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Gel’fand-Tsetlin procedure for the construction of
orthogonal bases in Hermitean Clifford analysis

Fred Brackx∗, Roman Lávička†, Hennie De Schepper∗ and Vladimír Souček†
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Abstract. In this note, we describe the Gel’fand-Tsetlin procedure for the construction of an orthogonal basis in spaces of
Hermitean monogenic polynomials of a fixed bidegree. The algorithm is based on the Cauchy-Kowalewski extension theorem
and the Fischer decomposition in Hermitean Clifford analysis.
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INTRODUCTION

The aim of the paper is to describe an algorithm for the construction of orthogonal bases in spaces of Hermitean

monogenic polynomials of fixed bidegree. The construction of orthogonal bases in spaces of spherical monogenics in

classical Clifford analysis has a long history; a general framework and further references may be found in [11], while

explicit fomulae in lower dimension were developed in [9, 10, 1]. Here we consider the similar problem in Hermitean

Clifford analysis using ideas stemming from representation theory, more particularly the well-known construction of

the Gel’fand-Tsetlin (GT) basis for irreducible modules of classical Lie groups (see e.g. [12]). The spaces of Hermitean

monogenic polynomials of fixed bidegree, taking values in a homogeneous part of spinor space, form irreducible

representations of the group U(n). By considering the GT basis for these particular modules we are able to obtain

bases for these spaces, which, by construction, will be orthogonal w.r.t. any U(n) invariant inner product.

THE GEL’FAND-TSETLIN BASIS IN THE CASE OF U(n) MODULES

In Hermitean Clifford analysis, the main symmetry group is U(n). According to the construction of a GT basis for

an irreducible U(n) module, we first have to choose a chain of subgroups U(n) ⊃ U(n−1) ⊃ . . . ⊃ U(1). We fix the

embeddings such that in each step the last variable is preserved by the corresponding subgroup. Next we need to use

the branching rules for U(n) modules, which are expressed using the highest weights of the corresponding irreducible

modules. Irreducible U(n) modules are classified by their highest weight λ = (λ1, . . . ,λn), where the integers λi satisfy

the traditional condition λ1 ≥ λ2 ≥ . . . ≥ λn. The branching rules then look as follows, see e.g. [13].

Theorem 1. Under the restriction to U(n−1) an irreducible U(n) module Vλ with highest weight λ decomposes as

Vλ = ⊕µ,λ≻µVµ

where each of the summands appears with multiplicity one. Here the notation λ = (λ1, . . . ,λn) ≻ µ = (µ1, . . . ,µn−1)
means that λ1 ≥ µ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ µn−1 ≥ λn.

By induction we get the following Gel’fand-Tsetlin (GT) basis for Vλ .

Theorem 2. The irreducible representation Vλ decomposes into a sum of one-dimensional subspaces Vλ = ⊕Λ∈AVΛ,

where the set A of GT-labels Λ is given by A =
{

Λ = (λ n, . . . ,λ 1) |λ n ≻ λ n−1 ≻ . . . ≻ λ 1; λ j = (λ j
1 , . . . ,λ

j
j )

}

.

If moreover Vλ is endowed with a U(n) invariant scalar product, then the above decomposition is orthogonal.

We now want to apply this procedure to spaces of Hermitean monogenic polynomials. We will show that the

required decomposition can be constructed step by step, using two well-known tools of Clifford analysis: the Fischer

decomposition and the Cauchy-Kovalevskaya extension.



HERMITEAN MONOGENIC POLYNOMIALS

Let us consider the Euclidean vector space E of even dimension 2n endowed with a scalar product B, and let C2n

denote the corresponding complex Clifford algebra. Then we may consider the Dirac operator ∂ acting on functions

with values in the basic spinor representation S of C2n. Null solutions of ∂ are called monogenic functions; the

symmetry group for monogenicity is O(2n).

Let J ∈ SO(B) be a complex structure on E compatible with the scalar product B. We can always choose an

orthonormal basis e1, . . . ,e2n of E such that J[e j] = −en+ j and J[en+ j] = e j, j = 1, . . . ,n. We define the isotropic

basis elements (f j, f
†
j)

n
j=1 for E ⊗C by f j = 1

2
(e j − i en+ j), f

†
j = − 1

2
(e j + i en+ j), j = 1, . . . ,n. The Hermitean Clifford

variables z and z† are given by

z =
n

∑
j=1

f j z j, z† =
n

∑
j=1

f
†
j zc

j with z j = x j + iy j and zc
j = x j − iy j

Finally, we define the Hermitean Dirac operators ∂z and ∂ †
z by

∂ †
z =

n

∑
j=1

f j ∂zc
j
, ∂z =

n

∑
j=1

f
†
j ∂z j

, with ∂zc
j
=

1

2
(∂x j

+ i∂y j
) and ∂z j

=
1

2
(∂x j

− i∂y j
)

