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ABSTRACT 

Use is made of the Radon transform on even dimensional 

spaces and Gegenbauer functions of the second kind to obtain 

a general Gegenbauer transform pair. In the two-dimensional 

limit the pair reduces to a Tchebycheff transform pair. 



1. Introduction. 

Gegenbauer polynomials of the first kind appear in a natural way when 

studying the Radon transform of functions which have certain spherical symmetry. 

We shall make use of this property of the Radon transform to obtain a new 

Gegenbauer transform pair. Although the final result does not contain Gegenbauer 

functions of the second kind, these functions are important in the derivation 

and. their use here supplements the informative recent study of these particular 

special functions by Durand [1] and by Durand, Fishbane, and Simmons [2]. 

The work which follows serves a threefold purpose. First, we are able 

to demonstrate an important use of the Radon transform as a tool. Second, 

more insight is obtained regarding the use of Gegenbaue,r functions of the 

~econd kind. Finally, we are able to derive a set of equations which constitute 

a useful Gegenbauer transform pair which has ~ fundamental connection to the 

dimensionality of the space ~n. 

2. The Radon Transform. 

Let x=(x 1 , x2 ,···, x) be a point in ~n (n~2) and let·FE!JO be a 

function of the n real variables xl' x 2 ,···, xn. The properties of the 

space~, which consists of all rapidly decreasing Coo functions on ~n. are 

developed by Schwartz [3]. The reason for working in a space with such nice 

pro·perti es wi 11 be clear when it becomes necessary to make changes in the order 

of integration and to perform repeated integrations by parts. 

Given Fe~ the Radon transform ofF is given by [4], 

(1) f(t,,p) = f F(x) o(p- F,•x) dx , 

n 
where p is real, r, is an arbitrary unit vector in ~n, t,•x = I r,K xK, 

K=1 

-1-



o is the Dirac delta function, dx =dx dx ···dx 1 2 n ' and the integral is 

over the entire space. It is important to observe that the symmetry condition 

(2) f(~,-p) = f(-~.p) 

follows directly from the definition (1). 

Following the initial work by Radon [5], many of the technical properties 

of the Radon transform were worked out by several authors [4, 6-10]. Among 

other things these authors develop a formal expression for inversion of the 

transform, valid for functions in tp, and it turns out that the inversion 

formula for even n is considerably more complicated than the formula for odd 

n. There is a Hilbert transform associated with the even case which remains 

unevaluated for the most general functions. Our concern here is with this 

ev~n n case exclusively and involves defining F in such a fashion that it is 

possible to perform the Hilbert transform. 

3. Decomposition of F 

We consider those functions F which may be decomposed either as 

or as a linear combination of terms of this form. Here, n 
X EIR ' r= lxl 

x = x/r , and the doubly subscripted s£m(x) is a real spherical (or surface) 

harmonic [11,12] of degree ~which comes from an orthonormal set with N(n,~) 

members. That is, members of the set {S£
1
(x), s£

2
(x), ••• , stN(n,l)(x)} 

satisfy 

where dX is understood to be the surface element in hyperspherical polar 

i 
~. 
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; ~ 

coordinates, and f designates an integral over the unit :sphere .. A very n . . .. 

useful property of the stm(x) is that they satisfy the symmetry condition 

(5) s"m(-x).= (-1)£ s (~) , 9.m 

Further properties, including an explicit expression for · N(n,t), can be 

found in Hochstadt [12]. 

4. Radon Transform of the Decomposed Function 

When the Radon transform (1) is applied to (3) the result is 

Without loss of generality we may assume that p?: 0 since one may always 

calculate f(E;,-p) from (2). If we convert (6) to spherical coordinates 
'· ~·. 

(dx-+ Y'n- 1 drdX) and observe that o(p- Y'l;•x) = o(~- r)/ li;·xl for ·purposes 
I; •X . 

of doing the r integration we obtain 

(7) f (E;,p) 

Application of the Hecke-Funk theorem [12] yields 

.'. (8)" f (E;,p) 

>' l. 

where C~(t) is a Gegenbauer polynomial of thefirst._kind, wn is the 

surface area of a unit sphere in IRn, and v=~(n-2). 

-3-
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may be written in terms of Gamma functions, 

(9) (4'n)v f(R-+1) f(v) 
r(t+2v) 

Equation (8) may be converted to the desired form by making the change 

of variables r=p/t , 

It will be especially useful to write this equation as 

where 

(12) ( ) Mv Joo 2v G ( ) ·cV(£) [1- (E.r)2]v-~ dr. gR,p.=.R,p1' R,1' R,1'· 

The symmetry conditions on fand sR-m yield the,defining equation for gR-(-p), 

(13) 

5. The Inversion 

~~e now turn our attention to inverting the Radon transform when F is given 

by (J) andf is given by (11). The inversion may be written as an integration 

over a unit sphere in ~ space [9] 

(14) 
. * 

F(x) = J f (~,~·x) d~ , 
Q 
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where 

(15) * ' -f (~.~·x) = T f(~,p) . 

