
 Open access Proceedings Article DOI:10.1109/CLUSTER.2018.00049

GekkoFS - A Temporary Distributed File System for HPC Applications — Source link

Marc-André Vef, Nafiseh Moti, Tim SuB, Tommaso Tocci ...+4 more authors

Institutions: University of Mainz, Barcelona Supercomputing Center, Polytechnic University of Catalonia

Published on: 01 Sep 2018 - International Conference on Cluster Computing

Topics: File system, Distributed File System, POSIX and Server

Related papers:

 An ephemeral burst-buffer file system for scientific applications

 On the role of burst buffers in leadership-class storage systems

 GPFS: A Shared-Disk File System for Large Computing Clusters

 File Creation Strategies in a Distributed Metadata File System

 HybridFS — A High Performance and Balanced File System Framework with Multiple Distributed File Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/gekkofs-a-temporary-distributed-file-system-for-hpc-
r8lx0qohak

https://typeset.io/
https://www.doi.org/10.1109/CLUSTER.2018.00049
https://typeset.io/papers/gekkofs-a-temporary-distributed-file-system-for-hpc-r8lx0qohak
https://typeset.io/authors/marc-andre-vef-7fmtqnx1yo
https://typeset.io/authors/nafiseh-moti-4al3zcpapy
https://typeset.io/authors/tim-sub-t1bi5yt4sj
https://typeset.io/authors/tommaso-tocci-3a9x87lajy
https://typeset.io/institutions/university-of-mainz-26n51ku2
https://typeset.io/institutions/barcelona-supercomputing-center-3b1j9qz9
https://typeset.io/institutions/polytechnic-university-of-catalonia-2ol7espr
https://typeset.io/conferences/international-conference-on-cluster-computing-3aarziaw
https://typeset.io/topics/file-system-3l1fwwnc
https://typeset.io/topics/distributed-file-system-22pm9s9i
https://typeset.io/topics/posix-1cumqtn8
https://typeset.io/topics/server-10sn6dgt
https://typeset.io/papers/an-ephemeral-burst-buffer-file-system-for-scientific-4teyue8jhl
https://typeset.io/papers/on-the-role-of-burst-buffers-in-leadership-class-storage-18x1mhhx9g
https://typeset.io/papers/gpfs-a-shared-disk-file-system-for-large-computing-clusters-35v610gyrf
https://typeset.io/papers/file-creation-strategies-in-a-distributed-metadata-file-3ce154ewqx
https://typeset.io/papers/hybridfs-a-high-performance-and-balanced-file-system-5b4tqvjmgf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/gekkofs-a-temporary-distributed-file-system-for-hpc-r8lx0qohak
https://twitter.com/intent/tweet?text=GekkoFS%20-%20A%20Temporary%20Distributed%20File%20System%20for%20HPC%20Applications&url=https://typeset.io/papers/gekkofs-a-temporary-distributed-file-system-for-hpc-r8lx0qohak
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/gekkofs-a-temporary-distributed-file-system-for-hpc-r8lx0qohak
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/gekkofs-a-temporary-distributed-file-system-for-hpc-r8lx0qohak
https://typeset.io/papers/gekkofs-a-temporary-distributed-file-system-for-hpc-r8lx0qohak

GekkoFS – A temporary distributed file system for

HPC applications

Short paper

Marc-André Vef∗, Nafiseh Moti∗, Tim Süß∗, Tommaso Tocci†,

Ramon Nou†, Alberto Miranda†, Toni Cortes†§, André Brinkmann∗

∗ Johannes Gutenberg University Mainz, Mainz, Germany
† Barcelona Supercomputing Center, Barcelona, Spain § Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract—We present GekkoFS, a temporary, highly-scalable
burst buffer file system which has been specifically optimized for
new access patterns of data-intensive High-Performance Comput-
ing (HPC) applications. The file system provides relaxed POSIX
semantics, only offering features which are actually required by
most (not all) applications. It is able to provide scalable I/O
performance and reaches millions of metadata operations already
for a small number of nodes, significantly outperforming the
capabilities of general-purpose parallel file systems.