A continuously differentiable function g in an open region Ω of C
n with values in C2n is called (left) Hermitean

monogenic in Ω if it satisfies in Ω the system ∂z g = 0 = ∂ †
z g. A Hermitean monogenic function is monogenic due

to ∂ = 2(∂ †
z −∂z). The symmetry for the Hermitean monogenic equations breaks down to the group U(n) leaving the

complex structure invariant. The isotropic subspaces generated by zi, resp. z̄i, form the defining representations of U(n)
and its dual. Spinor space S can be realized within the Clifford algebra as S = C2nI by means of a minimal idempotent

I, here chosen to be I = I1 . . . In with I j = f jf
†
j , j = 1, . . . ,n. As f jI = 0, we have that S ∼=

∧∗†
n I where

∧∗†
n denotes the

complex Grassmann algebra generated by {f†
1, . . . , f

†
n}. Hence spinor space S further decomposes into homogeneous

parts as S =
n

⊕

r=0

S
(r) with S

(r) = (
∧†

n)
(r)I. For more details on Hermitean Clifford analysis, see [2, 3, 4, 7].

THE CAUCHY-KOVALSKEVSKAYA (CK) EXTENSION

For the cases r = 0, respectively r = n, the notion of Hermitean monogenicity coincides with the notion of antiholo-

morphy, respectively holomorphy, in n complex variables. Hence we will restrict the spinor homogeneity degree r to

1 ≤ r ≤ n− 1 from now on. The classical idea of the CK extension is to characterize solutions of suitable (systems

of) PDE’s by their restriction, sometimes together with the restrictions of some of their derivatives, to a submanifold

of codimension one. In [5] we have done this for the Hermitean monogenic system, by restricting the solutions of the

Hermitean Dirac operators (and some of their derivatives) to the vector subspace C
n−1 of complex codimension 1.

The spaces of homogeneous polynomials of bidegree (a,b) on C
n, with values in S

(r), will be denoted by Pr
a,b, or,

if we need to distinguish between dimensions, by Pr
a,b(C

n). Furthermore we denote by M r
a,b (or M r

a,b(C
n)) the space

of Hermitean monogenic homogeneous polynomials of bidegree (a,b), with values in S
(r). We single out the variables

(zn,z
c
n) and consider restrictions to C

n−1 = {z ∈ C
n |zn = zc

n = 0}. We may then split the value space S
(r) as

S
(r) ≡ (

∧†
n)

(r)I = (
∧†

n−1)
(r) I

⊕

(
∧†

n−1)
(r−1) f†

n I

Hence any polynomial p with values in (
∧†

n)
(r)I can be split as p = p0I + p1 f†

n I, where p0 has values in (
∧†

n−1)
(r) and

p1 has values in (
∧†

n−1)
(r−1).

Now consider Ma,b ∈ M r
a,b and its restricted derivatives

∂ iMa,b

∂ z1
i
|
Cn−1 ≡ pa−i,b = p0

a−i,b I + p1
a−i,b f†

n I, i = 0, . . . ,a (1)

∂ jMa,b

∂ zc
1

j
|
Cn−1 ≡ pa,b− j = p0

a,b− j I + p1
a,b− j f

†
n I, j = 0, . . . ,b (2)



Then the following theorem holds, see [5].

Theorem 3. (The CK extension)

(i) Any Ma,b ∈M r
a,b is uniquely determined by its restrictions p0

a,b− j I, j = 0, . . . ,b and p1
a−i,b f†

n I, i = 0, . . . ,a, defined

in (1)-(2), henceforth called the ”initial data” for Ma,b.

(ii) The initial data cannot be arbitrary, but are characterized as follows.

• The polynomials p0
a,b− jI ∈ Pr

a,b− j(C
n−1) should belong to Ker (∂z) for r < n−1; for r = n−1 this condition is

trivially fulfilled. The space of all such initial data will be denoted by

A
r

a,b− j = Ker (∂z)∩P
r
a,b− j(C

n−1)

• The polynomials p1
a−i,bI ∈ P

r−1
a−i,b(C

n−1) should belong to Ker (∂ †
z ) for r > 1; for r = 1 this condition is trivially

fulfilled. The space of all corresponding initial data will be denoted by

B
r
a−i,b =

{

p1
a−i,b f†

n I | p1
a−i,b I ∈ Ker (∂ †

z )∩P
r−1
a−i,b(C

n−1)
}

• The CK extension map from the space of initial data ⊕b
j=0A

r
a,b− j ⊕⊕a

i=0B
r
a−i,b to M r

a,b is an isomorphism

commuting with the action of U(n−1), whence it yields a splitting of M r
a,b into a direct sum of U(n−1) invariant

subspaces.