(Keep in mind that ~ is already a unit vector. We have used the notation 

~ in (14) to emphasize that the integration is over the unit sphere.) For 

even n the operator T is defined by -

'(16) * ' f (t 't) 
. (-1)nl2 ·a n-1 · 
2(2n)n-1 H{(ap) f(~,p)} 

and H designates the Hilbert transform 

(17} H{q (p)} 
1 J.oo q(p) d 

=- p-t p 
7f -00 

·'-'' 

After inserting the decompositions for F and f in (14) we have 

(18) 

.. · :where the second step was obtained by applying the .H~cke-Funk ~heorem again [12]. 

By inspection of (18) it is clear that ·· 

' (19) 

* * and gt must be calculated from gt = T gt . 
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6. Improvement on the Inversion Formula 

For even n (2,4,6,•••) and v = ~(n- 2) it is possible to modify (19) 

considerably by actually doing the t integration. Explicitly, g;(rt) is 

given by 

(20) 
* (-1)n/2 oo 

gR, (rt) = ~ -oof g~n-1} (p) (p- rt)-1 dp 
2(2rr)n- 1 x-

n-1 

where g ~n-1) (p) = [~PJ gQ, (p) If (20) is substituted into (19) and 

the order of integration reversed, the equation for GQ,(r) becomes 

(21) 

where 

(22) 
1 \) p -1 2 \)-~ 

= f c R, ( t) ( 'F - t) ( 1 - t ) dt . 
-1 

At this point it is clearly desirable to require that r>O. The r=O 

case may be done separately starting with (19). The integration in (22) may 
. l o r oo 

be taken over four separate regions, + J + J + J . If we observe that 
- -r o r 

\) p R,+1 \) p 
It(- y;) = (-1) It (P) then by a change of variable p-+ -p over the negative 

p region in (21) it follows that 

(23) 
. (-l)n/2 Mv r 

G n (r) = ...!:.. { f g(n-1} (p) Iv (l:.) dp + r gfn-l) (p) I~(~) dp } • 
x- (2rr)n-1 rrr o Q, Q, r r x- x-

The reason for writing Gt (r) in this form is to enable us to evaluate the 
\) 

It integrals. 
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Notice that in ·(23) the f integral forces -~ s 1 and the f 
o -r 

integral forces ~? 1 . For convenience we momentarily designate 

E.=x if E.< 1 
r r 

'E_ = z if E_> 1 r r 

(Unlike prior usage of x , here x is a real variable rather than a vector.) 

This establishes contact with the u~age of .x and z in the Appendix and in 

[1,2] where the Gegenbauer functions of the second kind Da are discussed. 
A 

From (A-1) and (A-3) we immediately obtain 
... ·• ·l: 

(24) I~ (x) 7T ( 1- x 2) V'""~ D~{x) 

and 

(25) V i7TV V-~ \! 
IQ, (z) = 27T e- (z 2 -1) DQ, (z) • 

These results, combined with (23) give 

(26) 
Mv /2 r ( 1) v-k 

Q, {(-1)n f g n- (p) D~(x) (1-.x2 ) "dp 
(27T)n-1 r o Q, , "" 

-2 T gin- 1) (p) D~ (z) .· (z 2 - 1) v-~ dp } •.. 
r 

By use of (A-4) and (A-14) the two i~tegrals may be com~ined,.and after 

some simplification we find 
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(27) G JL (r) 
= f(JL + 1) 2-v rr-v-

1 J00
g(n-1} (p) v P 

f(JL + 2v) r 
0 

JL EJL+2v-1 (-;;) dp 

00 

The f integral can be shown to vanish. To see this, first 
0 

perform n -1 integrations by parts to obtain an integral of the form 

where QJL_
2

(z) is a polynomial of degree R.- 2, and QJL_
2

(-z) = (-1)!1. QJL_
2

(z). 

(The integrated parts always vanish by symmetry.) Next, make use of (12) to 

replace gJL(p). This leads to an integral of the form 

A change in the order of integration over the indicated region of the pt 

plane leads to 

Now the p integration can be shown to vanish. If the variable change p=yt 

is made, and the symmetry of the functions in the integrand taken into account 

the p integral becomes (aside from a constant factor) 

;,:,8-



Since QR-_
2 

is a polynomial of degree ~- 2 in y it follows by orthogonality 

that this integral vanishes. 

Hence we finally have the desired result, which consists of the Gegenbauer 

transform pair, 

(28) = - f(~+l) f(v) 

2 1Tv+l f(~ + 2v) 1' 

and 

(29) 

where v=~(n-2) and the dimensionality n is even (n=2, 4, 6, ••• ). 