Index Terms—Distributed File Systems, HPC, Burst Buffers

I. INTRODUCTION

High-Performance Computing (HPC) applications are sig-

nificantly changing. Traditional HPC applications have been

compute-bound, large-scale simulations, while today’s HPC

community is additionally moving towards the generation, pro-

cessing, and analysis of massive amounts of experimental data.

This trend, known as data-driven science, is affecting many

different scientific fields, some of which have made significant

progress tackling previously unaddressable challenges thanks

to newly developed techniques [15], [30].

Most data-driven workloads are based on new algorithms

and data structures like graph databases which impose new

requirements on HPC file systems [22], [39]. They include,

e.g., large numbers of metadata operations, data synchroniza-

tion, non-contiguous and random access patterns, and small

I/O requests [9], [22]. Such operations differ significantly

from past workloads which mostly performed sequential I/O

operations on large files. They do not only slow down data-

driven applications themselves but can also heavily disrupt

other applications that are concurrently accessing the shared

storage system [11], [35]. Consequently, traditional parallel file

systems (PFS) cannot handle these workloads efficiently and

data-driven applications suffer from prolonged I/O latencies,

reduced throughput, and long waiting times.

Software-based approaches, e.g., application modifications

or middleware and high-level libraries [12], [19], try to support

data-driven applications to align the new access patterns to the

capabilities of the underlying PFS. Yet, adapting such software

is typically time-consuming, difficult to couple with big data

and machine learning libraries, or sometimes (based on the

underlying algorithms) just impossible.

Hardware-based approaches move from magnetic disks, the

main backend technology for PFSs, to NAND-based solid-

state drives (SSDs). Nowadays, many supercomputers deploy

SSDs which can be used as dedicated burst buffers [18]

or as node-local burst buffers. To achieve high metadata

performance, they can be deployed in combination with a

dynamic burst buffer file system [3], [40].

Generally, burst buffer file systems increase performance

compared to a PFS without modifying an application. There-

fore, they typically support POSIX which provides the stan-

dard semantics accepted by most application developers. Nev-

ertheless, enforcing POSIX can severely reduce a PFS’ peak

performance [38]. Further, many POSIX features are not

required for most scientific applications [17], especially if they

can exclusively access the file system. Similar argumentations

hold for other advanced features like fault tolerance or security.

In this work, we present GekkoFS, a temporarily deployed,

highly-scalable distributed file system for HPC applications

which aims to accelerate I/O operations of common HPC

workloads that are challenging for modern PFSs. GekkoFS

pools together fast node-local storage resources and provides

a global namespace accessible by all participating nodes. It

relaxes POSIX by removing some of the semantics that most

impair I/O performance in a distributed context and takes

previous studies on the behavior of HPC applications into

account [17] to optimize the most used file system operations.

For load-balancing, all data and metadata are distributed

across all nodes using the HPC RPC framework Mercury [34].

The file system runs in user-space and can be easily deployed

in under 20 seconds on a 512 node cluster by any user.

Therefore, it can be used in a number of temporary scenarios,

e.g., during the lifetime of a compute job or in longer-term use

cases, e.g., campaigns. We demonstrate how our lightweight,

yet highly distributed file system GekkoFS reaches scalable

data and metadata performance with tens of millions of

metadata operations per second on a 512 node cluster while

still providing strong consistency for file system operations

that target a specific file or directory.

II. RELATED WORK

General-purpose PFSs like GPFS, Lustre, BeeGFS, or PVFS

[4], [14], [27], [31], [32] provide long-term storage which is

1

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI 10.1109/CLUSTER.2018.00049

mostly based on magnetic disks. GekkoFS instead builds a

short-term, separate namespace from fast node-local SSDs that

is only temporarily accessible during the runtime of a job or

a campaign. As such, GekkoFS can be categorized into the

class of node-local burst buffer file systems, while remote-

shared burst buffer file systems use dedicated, centralized I/O

nodes [40], e.g., DDN’s IME [1].