FISCHER DECOMPOSITIONS FOR TWO KERNELS

The final step in the construction of the GT basis is the decomposition of both spaces of initial data A r
a,b− j and Br

a−i,b

into irreducible components under the action of U(n− 1). The tool needed here is the Fischer decomposition of the

kernels of the Hermitean Dirac operators (see [8]), which we will apply for spinor valued polynomials on C
n−1. Hence

in the formulation of [8] the dimension and the degree of the forms are adapted to the present situation.

Theorem 4. Consider spinor valued functions on C
n−1 and let 1 ≤ r ≤ n−2. Then the following statements hold.

(i) Under the action of U(n − 1), the space Ker r
a,b(∂z) ≡ Ker (∂z)∩Pr

a,b(C
n−1) ≡ A r

a,b has the multiplicity free

irreducible decomposition

Ker r
a,b(∂z) = M

r
a,b ⊕

min(a,b−1)
⊕

j=0

|z|2 jz†
M

r−1
a− j,b− j−1 ⊕

min(a−1,b−1)
⊕

j=0

|z|2 j(z†z+
(a− j−1+ r)

(a+ r)
z z†)M r

a− j−1,b− j−1

(ii) Under the action of U(n−1), the space Ker r−1
a,b (∂ †

z )≡ Ker (∂ †
z )∩P

r−1
a,b (Cn−1) has the multiplicity free irreducible

decomposition

Ker r−1
a,b (∂ †

z ) = M
r−1
a,b ⊕

min(a−1,b)
⊕

j=0

|z|2 jzM r
a− j−1,b− j ⊕

min(a−1,b−1)
⊕

j=0

|z|2 j(zz† +
(b− j−1+n− r +1)

(b+n− r +1)
z z†)M r−1

a− j−1,b− j−1

THE INDUCTION STEP

The main aim of this paper is to establish an inductive algorithm allowing to write the GT basis for the space of

Hermitean monogenics in an explicit form.

The case n = 1 corresponds with complex valued functions on C. The case r = 0 leads to antiholomorphic functions,

the case r = 1 to holomorphic functions. In both cases, the GT basis is the standard basis for the Taylor series, i.e., it

consists of the monomials z̄ j, respectively z j, j = 0,1,2, . . ..

Now assume that we explicitly know the GT bases in dimension n−1 for all spaces M r′

a′,b′
(Cn−1), r′ = 0, . . . ,n−1

and a′,b′ ∈N. Then consider the space M r
a,b(C

n). Theorem 3 describes how to split it into U(n−1) invariant subspaces

and the proof of the theorem, see [5], contains explicit formulae for the CK extension mapping into M r
a,b(C

n) as a

differential operator acting on the chosen initial data. Next, we use Theorem 4 to decompose in their turn the spaces



of initial data, obtained in Theorem 3, into U(n−1) irreducible components. Due to the induction assumption, we can

use the explicit form of the GT basis in the individual spaces of Hermitean monogenics in dimension n−1 to get an

explicit form of the GT basis in the spaces of initial data. In such a way, we have constructed an algorithm for the

computation of the elements in the GT basis in dimension n explicitly.

As a check, let us consider the branching rules explicitly for the space M r
a,b(C

n). We will only treat the general

case 1 < r < n, since for r = 1 or r = n, there are small variations in the form of the highest weights, whence these

cases cannot be treated in the same uniform way. The highest weight of M r
a,b is λ = (a + 1,1, . . . ,1,0, . . . ,0,−b),

where the last component 1 is at the r-th place. We will denote this weight shortly by [a,−b]r. Refering at Theorem

4, we see that the set of highest weights of components with values in S
(r) in the decomposition of Ker r

a,b(∂z)

into irreducible components under the action of U(n− 1), is the string [a,−b]r, [a− 1,−b + 1]r, [a− 2,−b + 2]r, . . .
ending either with [a− b,0]r or with [0,−b + a]r, while for the components with values in S

r−1 we obtain the string

[a,−b+1]r−1, [a−1,−b+2]r−1, . . . ending either with [a−b+1,0]r−1 or with [0,−b+a+1]r−1. Representing those

labels as points in two rectangular grids, one for r and one for r− 1, with vertices (0,0),(a,0),(0,−b) and (a,−b),
we obtain two anti-diagonal segments. A similar observation holds for the decomposition of Ker r−1

a,b (∂ †
z ). Considering

all corresponding summands in the decomposition of the initial data spaces for M r
a,b, the whole collection of labels

(with multiplicity one) gives the full rectangles [ j,k]r and [ j,k]r−1 with j = 0, . . . ,a and k = −b, . . . ,0. Taking the

homogeneity degrees r and r − 1 together, we immediately see that we obtain the same result as predicted by the

abstract branching rules in Theorem 1. This not only provides us with a confirmation of our analysis, but in fact even

offers an independent proof, using only tools from Clifford analysis, of the branching rules for those representations

which are realized as spaces of Hermitean monogenic functions.

The resulting explicit forms of the bases in complex dimension n = 2 can be found in [6].
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