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Abstract: This review discusses the latest advances in the composition of gelatin-based edible films
and coatings, including nanoparticle addition, and their properties are reviewed along their potential
for application in the food packaging industry. Gelatin is an important biopolymer derived from
collagen and is extensively used by various industries because of its technological and functional
properties. Nowadays, a very wide range of components are available to be included as additives to
improve its properties, as well as its applications and future potential. Antimicrobials, antioxidants
and other agents are detailed due to the fact that an increasing awareness among consumers regarding
healthy lifestyle has promoted research into novel techniques and additives to prolong the shelf life
of food products. Thanks to its ability to improve global food quality, gelatin has been particularly
considered in food preservation of meat and fish products, among others.

Keywords: edible films; food coatings; food preservation; biopolymers; antioxidant and
antimicrobial agents

1. Introduction

In the last few decades, there has been a marked increase in the use of natural polymer-based film
materials and coatings in packaging for food industry, which protect food from external contamination,
retarding its deterioration by extending its shelf-life and maintaining its quality and safety [1].
In addition to consumer requirements and in order to substitute petroleum-based plastic packaging,
a wide variety of biopolymers that come from agro-food industrial wastes and renewable low cost
natural resources have emerged [2]. In this context, the formulation of films and coatings for
food packaging applications must include at least one component capable of forming a cohesive
three-dimensional matrix. Biopolymers directly extracted from biomass mainly used for edible films
in food packaging are proteins, polysaccharides and lipids, and the physical and chemical properties
of the biopolymer used determine the final properties of the developed films [3].

Proteins can be defined as natural polymers able to form amorphous three-dimensional structures
stabilized mainly by non-covalent interactions. The functional properties of the final materials are
highly dependent on the structural heterogeneity, thermal sensitivity, and hydrophilic behaviour of
proteins. Different vegetable and animal proteins are commonly used as biodegradable polymers,
such as corn zein, wheat gluten, soy protein, collagen and gelatin, casein and caseinates, and whey
proteins, among others [1,4,5].

Regarding polysaccharides for material applications, the main ones used are cellulose and starch,
but increasing attention is being given to more complex carbohydrate polymers produced by bacteria
and fungi, especially to polysaccharides such as xanthan, curdlan, pullulan and hyaluronic acid [6].
In addition, the incorporation of lipid materials such as animal and vegetable oils and fats, waxes and
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natural resins, into polysaccharide and protein matrices to form edible composite films and coatings
has the potential to improve film moisture barrier [7].

The use of biopolymers, especially gelatin, in packaging of highly perishable food products such
as meat and fish is based on some particular properties such as cost, availability, functional attributes,
mechanical (flexibility, tension) and optical (brightness and opacity) properties, barrier effect against
gas flow, structural resistance to water and microorganisms and sensory acceptability. In this article,
the latest advances in gelatin-based films and coatings including composition (additives to be used
in the gelatin matrix, including nanoparticles addition) and properties are reviewed, as well as new
research trends for different food applications.

Gelatin and Film-Forming Properties

Gelatin is a natural water soluble protein characterized by the absence of an appreciable odour
and the random configuration of polypeptide chains in aqueous solution. It is obtained from the partial
hydrolysis of collagen; a fibrous protein mainly found in certain parts of vertebrate and invertebrate
animals as bones, skins, connective tissues and tendons [8]; and its structure consists of rigid bar-like
molecules that arranged in fibres inter-connected by covalent bonds.

Pig skin was used as raw material to manufacture gelatin in the 1930s and continues to be the
most important material for large-scale food industrial production; whereas for more expensive uses,
such as pharmaceuticals, gelatin is generally obtained from cattle bones, which is considered a more
complex and costly extraction process. However, in a move to get away from porcine and bovine
gelatin, the production of fish gelatin has increased in the last decade, accounting for more than 1.5%
of total gelatin production [9].