In general, node-local burst buffers are fast, intermediate

storage systems that aim to reduce the PFS’ load and the

applications’ I/O overhead [18]. They are typically collocated

with nodes running a compute job, but they can also be depen-

dent on the backend PFS [3] or in some cases even directly

managed by it [24]. BurstFS [40], perhaps the most related

work to ours, is a standalone burst buffer file system, but,

unlike GekkoFS, is limited to write data locally. BeeOND [14]

can create a job-temporal file system on a number of nodes

similar to GekkoFS. However, in contrast to our file system,

it is POSIX compliant and our measurements show a much

higher metadata throughput than offered by BeeOND [36].

The management of inodes and related directory blocks are

the main scalability limitations of file systems in a distributed

environment. Typically, general-purpose PFSs distribute data

across all available storage targets. As this technique works

well for data, it does not achieve the same throughput when

handling metadata [5], [28], although the file system commu-

nity presented various techniques to tackle this challenge [3],

[13], [25], [26], [41], [42]. The performance limitation can

be attributed to the sequentialization enforced by underlying

POSIX semantics which is particularly degrading throughput

when a huge number of files is created in a single directory

from multiple processes. This workload, common to HPC

environments [3], [24], [25], [37], can become an even bigger

challenge for upcoming data-science applications. GekkoFS

is built on a new technique to handle directories and replaces

directory entries by objects, stored within a strongly consistent

key-value store which helps to achieve tens of millions of

metadata operations for billions of files.

III. DESIGN AND IMPLEMENTATION

GekkoFS offers a user-space file system for the lifetime of a

particular use case, e.g., within the context of an HPC job. The

file system uses the available local storage of compute nodes

to distribute data and metadata and combines their node-local

storage into a single global namespace.

The file system’s main goal focuses on scalability and

consistency. It should therefore scale to an arbitrary number

of nodes to benefit from current and future storage and

network technologies. Further, GekkoFS should provide the

same consistency as POSIX for file system operations that

access a specific data file. However, consistency of directory

operations, for instance, can be relaxed. Finally, GekkoFS

should be hardware independent to efficiently use today’s

network technologies as well as any modern and future storage

hardware that is accessible by the user.

File Map

GekkoFS client
library

Node-local FS

Margo
RPC

Server Margo IPC
Server

RocksDB

GekkoFS daemon

Application

RPCMargo
RPC

Client

Margo
IPC

Client

Margo
RPC

Server Margo IPC
Server

RocksDB

GekkoFS daemon

Node-local FS
Node

RDMA

Fig. 1: GekkoFS architecture

A. POSIX relaxation

Similarly to PVFS [6] and OrangeFS [21], GekkoFS does

not provide complex global locking mechanisms. In this sense,

applications should be responsible to ensure that no conflicts

occur, in particular, w.r.t. overlapping file regions. However,

the lack of distributed locking has consequences for operations

where the number of affected file system objects is unknown a

priori, such as readdir() called by the ls -l command.

In these indirect file system operations, GekkoFS does not

guarantee to return the current state of the directory and

follows the eventual-consistency model. Furthermore, each file

system operation is synchronous without any form of caching

to reduce file system complexity and to allow for an evaluation

of its raw performance capabilities.

GekkoFS does not support move or rename operations or

linking functionality as HPC application studies have shown

that these features are rarely or not used at all during the exe-

cution of a parallel job [17]. Finally, security management in

the form of access permissions is not maintained by GekkoFS

since it already implicitly follows the security protocols of the

node-local file system.