7. Limiting Case n = 2 

It is especially interesting to examine the n = 2 1 imiting case 

of th~ above transform pair since that corresponds to the Radon transform 

on a plane. The result is straightforward if one first multiplies by v/v 

and then lets v+O. The result is the Tchebycheff transform pa.Jr [13] 

(30) 

and 

(31) 
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APPENDIX 

In this appendix we collect several formulas which are needed in the 

preceding work. Some of these are included for convenience and may be 

found in [2]. Others, notably those involving the Tchebycheff functions, 

do not seem to be available in the standard sources. Our notation and 

conventions conform to that used by Durand, Fishbane, and Simmons [2], 

since their treatment of the Gegenbauer functions is the best available 

source for the type of results needed here. These authors derive many 

properties of the Gegenbauer functions of the first kind C~(z) and second 

kind D~(z) for general values of a, A, and z. Our concern here is 

primarily with the restricted case where both a and A are nonnegative 

integers (designated by writing a=v and A=~) and z is real. We 

use x (in place of z) to emphasize that the argument lies on the interval 

[-1,+1] or [0,1] and z whenever the argument is complex or greater than 

unity. 

For integral A and Rea> -~ , Da and ca are related by [2] 
A A 

(A-1) D~(z) = e'-Tia (z2 -1)~-a in /c~(t) (z-t)- 1 (1-t2 )a-~ dt 
-1 

To obtain D~(x) we make use of the general prescription 

(A-2) 

Lim 
£+0+ 

(x+iE) 

(x-i E) 

-10-



This yields 

(A-3) 

For integral a=v the following relation holds 

(A-4) 

where E~:2v_ 1 (z) is a polynomial of degree ~+2v-1. These poly~omials 

can be expressed in terms of associated Legendre functions of the first kind, 

Explicitly, in terms of Tchebycheff polynomials of the first kind T~. 

and second kind u~ , (The argument may be either z or x.) 

(A-6) 

In 

(A-7) 

0 
E~-1 

1 
E£+1 

2 
E£+3 

general , · 

Ev 
£+2v-1 

1 
I u~-1 

T£+1 

~I (Q,+ 1) T £+3 - (£+3) T£+1] 

v-1 k [v-k1] 21-v L (-1) 

.k=O 

(~+v-k-1)! (~+2v-1)! T 
~! (~+2v-k-1)! £+2v-2k-1 

where we have used standard symbols for factorals and binomial coefficients. 

,, 
' 
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The E •s satisfy the recursion relation 

(A-8) 
\) 

EH2v-1 (z) 
v-1 v-1 

(i+l) z EH2v_ 2 (z) - (i+2v-2) EH2v_3 (z) 

and the symmetry property 

(A-9) 
\) 

Et+2v-1(-z) 
£+1 v 

(-l) Et+2v-1(z) 

Explicit results for the functions D~ may be written conveniently 

in terms of the function vt (z) where 

(A-10) 

with recursion relation 

(A-ll) 

We have 

(A-12) 

In general , 

(A-13) 

D nO (z) = Lim ]:_ Da. (z) 
J'v a.-+o a t 

1 -~ 
Dt (z) = -~(z 2 -1) 2 VH1 (z) 

\) 

Dt (z) 

~-\) 
= -(z2 -1) 

2\l-1 
2 f(v) 

v-1 
l (-1)k 

k=O 

-12 

(~+v-k-1)! (~+2v-1)! 

~! (~+2v-k-1)! VH2v-2k-1 (z) • 



By application of (A-2) and (A-4), 

(A-14} 
v+1 ~-\1 

(- 7) · ( 1 - x 2 ) 

2v- 1 f(v) 

\I 

E H2v-1 (:x;) 

The Tchebycheff expansion for the c~ is given by 

0 L' 1 a en (z) = 1 ffi - c (z) 
"' a-+0 a J.. 

(A-15) 

In general, 

(A-16) 
(z2-1)1-v v-1 k - - I <-I) 
4v- 1 f (v) k=O 

(£+v-k-1)! (£+2v-1)! 
£! (£+2v-k-1)! UJ..+2v-2k-2(z). 

These results also hold for z -+x. 

For future reference, we examine another form for D~ which is 

especially valuable for large values of £ or z. We first define 
!.< 

r; = (z 2 - 1) 2 and observe that 

-1 2 2 s (z + r;) (z + d = z - l; and (z + r;) - 1 

In terms of these variables we have 

0 1 -J.. 
DJ.. (z) = I (z + r;) 

(A-17) 1 
DJ.. (z) 

-1 -J..-1 
2l; (z + z.;) 

2 £ -J..-2 z + 2l; } DJ.. (z) - (z + l;) { 1 + 
47;2 £r; 

-13-
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Higher terms have the form 

(A-18) v 
D

2 
(z) 

( - 1)v Q,v-1 (z + r)"""£-v ( 
= _ 2 { 1 + v v-1) . z + 21; + 0 (t-2) } • 

2v r(v) l;v 2Q, l; 

Or, in genera 1 , 

(A-19) 
v (-1)v Q,v-1 (z + z;;ft-v 1-v v-1 k 

D (z) = - (.2Q,i;) \' (-1) 
£ 2v f(v) sv k~O [

v-1] · (Uk)! (Q,+2v-1 )! ( +z;;) v-1-2k 
k Q,! (Q.+v+k)! z • 
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