement  of the new control. 

The memory  is not altered. 

This mechanism permits jumps within the same block 

(which leave the environment  and dump unchanged) or to 

higher level blocks, with the same effect as in ALGOL. But  

the fact  tha t  label values can be possessed by  references or 

returned by  functions also provides the ability to jump 

back into a block after it has been exited from. I t  is this 

capabil i ty which allows the construction of coroutines. 

C o r o u t i n e s  

A coroutine is a procedure which can relinquish control 

to its calling program and later  be react ivated to continue 

computat ion.  The simplest situation is tha t  of two pro- 

cedures, each of which t reats  the other as a subroutine. 

As an example, suppose tha t  C O M P I L E  is a procedure 

which produces a succession of data  items called instruc- 

tions, output t ing each instruction by  applying a function 

OUT, and tha t  A S S E M B L E  is a procedure which accepts 

a succession of instructions, inputt ing each instruction by  

applying a function IN.  If  OUT and I N  are arguments  to 

C O M P I L E  and A S S E M B L E  respectively, we have 

COMPILE ISRXOUT ( . . .  O U T X . . .  ); 
ASSEMBLE ISI~ X IN ( ...  X := IN( ) .. .  ); 

We now want  to couple these procedures so tha t  

ASSEMBLE receives the output  of C O M P I L E .  Speci- 

fically, we want  to run A S S E M B L E  until it requests input,  

than  run C O M P I L E  until i t  produces the required output,  

then run A S S E M B L E  again, etc. The necessary program 

can be writ ten by  using label-valued references which are 

global to both  I N  and OUT:  

(LC IS REF 0; LA IS I~EF 0; INST IS REF 0; 
LC := LC1;ASSEMBLE(X( ) (LA := LA1; GOTOLC; 

LAI: VAL INST)); GOTO DONE; 
LCi: COMPILE(XX (LC := LC2; INST := X; GOTO LA; 

LC2:)) ; GOTO ERROR; 
DONE :) ; 
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Here LA and LC are label-valued references saving the 

current states of ASSEMBLE and COMPILE,  and INST 

is a third reference used to hold the instruction being 

transmitted from C O M P I L E  to ASSEMBLE.  If COM- 

P I L E  finishes while ASSEMBLE is still waiting for another 

instruction, an error stop occurs. 

1Nondeterministie Algorithms 

Label values in G E D A N K E N  are closely related to 

"processes" in simulation languages such as SIMULA. [13a 

and 13b]; both are mechanisms which allow the state of a 

suspended computation to be saved as an item of data. The 

essential difference is tha t  further execution of a computa- 

tion which was saved as a process causes the process to be 

updated, while further execution of a computation saved 

as a label value leaves the label value unchanged. Thus 

label values can be used to repeatedly initiate execution 

from the same state. 

This capability can be used to program a mode of execu- 

tion for nondeterministic algorithms [14] in which alterna- 

tive paths are pursued concurrently. A simple example is 

nondeterministie parsing. I t  is fairly straightforward to 

convert a context-free grammar into a recursive parsing 

function. Unfortunately, for many grammars this function 

will contain nondeterministic branches, i.e. points at which 

a conditional branch must be performed although the cur- 

rent state of the parse is insufficient to determine this 

branch. 

When such nondeterminism exists, parsing can be ac- 

complished by simulating a finite set of independent 

parsers, all accepting the same input string and obeying 

the same program, but  with different control states. When 

a parser encounters a nondeterministic branch, it  expands 

into two separate parsers; when a parser reads an input 

character which is inconsistent with its control state, it is 

deleted. 

Specifically, we assume that  PARSE(IN,  AMB, FAIL) 

is a function which accepts two functions IN and AMB, 

and a label value FAIL, and returns some representation 

of a successful parse. The function IN, of no arguments, is 

applied by  PARSE to read each character of the input 

string. The function AMB, whose argument is a label 

value, is applied to execute a nondeterministic branch; one 

side of the branch returns from AMB while the other 

jumps to the label-valued argument. PARSE jumps to the 

label value FAIL when it encounters an inconsistent 

character. We assume that  PARSE does not set any 

references, or at least tha t  it does not expect the value of 

any reference to be preserved across an application of IN  

or AMB. 