B. Architecture

GekkoFS’ architecture (see Figure 1) consists of two main

components: a client library and a server process. An ap-

plication that uses GekkoFS must first preload the client

interposition library which intercepts all file system operations

and forwards them to a server (GekkoFS daemon), if neces-

sary. The GekkoFS daemon, which runs on each file system

node, receives forwarded file system operations from clients

and processes them independently, sending a response when

finished. In the following paragraphs, we describe the client

and daemon in more detail.

a) GekkoFS client: The client consists of three compo-

nents: 1) An interception interface that catches relevant calls

to GekkoFS and forwards unrelated calls to the node-local

file system; 2) a file map that manages the file descriptors

of open files and directories, independently of the kernel;

and 3) an RPC-based communication layer that forwards file

system requests to local/remote GekkoFS daemons.

Each file system operation is forwarded via an RPC message

to a specific daemon (determined by hashing of the file’s

path) where it is directly executed. In other words, GekkoFS

2

uses a pseudo-random distribution to spread data and metadata

across all nodes, also known as wide-striping. Because each

client is able to independently resolve the responsible node

for a file system operation, GekkoFS does not require central

data structures that keep track of where metadata or data

is located. To achieve a balanced data distribution for large

files, data requests are split into equally sized chunks before

they are distributed across file system nodes. If supported by

the underlying network fabric protocol, the client exposes the

relevant chunk memory region to the daemon, accessed via

remote-direct-memory-access (RDMA).

b) GekkoFS daemon: GekkoFS daemons consist of three

parts: 1) A key-value store (KV store) used for storing meta-

data; 2) an I/O persistence layer that reads/writes data from/to

the underlying local storage system (one file per chunk); and

3) an RPC-based communication layer that accepts local and

remote connections to handle file system operations.

Each daemon operates a single local RocksDB KV

store [10]. RocksDB is optimized for NAND storage technolo-

gies with low latencies and fits GekkoFS’ needs as SSDs are

primarily used as node-local storage in today’s HPC clusters.

For the communication layer, we leverage on the Mercury

RPC framework [34]. It allows GekkoFS to be network-

independent and to efficiently transfer large data within the

file system. Within GekkoFS, Mercury is interfaced indirectly

through the Margo library which provides Argobots-aware

wrappers to Mercury’s API with the goal to provide a sim-

ple multi-threaded execution model [7], [33]. Using Margo

allows GekkoFS daemons to minimize resource consumption

of Margo’s progress threads and handlers which accept and

handle RPC requests [7].

IV. EVALUATION

We evaluated the performance of GekkoFS based on various

unmodified microbenchmarks which catch access patterns that

are common in HPC applications. Our experiments were

conducted on the MOGON II supercomputer, located at the

Johannes Gutenberg University Mainz in Germany. All ex-

periments were performed on Intel 2630v4 Intel Broadwell

processors (two sockets each). The main memory capacity

inside the nodes ranges from 64 GiB up to 512 GiB of

memory. MOGON II uses 100 Gbit/s Intel Omni-Path to

establish a fat-tree network between all compute nodes. In

addition, each node provides a data center Intel SATA SSD

DC S3700 Series as scratch-space (XFS formatted) usable

within a compute job. We used these SSDs for storing data

and metadata of GekkoFS which uses an internal chunk size

of 512 KiB.

Before each experiment iteration, GekkoFS daemons are

restarted (requiring less than 20 seconds for 512 nodes), all

SSD contents are removed, and kernel buffer, inode, and dentry

caches are flushed. The GekkoFS daemon and the application

under test are pinned to separate processor sockets to ensure

that file system and application do not interfere with each

other.

A. Metadata performance

We simulated common metadata intensive HPC workloads

using the unmodified mdtest microbenchmark [20] to evaluate

GekkoFS’ metadata performance and compare it against a

Lustre parallel file system. Although GekkoFS and Lustre

have different goals, we point out the performances that can

be gained by using GekkoFS as a burst buffer file system.

In our experiments, mdtest performs create, stat, and remove

operations in parallel in a single directory – an important

workload in many HPC applications and among the most

difficult workloads for a general-purpose PFS [37].