In recent years, by-products obtained from the fishing industry, such as heads, skin, bones, fins,
muscle pieces, scales, viscera and others, are considered potential sources of exploration, rather than
disposable waste. However, one of the main drawbacks of fish gelatin is its rheological properties,
being less stable than the obtained from mammalian sources [10]. Moreover, since the production of
gelatin from fish and poultry is still limited, the obtained products are less competitive in price than
those from mammalian gelatins.

Soluble gelatin is produced by the destabilization of the collagen triple-helix. In general, gelatin
properties are influenced by two main factors: the characteristics of the initial collagen and the
extraction process. In this sense, the degree of collagen conversion into gelatin is dependent on the
pre-treatment with warm-water extraction, temperature, pH, and extraction time. Interstitial collagen
molecules are composed of three polypeptideα-chains intertwined and stabilized by hydrogen bonding
and hydrophobic interactions. The destabilization is produced by breaking hydrogen and covalent
bonds as a result of the heat treatment, resulting in helix-to-coil transition and subsequent conversion
into soluble gelatin. Previously, the insoluble native collagen must be pre-treated to break non-covalent
bonds so as to disorganize the protein structure, thus producing adequate swelling and collagen
solubilisation, suitable for extraction [9].

Gelatin is a heterogeneous polypeptide mixture of α-chains (one polymer/single chain), β-chains
(two α-chains covalently crosslinked) and γ-chains (three covalently crosslinked α-chains). Figure 1
shows a typical amino acid composition of gelatin: Ala-Gly-Pro-Arg-Gy-Glu-4Hyp-Gly-Pro-; with
an elemental composition of 50.5% carbon, 25.2% oxygen, 17% nitrogen and 6.8% hydrogen [11].

Depending on the processing method, gelatin can be classified into two types: (1) type A:
with an isoelectronic point at pH ~8–9, obtained from acid treated collagen; and (2) type B: with
an isoelectronic point at pH ~4–5, derived from an alkali treated precursor which converts asparagine
and glutamine residues into their respective acids, resulting in higher viscosity. Gelatin derived from
pig skin is normally referred as type A and that derived from beef skin or pig cattle hides and bones is
referred as type B [8].
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Figure 1. Representative gelatin structure according to its typical amino acid composition (adapted
from N. Hanani et al. [11]).

Basic physico-chemical properties, such as solubility, composition parameters, colour,
transparency, odourless and tasteless, are the main attributes that best define the overall commercial
quality of gelatin. Also, gel strength (expressed in the normalized “bloom value”) and viscosity should
be considered as the most important physical properties since they influence gelatin quality and
potential applications. In addition, gelatin can be produced in powdered or granulated form.

Gelatin has also distinctive functional properties that can be divided into two groups: (i) properties
associated to surface behaviour such as protective colloid function, emulsion and foam formation and
stabilization, adhesion and cohesion and film-forming capacity and (ii) properties related to gelling
behaviour like gel formation, thickening, texturizing and water binding capacity [12]. Therefore,
a wide number of final applications and uses can be obtained, in food, packaging, pharmaceutical,
cosmetic and photographic industries (Figure 2) [13]. In particular, gelatin is used to provide gelling,
stabilization, texturization and emulsification for bakery, beverages, confectionary and dairy products
in food industry [10]. However, the limited thermal stability and mechanical properties of gelatin
especially during processing, limit its potential applications.

Film-forming properties have been extensively used to protect food during its shelf life, as an outer
film, from dryness, exhibition to light and/or exposure to oxygen. Due to the highly hygroscopic
nature of gelatin, it has a tendency to swell or be dissolved when putting in contact with the
surface of foodstuffs with high moisture content. Several research studies have been conducted
to evaluate the overall effect of the addition of different substances, such as crosslinkers, strengthening
agents, plasticizers or additives with antimicrobial or antioxidant properties, in gelatin-based
products to improve the functional properties of gelatin and the shelf-life of food products [14,15].
The improvement in these properties occurs when intermolecular forces of protein chains are reduced
by the action of molecular structures modifying their hydrophilic character or promoting the formation
of strong covalent bonds in the protein network of the film [10]. Zhao et al. demonstrated the
viability of using a natural extract as a new natural crosslinker for the modification of gelatin (type B,
from bovine bone) by hydrogen bonding formation between water and free hydroxyl groups of amino
or polyphenol groups. The results showed that the incorporation of this extract into gelatin significantly
increased gel strength compared to the untreated gelatin [16]. The combination of gelatin with other
biopolymers with different characteristics, such as whey proteins [17], starch [2], chitosan [18–20] or
pectin [21], could be a good strategy for the development of films with improved mechanical and
water resistance properties.
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Figure 2. Some final applications and uses of gelatin.