The following program carries out the concurrent execu- 

tion of PARSE, synchronizing the independent parsers by 

their reading of characters: 

(C IS R E F  N I L ;  W IS R E F  N I L ;  R IS R E F  N I L ;  

CHAR IS R E F  NIL ;  

C := ( P A R S E ( k ( )  (W := (L1, V A L W ) ;  GOTO CONT;  

L i :  VAL CHAR) ,  

k L2 (R := (L2, VAL R)) ,  CONT),  

VAL C);  

CONT:  IF  R = NIL  AND W = N I L  T H E N  GOTO D O N E  

ELSE IF  R = N I L  

T H E N  (CHAR : = R E A D C H A R ( ) ; R  : = W ; W  := NIL)  

ELSE ( ) ; 

(L IS 1~ 1; R := R 2; GOTO L);  

D O N E :  VAL C) 

Each independent parser is represented by a label value if 

it  has not completed its parse, or by its result if it  has 

completed its parse. The finite set of parsers is main- 

tained by the values of the references C, W, and R. C gives 

a list of the results of completed parses, W gives a list of 

label values representing the parsers which are waiting for 

the next character, and R gives a similar list for the parsers 

which are ready for execution before reading the next 

character. The reference CHAR keeps track of the current 

character, and is updated by the built-in function READ- 

CHAR. The label CONT is reached whenever execution is 

to be switched from one parser to another. The final value 

of the block is the list of completed parses; the input 

string is ill formed, well formed, or ambiguous depending 

upon whether this list has zero, one, or more than one 

element. 

(This approach to parsing is basically the same as tha t  

used in the COGENT programming system [15a and 15b]. 

I t  is presented here as an illustration of the generality of 

G E D A N K E N ,  but  it  does not represent a significant 

advance in the field of parsing techniques. Although it is 

reasonably efficient for a large class of unambiguous gram- 

mars, at  least if the function PARSE is carefully con- 

structed, some ambiguous grammars will cause an ex- 

ponential growth in the number of parsers and are bet ter  

treated by  other methods, such as tha t  of Earley [16].) 

Limitations and Possible Extensions 

The goal of applying the basic principles of GEDANKEN" 

to the design of an efficient general purpose programming 

language raises several interesting research problems: 

(1) Addition of Type Declarations. The most natural  

approach is probably an extension of Hoare's concept of 

record classes [9]. The programmer would be able to 

declare an arbitrary number of disjoint function, reference, 

and label classes, and would specify the range of each 

identifier, function result, and reference value to be some 

union of such classes (and/or  predefined classes of primi- 

tive values). All functions in the same class would have the 

same domain-range relation, and all references in the same 

class would have the same set of possible values. 

However, the functional approach to data structures will 

require unusual flexibility in the specification of the do- 

main-range relations of functions. If an inhomogeneous 

data  structure such as a record is to be treated as a func- 

tion, then it  must be possible to specify tha t  the range 

of such a function depends on its argument. For example, 

the set of lists of integers would be the ~.mion of the set 

{NIL} with a class of functions with domain (1, 2) which 

map 1 into an integer but  map 2 into a list of integers. 

An elaboration of this approach to type, limited to a 

purely applicative language, is described in [17]. 
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(2) Open Functions. Efficient implementation of func- 

tional data structures will require that certain functions be 

compiled into open code, i.e. that function designators 

should be replaced by modified copies of the corresponding 

lambda-expression body, and that these copies should then 

be simplified to take advantage of constant arguments. 

This capability could be provided by a macro-definitional 

facility. A second approach, more in keeping with the spirit 

of GEDANKEN, would be to permit certain lambda 

expressions to be given an OPEN attribute. 

This raises the question of whether a compiler could 

determine automatically when a designator of a lambda- 

defined function should be replaced by a copy of the func- 

tion body. One might conjecture that such an expansion 

could be performed for any function which was defined by 

a nonrecursive declaration. Unfortunately, this conjecture 

is disproved by the existence of a nonrecursive fixed-point 

function: 

Y IS xG (U IS xV G(xX (V V) X); U U); 

which can be used to convert any simply recursive function 

(i.e. a function which calls itself directly but not indirectly 

via other functions) into an equivalent nonrecursive func- 

tion [18]. 

Thus suppose a recursive function F is defined by F 

ISR b, where F is the only identifier which occurs free in b. 

Let F1 be the nonrecursive function defined by F1 IS XF 

(b). Then the function (Y F1) can be shown to be equi- 

valent to F, with the same domain of termination. More- 

over, the expansion of a function designator such as (Y 

F1) X by repeated substitution of the definitions of Y and 

F1 will never terminate. 

(3) Storage Allocation. A serious drawback of the 

principle of completeness is the elimination of any run- 

time stack discipline, so that all data storage must be 

recovered by garbage collection. This problem might be 

alleviated by adding language facilities for indicating 

contexts where a stack discipline is applicable. Even with- 

out such facilities, it may be possible to determine by 

program analysis, particularly with appropriate type 

declarations, situations where storage can be recovered 

without garbage collection. 

(4) Side Effects. In the applicative subset of GEDAN- 

KEN, the immediate subexpressions of a function designa- 

tor or a sequence expression can be evaluated in any order, 

or the steps of their evaluation can be intermixed, without 

affecting the result or termination of any program. This 

property, which is obviously desirable for code optimiza- 

tion or multiprocessing, is destroyed by the introduction 

of assignment, since subexpressions can execute interfering 

side effects. 