Each operation on GekkoFS was performed using 100,000

zero-byte files per process (16 processes per node). From

the user application’s perspective, all created files are stored

within a single directory. However, due to GekkoFS’ internally

kept flat namespace, there is conceptually no difference in

which directory files are created. This is in contrast to a

traditional PFS that may perform better if the workload is

distributed among many directories instead of in a single

directory. Figure 2 compares GekkoFS with Lustre in three

scenarios with up to 512 nodes: file creation, file stat, and

file removal. The y-axis depicts the corresponding operations

per second that were achieved for a particular workload on a

logarithmic scale. Each experiment was run at least five times

with each data point representing the mean of all iterations.

GekkoFS’ workload scaled with 100,000 files per process,

while Lustre’s workload was fixed to four million files for

all experiments. We fixed the number of files for Lustre’s

metadata experiments because Lustre was otherwise detecting

hanging nodes when scaling to too many files.

Lustre experiments were run in two configurations: All

processes operated in a single directory (single dir) or

each process worked in its own directory (unique dir).

Moreover, Lustre’s metadata performance was evaluated while

the system was accessible by other applications as well.

As seen in Figure 2, GekkoFS outperforms Lustre by a

large margin in all scenarios and shows close to linear scaling,

regardless of whether Lustre processes operated in a single

or in an isolated directory. Compared to Lustre, GekkoFS

achieved around 46 million creates/s (~1,405x), 44 million

stats/s (~359x), and 22 million removes/s (~453x) at 512

nodes. The standard deviation was less than 3.5% which was

computed as the percentage of the mean.

B. Data performance

We used the unmodified IOR [20] microbenchmark to

evaluate GekkoFS’ I/O performance for sequential and random

access patterns in two scenarios: Each process is accessing its

own file (file-per-process) and all processes access a single file

(shared file). We used 8 KiB, 64 KiB, 1 MiB, and 64 MiB

transfer sizes to assess the performances for many small I/O

accesses and for few large I/O requests. We ran 16 processes

on each client, each process writing and reading 4 GiB in total.

GekkoFS data performance is not compared with the Lustre

scratch file system as the peak performance of the used Lustre

partition, around 12 GiB/s, is already reached for ≤ 10 nodes

3

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

103

104

105

106

107

108
Op

er
at

io
ns

 /
se

co
nd

Lustre single dir
Lustre unique dir
GekkoFS single/unique dir

(a) Create throughput

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

103

104

105

106

107

108

(b) Stat throughput

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

103

104

105

106

107

108

(c) Remove throughput

Fig. 2: GekkoFS’ file create, stat, and remove throughput for an increasing number of nodes compared to a Lustre file system.

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

102

103

104

105

M
iB

 /
se

co
nd

8k
64k
1m
64m
SSD peak perf.

(a) Write throughput

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

102

103

104

105

(b) Read throughput

Fig. 3: GekkoFS’ sequential throughput for each process operating on its own file compared to the plain SSD peak throughput.

for sequential I/O patterns. Moreover, Lustre has shown to

scale linearly in larger deployments with more OSSs and OSTs

being available [23].

Figure 3 shows GekkoFS’ sequential I/O throughput in

MiB/s, representing the mean of at least five iterations, for

an increasing number of nodes for different transfer sizes.

In addition, each data point is compared to the peak per-

formance that all aggregated SSDs could deliver for a given

node configuration, visualized as a white rectangle, indicating

GekkoFS’ SSD usage efficiency. In general, every result

demonstrates GekkoFS’ close to linear scalability, achieving

about 141 GiB/s (~80% of the aggregated SSD peak band-

width) and 204 GiB/s (~70% of the aggregated SSD peak

bandwidth) for write and read operations for a transfer size of

64 MiB for 512 nodes. At 512 nodes, this translates to more

than 13 million write IOPS and more than 22 million read

IOPS, while the average latency can be bounded by at most

700 µs for file system operations with a transfer size of 8 KiB.

For the file-per-process cases, sequential and random access

I/O throughput are similar for transfer sizes larger than the

file system’s chunk size. This is due to transfer sizes larger

than the chunk size internally access whole chunk files while

smaller transfer sizes access one chunk at a random offset.