The film properties of gelatin are also determined by the gelatin used, since the molecular weight
distribution and amino acid composition vary greatly between gelatins obtained from different sources.
In this sense, fish gelatin extracted at high temperature exhibits lower molecular weight profiles that
gelatin from extraction at lower temperatures [10]. Muyonga et al. used sodium dodecyl sulphate gel
electrophoresis (SDS–PAGE) to determine the molecular weight distribution of Nile perch gelatins
as function of α and β chains, concluding that it could vary with the collagenous tissue used as raw
material at high and low temperatures. Indeed, when gelatins from the same raw materials were
compared, they found more peptides (molecular weight less than α chain) and lower proportion of
high molecular weight (greater than β) fractions at high temperatures compared to those found at low
temperature extractions [22]. Some authors have reported that these parameters also play a key role
in the mechanical and barrier properties of the resulting films [23]. A recent study compared films
made from fish gelatin derived from the bones of red snapper and grouper, generated as wastes by the
fish processing industries, and mammalian gelatin showing fish gelatin films 17%–21% lower tensile
strength than mammalian gelatin films [24].

In recent years, the interest in agro-industrial by-products has gradually increased.
The revalorization of these materials is an upward trend, being considered as a potential source
of resources for exploration, rather than as disposable waste. For example, the use of residues from
gelatin capsules generated by the nutraceutical field is increasing despite the treatment and disposal of
this residue imply economic and environmental issues [25]. Thus, the residues coming from gelatin,
mainly used as encapsulating materials to deliver bioactive food compounds with active principles,
can be revalorized as a potential source for the development of biodegradable films mainly composed
of gelatin, glycerin and water [26,27].

Gelatin can be considered as a competitive alternative biopolymer in the market, being its use
directly correlated to novel technological developments in order to improve its functional properties.

2. Gelatin-Based Films and Coatings for Food Packaging

Gelatin-based edible films and coatings have already been proposed to protect, maintain or
extend the shelf-life of food products. Factors that should be considered when designing this type
of system include the chemical nature of food, controlled release mechanisms, food organoleptic
characteristics and additive toxicity, storage and distribution, physical and mechanical properties of
packaging materials and regulations to be applied in this framework [14]. Consequently, different
types of additives could be added to improve or modify the final properties in order to achieve suitable
gelatin-based films or coatings for food packaging.

Recent studies have focused on interesting techniques to develop active packaging films and
coatings, including antimicrobial, antioxidant and other agents which can enhance the biological
features of food [8,14]. These components are usually essential oils or extracts obtained from plants
and spices which exhibit antimicrobial and antioxidant properties, and most of them are considered
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to be Generally Recognized as Safe (GRAS) [28]. In order to reduce the use of synthetic chemical
additives in the food industry, the use of natural food additives with antimicrobial and/or antioxidant
properties without negative effects on human health has increased in the last years. These natural
additives are able to prevent or reduce the deterioration of food caused by oxidation or microbiological
effects, thus helping to preserve and extend food shelf-life [29].

2.1. Antimicrobial Agents

The use of antimicrobial additives in gelatin-based films or coatings for food packaging
applications is a promising area, with the main goal being the prolongation of food shelf-life based on
retarding deterioration mechanisms inside the package by using natural additives. A wide range of
agents with antimicrobial properties has been proposed, e.g., organic acids, bacteriocins, spice extracts,
thiosulphates, enzymes, proteins, isothiocyanates, antibiotics, fungicides, chelating agents, parabens
and metals [30]. The research in this field is focused on the search for natural compounds to be used in
active packaging formulations as substitutions for synthetic additives. As a result, many studies have
been performed to propose the use of compounds obtained from natural sources with antimicrobial
characteristics (Table 1). These additives can be obtained from different sources, including plants,
animals, bacteria, algae, fungi and by-products generated during fruit and vegetable processing.