The situation is exacerbated by the introduction of 

label values, since then the order of evaluation can affect 

the number of times a subexpression is executed. The 

program 

( X I S R E F 0 ; ( X : = I N C X ,  GOTOL); L: VALX) 

produces one with left-to-right evaluation of the sequence 

expression, but produces zero with right-to-left evaluation. 

Label-valued references lead to more paradoxical pro- 

grams, such as 

(x IS iILEF 0; L IS R.EF 0; M IS ILEF 0; L : = L1; 
(X := INC X, (iV[ := Mi; Mi: GOTO L)); 
LI: L := L2;GOTOM;L2: VALX) 

which produces one with left-to-right evaluation, zero with 

right-to-left evaluation, and possibly two with intermixed 

evaluation. 

This problem is common to a wide variety of languages. 

One either imposes a fixed order of evaulation, as in 

ALGOL 60 or GEDANKEN, or permits a significant class 

of well-formed programs to have indeterminate inter- 

pretations, as in A.~GOL 68 or PL/I. But a more flexible 

approach might be possible, e.g. a limited form of impera- 

tive features which could be added to an applicative lan- 

guage without destroying order-of-evaluation indepen- 

dence. 

(5) Other Label-Value Problems. Label-valued refer- 

ences can easily cause the preservation of data which will 

no longer be accessed by a computation. If L is a label- 

valued reference, then GOTO L will cause execution to 

proceed from the computational state denoted by L. But 

the unchanged state must also be saved in case GOTO L is 

executed again before the value of L is changed. If, in fact, 

such a repeated jump cannot occur, then information 

will be saved unnecessarily unless the programmer goes to 

the trouble of resetting L immediately after the original 

jump. (As an example, the program for linking the co- 

routines COMPILE and ASSEMBLE will preserve the 

states of these routines unnecessarily.) 

Presumably, it would be better to force the programmer 

to extra trouble in order to preserve, rather than discard, 

a reactivated computational state. This might be accom- 

plished by adapting the concept of "process" used in 

simulation languages, and providing a basic function for 

copying processes. However, it is not clear how to combine 

the process concept with an ALGoL-like use of label values 

in a clean manner which does not violate the principle of 

completeness. 

A further difficulty is the inability of a label value to 

preserve the values of references (i.e. the memory). In the 

nondeterministic parser described earlier, the restriction 

on the use of references in the function PARSE arises from 

this problem. 

(6) Secondary Storage and File Management. Even with 

open functions and sophisticated code optimization, it 

may be intolerably inefficient to impose a purely functional 

approach on all data structures. But the functional ap- 

proach still holds considerable promise for the treatment of 

large structures which require secondary storage. A stated, 

but usually unmet goal of most data management systems 

is the complete separation of the logical properties of a file 

from its physical representation. A natural approach to 

this goal would be to equate a logical file with a collection 

of functions for accessing the file, and to permit these 

functions to be implicit. 
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S. CRESPI-REGHIZZI* AND R. MORPURGO 

Politecnico di Milano,  t Mi lan ,  I ta ly  

A language for the representation of graphs is described, and 

the formulation of graph operations such as node and/or  link 

deletion or insertion, union, intersection, comparison, and tra- 

versal of graphs is given. 

Graphs are represented by linked lists. The language is 

syntactically defined as an extension to ALGOL 60, and it is 

translated into ALGOL by means of a syntax-driven compiler. 

Application areas for this language are operation research, 

network problems, control theory, traffic problems, etc. 
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I n t r o d u c t i o n  

Graphs  are an impor tan t  tool in applied mathemat ics .  

Their  use in engineering is f requent  in such areas as auto-  

mat ic  control,  electric networks,  pr inted circuits design, 

etc. 

Even  greater  is the  impor tance  of graphs in operat ion 

research, where m a n y  impor t an t  problems can be modeled 

and solved b y  means of graphs. A large number  of these 

problems are discussed by  K a u f m a n n  [1] and include t rans-  

por ta t ion,  distribution, and traffic problems. Still o ther  

areas, like epidemiology and linguistics, f requent ly  use 

graphs. 

Graphs,  it is true, could be replaced b y  other  mathe-  

matical  t echn iques - -Boolean  methods  for instance [2]--  

bu t  we th ink  t h a t  graphs have the  impor t an t  advan tage  of 

making  the  solution of the  problem more visual and more  

intuitive. 

Therefore  it was felt t h a t  a language for handl ing graphs 

would be of enough interest  to  some groups of users to 

war ran t  the  effort involved in its development .  

The  major  goal for this language was t h a t  it should en- 

able the  p rogrammer  to formulate  operat ions on graphs in 
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