Consequently, random accesses for large transfer sizes are

conceptually the same as sequential accesses. For smaller

transfer sizes, e.g., 8 KiB, random write and read throughput

decreased by approximately 33% and 60%, respectively, for

512 nodes owing to the resulting random access to positions

within the chunks.

For the shared file cases, a drawback of GekkoFS’ syn-

chronous and cache-less design becomes visible. No more

than approximately 150K write operations per second were

achieved. This was due to network contention on the daemon

which maintains the shared file’s metadata whose size needs to

be constantly updated. To overcome this limitation, we added

a rudimentary client cache to locally buffer size updates of a

number of write operations before they are send to the node

that manages the file’s metadata. As a result, shared file I/O

throughput for sequential and random access were similar to

file-per-process performances since chunk management on the

daemon is then conceptually indifferent in both cases.

V. CONCLUSION AND ACKNOWLEDGEMENTS

We have introduced and evaluated GekkoFS, a new burst

buffer file system for HPC applications with relaxed POSIX-

semantics, allowing it to achieve millions of metadata opera-

tions even for a small number of nodes and close to linear scal-

ability in various data and metadata use cases. Next, we plan

to extend GekkoFS in three directions: Investigate GekkoFS’

with various chunk sizes, evaluate benefits of caching, and

explore different data distribution patterns.

The work has been funded by the German Research

Foundation (DFG) through the ADA-FS project as part

of the Priority Programme 1648. It is also supported by

the Spanish Ministry of Science and Innovation (TIN2015–

65316), the Generalitat de Catalunya (2014–SGR–1051), as

well as the European Union’s Horizon 2020 Research and

Innovation Programme (NEXTGenIO, 671951) and the Eu-

ropean Comission’s BigStorage project (H2020-MSCA-ITN-

2014-642963). This research was conducted using the super-

computer MOGON II and services offered by the Johannes

Gutenberg University Mainz.

4

REFERENCES

[1] Infinite Memory Engine. https://www.ddn.com/products/
ime-flash-native-data-cache.

[2] The Open Group Base Specifications Issue 7(IEEE Std 1003.1-2008).
http://pubs.opengroup.org/onlinepubs/9699919799/.

[3] J. Bent, G. A. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint filesystem for
parallel applications,” in Proceedings of the ACM/IEEE Conference on

High Performance Computing (SC), November 14-20, Portland, Oregon,

USA, 2009.

[4] P. J. Braam and P. Schwan, “Lustre: The intergalactic file system,” in
Ottawa Linux Symposium, 2002, p. 50.

[5] P. Carns, Y. Yao, K. Harms, R. Latham, R. Ross, and K. Antypas,
“Production i/o characterization on the cray xe6,” in Proceedings of

the Cray User Group meeting, vol. 2013, 2013.

[6] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, “PVFS: A
parallel file system for linux clusters,” in 4th Annual Linux Showcase &

Conference 2000, Atlanta, Georgia, USA, October 10-14, 2000, 2000.

[7] P. H. Carns, J. Jenkins, C. D. Cranor, S. Atchley, S. Seo, S. Snyder,
and R. B. Ross, “Enabling NVM for data-intensive scientific services,”
in 4th Workshop on Interactions of NVM/Flash with Operating Systems

and Workloads, INFLOW@OSDI 2016, Savannah, GA, USA, November

1, 2016., 2016.

[8] A. Choudhary, W.-k. Liao, K. Gao, A. Nisar, R. Ross, R. Thakur,
and R. Latham, “Scalable i/o and analytics,” in Journal of Physics:

Conference Series, vol. 180, no. 1, 2009, p. 012048.

[9] P. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed, “Input/output
characteristics of scalable parallel applications,” in Proceedings Super-

computing ’95, San Diego, CA, USA, December 4-8, 1995, 1995, p. 59.