Essential oils have been extensively used in edible films. Martucci et al. developed gelatin-based
films by using lavender or oregano essential oils and a mixture of them (50:50) at concentrations
ranging between 0 and 6000 ppm. Escherichia coli (E. coli) as Gram-negative and Staphylococcus aureus
(S. aureus) as Gram-positive bacteria were selected to evaluate the antimicrobial activity of the new films.
The results showed that both microorganisms exhibited sensitivity to all active films, showing lower
values of inhibition zone for S. aureus compared to E. coli, being 10.6 ± 1.5 mm and 13.7 ± 0.5 mm,
respectively, at 4000 ppm [31]. Similar results were obtained by Alparslan et al. when studying the
antimicrobial activity of gelatin-based films with orange leaf essential oil against five food-borne
bacteria by the agar well-diffusion method. The gelatin film including 2% essential oil showed
the highest antimicrobial effect against all microorganisms with inhibition zones of 14.5 ± 0.7 mm
for S. aureus and 19.0 ± 1.4 mm for E. coli [32]. Antibacterial activity of fish skin gelatin films
incorporating peppermint and citronella oils at 10%, 20% and 30% were studied by Yanwong et al.,
obtaining a growth inhibition of E. coli and S. aureus higher than 80% at 10% loading of each oil [33].
The obtained differences between Gram-negative and Gram-positive bacteria might be due to the
presence of a thin peptidoglycan layer in Gram-negative bacteria that makes them more resistant
against essential oils [34].

Regarding the mechanisms of action of this type of antimicrobial agent against bacteria, they
have not been clearly detailed, since each compound present in the essential oil composition exhibits
a unique mechanism of action that is specific to a particular range of food and microorganisms [35].
Different mechanisms have been identified: damage to the cell wall, interaction with and disruption
of the cytoplasmic membrane, damage of membrane’s proteins, leakage of cellular components,
coagulation of cytoplasm and depletion of the proton motive force. All these effects produce
microorganism death by the modification of the structure and composition of the bacteria cells [34].

Another important feature related to the use of this type of additive in food packaging systems is
their poor stability at high temperatures and the need to control their release into the food sample over
time. In fact, the release rate is a key parameter to allow for good and suitable microbial inhibition.
Recent works have reported the use of alternative techniques for the incorporation of these additives
into gelatin by using micro- or nano-encapsulations with the purpose of improving and controlling
their release rate. Wu et al. developed fish gelatin films incorporated with cinnamon essential oil
nanoliposomes. An evaluation of the antimicrobial stability of the films by using the disc diffusion
method in the third and thirtieth days of storage was carried out. The results showed a higher
inhibition zone for the obtained film with cinnamon essential oil nanoliposomes compared to that of
gelatin with cinnamon essential oil, demonstrating an improvement in antimicrobial stability along
with a decrease in release rate after storage for one month [36].
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Table 1. Different compounds used as active additives in gelatin-based films and coatings.

Gelatin Active Additive Application Main Benefits Ref.

Fish gelatin Origanum vulgare L.
essential oil

Films
Enhancement in WVP, solubility, barrier

capability to ultraviolet light [37]
Enhancement in antimicrobial properties

Fish gelatin
Nanoencapsulated
Origanum vulgare L.