[10] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum, “Optimizing space amplification in rocksdb,” in CIDR 2017,

8th Biennial Conference on Innovative Data Systems Research, Chami-

nade, CA, USA, January 8-11, 2017, Online Proceedings, 2017.

[11] M. Dorier, G. Antoniu, R. B. Ross, D. Kimpe, and S. Ibrahim, “Calciom:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in 2014 IEEE 28th International Parallel and Distributed

Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, 2014, pp.
155–164.

[12] M. Folk, A. Cheng, and K. Yates, “Hdf5: A file format and i/o
library for high performance computing applications,” in Proceedings

of supercomputing, vol. 99, 1999, pp. 5–33.

[13] W. Frings, F. Wolf, and V. Petkov, “Scalable massively parallel I/O to
task-local files,” in Proceedings of the ACM/IEEE Conference on High

Performance Computing (SC), November 14-20, Portland, Oregon, USA,
2009.

[14] F. Herold, S. Breuner, and J. Heichler, “An introduction to
beegfs,” 2014, https://www.beegfs.io/docs/whitepapers/Introduction to
BeeGFS by ThinkParQ.pdf.

[15] T. Hey, S. Tansley, and K. M. Tolle, Eds., The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research, 2009.

[16] R. Latham, R. B. Ross, and R. Thakur, “The impact of file systems
on MPI-IO scalability,” in Recent Advances in Parallel Virtual Machine

and Message Passing Interface, 11th European PVM/MPI Users’ Group

Meeting, Budapest, Hungary, September 19-22, 2004, Proceedings,
2004, pp. 87–96.

[17] P. H. Lensing, T. Cortes, J. Hughes, and A. Brinkmann, “File system
scalability with highly decentralized metadata on independent storage
devices,” in IEEE/ACM 16th International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), Cartagena, Colombia, May 16-19, 2016,
pp. 366–375.

[18] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in leadership-
class storage systems,” in IEEE 28th Symposium on Mass Storage

Systems and Technologies, MSST 2012, April 16-20, 2012, Asilomar

Conference Grounds, Pacific Grove, CA, USA, 2012, pp. 1–11.

[19] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in 6th International Workshop on Challenges of

Large Applications in Distributed Environments, CLADE@HPDC 2008,

Boston, MA, USA, June 23, 2008, 2008, pp. 15–24.

[20] “Mdtest metadata benchmark and ior data benchmark,” 2018, https://
github.com/hpc/ior.

[21] M. Moore, D. Bonnie, B. Ligon, M. Marshall, W. Ligon, N. Mills,
E. Quarles, S. Sampson, S. Yang, and B. Wilson, “Orangefs: Advancing
pvfs,” FAST poster session, 2011.

[22] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best,
“File-access characteristics of parallel scientific workloads,” IEEE Trans.

Parallel Distrib. Syst., vol. 7, no. 10, pp. 1075–1089, 1996.

[23] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai,
F. Wang, Y. K. , J. Rogers, J. James Simmons, and R. Miller, “Olcfs
1 tb/s, next-generation lustre file system,” in Proceedings of Cray User

Group Conference (CUG 2013), 2013.

[24] S. Oral and G. Shah, “Spectrum scale enhancements for
coral. presentation slides at supercomputing’16.” 2016,
http://files.gpfsug.org/presentations/2016/SC16/11 Sarp Oral Gautam
Shah Spectrum Scale Enhancements for CORAL v2.pdf.

[25] S. Patil and G. A. Gibson, “Scale and concurrency of GIGA+: file system
directories with millions of files,” in 9th USENIX Conference on File

and Storage Technologies, San Jose, CA, USA, February 15-17, 2011,
2011, pp. 177–190.

[26] S. Patil, K. Ren, and G. Gibson, “A case for scaling HPC metadata
performance through de-specialization,” in 2012 SC Companion: High

Performance Computing, Networking Storage and Analysis, Salt Lake

City, UT, USA, November 10-16, 2012, 2012, pp. 30–35.

[27] Y. Qian, X. Li, S. Ihara, L. Zeng, J. Kaiser, T. Süß, and A. Brinkmann,
“A configurable rule based classful token bucket filter network request
scheduler for the lustre file system,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis (SC), Denver, CO, USA, November 12 - 17, 2017, pp. 6:1–6:12.

[28] K. Ren, Q. Zheng, S. Patil, and G. A. Gibson, “Indexfs: Scaling file
system metadata performance with stateless caching and bulk insertion,”
in International Conference for High Performance Computing, Network-

ing, Storage and Analysis, SC 2014, New Orleans, LA, USA, November

16-21, 2014, 2014, pp. 237–248.

[29] D. Ritchie and K. Thompson, “The UNIX time-sharing system (reprint),”
Commun. ACM, vol. 26, no. 1, pp. 84–89, 1983.

[30] R. Ross, R. Thakur, and A. Choudhary, “Achievements and challenges
for i/o in computational science,” in Journal of Physics: Conference

Series, vol. 16, no. 1, 2005, p. 501.

[31] R. B. Ross and R. Latham, “PVFS - PVFS: a parallel file system,” in
Proceedings of the ACM/IEEE SC2006 Conference on High Performance

Networking and Computing, November 11-17, 2006, Tampa, FL, USA,
2006, p. 34.

[32] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proceedings of the FAST ’02 Conference

on File and Storage Technologies, January 28-30, Monterey, California,

USA, 2002, pp. 231–244.

[33] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. H.
Carns, A. Castelló, D. Genet, T. Hérault, S. Iwasaki, P. Jindal, L. V.
Kalé, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir,
Y. Sun, K. Taura, and P. H. Beckman, “Argobots: A lightweight low-
level threading and tasking framework,” IEEE Trans. Parallel Distrib.

Syst., vol. 29, no. 3, pp. 512–526, 2018.

[34] J. Soumagne, D. Kimpe, J. A. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. B. Ross, “Mercury: Enabling remote procedure
call for high-performance computing,” in 2013 IEEE International

Conference on Cluster Computing, CLUSTER 2013, Indianapolis, IN,

USA, September 23-27, 2013, 2013, pp. 1–8.

[35] S. Thapaliya, P. Bangalore, J. F. Lofstead, K. Mohror, and A. Moody,
“Managing I/O interference in a shared burst buffer system,” in 45th

International Conference on Parallel Processing, ICPP 2016, Philadel-

phia, PA, USA, August 16-19, 2016, 2016, pp. 416–425.

[36] Thinkparq and BeeGFS, “Beegfs the leading parallel cluster file system,”
2018, https://www.beegfs.io/docs/BeeGFS Flyer.pdf.

[37] M.-A. Vef, V. Tarasov, D. Hildebrand, and A. Brinkmann, “Challenges
and solutions for tracing storage systems: A case study with spectrum
scale,” ACM Trans. Storage, vol. 14, no. 2, pp. 18:1–18:24, 2018.

[38] M. Vilayannur, P. Nath, and A. Sivasubramaniam, “Providing tunable
consistency for a parallel file store,” in Proceedings of the FAST ’05

Conference on File and Storage Technologies, December 13-16, 2005,

San Francisco, California, USA, 2005.

[39] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. Miller, D. Long, and
T. McLarty, “File system workload analysis for large scale scien-
tific computing applications,” Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, Tech. Rep., 2004.

5

[40] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November 13-

18, 2016, 2016, pp. 807–818.
[41] J. Xing, J. Xiong, N. Sun, and J. Ma, “Adaptive and scalable metadata

management to support a trillion files,” in Proceedings of the ACM/IEEE

Conference on High Performance Computing, SC 2009, November 14-

20, 2009, Portland, Oregon, USA, 2009.
[42] S. Yang, W. B. Ligon III, and E. C. Quarles, “Scalable distributed

directory implementation on orange file system,” Proc. IEEE Intl.

Wrkshp. Storage Network Architecture and Parallel I/Os (SNAPI), 2011.

6