essential oil
Films

Maintenance of initial thermal stability

[38]
Less resistant and more flexible films

Decrease in WVP
Exhibited antimicrobial activity

Bovine gelatin Bacteriocins and flavonoid
ester prunin laurate Films

Maintenance of functional properties
[39]Enhancement in antimicrobial properties

and synergistic effect

Gelatin Silver nanoparticles Films

Enhancement in hydrophobicity, water

[40,41]
vapour and UV barrier

Compact surface structure
Strong antibacterial activity

Gelatin Zinc oxide nanoparticles Films

Crystalline structure

[42]
Enhancement in thermal stability, moisture

content, water contact angle, WVP and
elongation at break

Strong antibacterial activity

Skate skin
gelatin

Thyme essential oil Chicken
tenderloin (wrap)

Enhancement in antimicrobial properties
[43]Extend shelf-life of chicken tenderloin

Increase in elongation at break

Grouper bone
gelatin

Chitosan, clove and pepper
essential oils

Fish steaks
(coating)

Enhancement in antimicrobial properties
[44]Extend the shelf-life of fish steaks

Fish gelatin Cinnamon essential oil
nanoliposomes Films

Decrease in tensile strength, water soluble,
water content and WVP

[36]Sustained release effect and improvement in
antimicrobial stability

Fish skin
gelatin

Peppermint and citronella
essential oils Films Enhancement in antimicrobial properties [33]

Fish gelatin Green tea, grape seed,
ginger or gingko leaf Films Enhancement in antioxidant properties [45]

Bovine gelatin Brown seaweed
Ascophyllum nodosum Films

Increase in hydrophilicity
[46]Enhancement in antioxidant properties

Residues of
gelatin capsules

Beet root residue powder Films
Enhancement in antioxidant properties

[47]Maintenance of initial thermal stability

Bovine gelatin
residue

Carrot residue fibre derived
from minimally

processed carrots
Films

High barrier, optical and thermal properties
[27]Capacity for protecting sunflower oil from

primary rancidity reactions

Pork gelatin Ethanolic hop extract Films Enhancement in antioxidant properties [48]

Gelatin
Free/encapsulated tea

polyphenols
Sunflower oil

packaging

No significant differences in visual aspect

[49]
Enhancement in antioxidant properties
Good oxidation inhibitory effect over

6 weeks of storage

Gelatin Tea polyphenols Films Enhancement in antioxidant properties [50]

Pig skin gelatin Hydrolysable
chestnut tannin Films Enhancement in antimicrobial and

antioxidant properties [51]

Beef gelatin
Articoat DLP 02, Artemix

Consa 152/NL, Auranta FV
and sodium octanoate

Films
Enhancement in antimicrobial and

antioxidant properties at different degrees [52]
Enhancement in oxygen transmission rate

Food grade
gelatin

Orange leaf essential oil Shrimps (coating)
Shelf-life extension

[32]Enhancement in antimicrobial and
antioxidant properties

Bovine hide
gelatin

Oregano and lavender
essential oils Films Enhancement in antimicrobial and

antioxidant properties [31]

Metallic nanofillers have recently been considered in packaging technologies for the production
of active gelatin-based films with potential antimicrobial effects since these additives are able not
only to enhance barrier and mechanical properties when they are incorporated into the matrix,
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but also to improve food preservation and shelf-life through their antimicrobial performance [40,53].
Silver and zinc oxide nanoparticles are examples proposed by some authors in different studies.
P. Kanmani et al. introduced different amounts of silver nanoparticles (0, 10, 20, 30, and 40 mg) into
gelatin using a solution casting method. The antibacterial activities of films were evaluated using
the agar well diffusion and colony count methods at time intervals of 2 h during 12 h by using
E. coli, Listeria monocytogenes (L. Monocytogenes), Salmonella typhimurium, S. aureus and Bacillus cereus.
The results showed that all films significantly decreased the cell viability of food-borne bacteria
except the control and gelatin films with a lower amount of silver nanoparticles (10 mg), where
no inhibition was observed. The film containing 40 mg of silver nanoparticles solution exhibited
excellent antimicrobial effects against bacteria with values lower than 101 CFU/mL compared to
the other films [40]. The antimicrobial mechanism suggested by several authors is supported
by the morphological and structural changes found in the bacterial cells and the possibilities for
silver nanoparticles to penetrate inside the bacterial structure due to their attachment to the cell
membrane [54]. In line with this study, Shankar et al. prepared composite films based on gelatin
incorporated with four different types of zinc oxide nanoparticles obtaining strong antibacterial activity
against both Gram-positive and Gram-negative bacteria, L. monocytogenes and E. coli, respectively,
for films with nanoparticles, with values of cell viability lower than 102 CFU/mL after 12 h of study.
These results could be related to the release of Zn2+ ions, which could penetrate through the cell wall
of bacteria and react with the cytoplasmic content, leading to microorganism death [42].

2.2. Antioxidant Agents

Nowadays, research in the field of active packaging is also focused on the development of
novel food packaging materials with antioxidant agents from natural sources such as plant and
spices extracts instead of synthetic antioxidants such as butylated hydroxytoluene (BHT) or butylated
hydroxyanisole (BHA), since synthetic antioxidants are suspected of causing some safety concerns and
have been restricted in their use as food additives [55]. In this context, some studies have reported
that natural antioxidants show enough capacity to control lipid oxidation inside the food package
since oxidative processes can cause the degradation of proteins, pigments and lipids, which limits
food shelf-life [28,56,57]. Table 1 summarizes some research studies performed to enhance the final
properties and applicability of food packaging and to extend the shelf-life of food products based on
gelatin films and coatings incorporated with antioxidant additives.

Extracts obtained from green tea, grape seed, ginger or gingko leaf have been studied for their
excellent antioxidant properties due to the presence of some compounds in their compositions, such as
polyphenolic compounds in the case of green tea extract; flavones glycosides in ginkgo leaf extract;
gingerol, gingerdiol, gingerdione and other antioxidant compounds for ginger extract; or tannins and
monomeric flavonoids such as catechin and epicatechin for grape seed extracts. Li et al. incorporated
natural extracts into fish skin gelatin at three different concentrations, 0.01, 1.0 and 5.0 mg/mL, by using
the casting technique. In this work, physical and mechanical properties of films were studied and
antioxidant activity was evaluated by using three commonly methods: DPPH radical scavenging assay,
reducing power and peroxide value analysis. Results showed the strongest scavenging activity against
DPPH radicals (around 90%) for the formulations with 1.0 mg/mL of each extract used except for the
ginger one, whose value was around 17%. In a similar way, films mixed with natural antioxidants had
high absorbance values, indicating an increase in the reducing powder compared to the control except
for the film added with ginger. The obtained antioxidant capacity was mainly determined by the
phenolic compounds present in the extract composition. As an example, regarding green tea and grape
seed extracts, the amount of epicatechin, caffeic acid and catechin was relatively high. In addition,
films mixed with these extracts had greater reducing power compared to the control except for the film
with ginger extract. Authors also reported a reduction of around 30% in water vapour permeability
(WVP) for gelatin-based films incorporated with green tea extract. This fact can be attributed to the
presence of polyphenols which could be able to form hydrogen and covalent bonds with the polar
groups of polypeptide in gelatin modifying the structure [45].
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Edible gelatin coating solutions enriched with orange leaf essential oil obtained from orange
(Citrus sinensis (L.) Osbeck) leaves were used as a coating for shrimp. The antioxidant activity evaluation
of the obtained film forming solutions showed an optimum DPPH scavenging activity around 52%
with 2% of essential oil. In addition, in this study, it was demonstrated that the coating improved the
quality of shrimp during the storage period in terms of chemical indices determined in shrimp meat,
preserving shrimp quality during cold storage with a shelf-life extension of 10 days [32].

The mechanisms of action of these natural antioxidants in contact with food are related to lipid
oxidation reactions. In addition, they are focused on phenols and other compounds with hydroxyl
groups present in the essential oils composition. Hydrogen atoms from phenol hydroxyl groups
could react with peroxyl radicals produced in the early stages of the oxidation mechanisms to yield
stable phenoxyl radicals and, consequently, resulting in the termination of the lipid peroxidation chain
reactions. However, understanding the antioxidant activity mechanisms of these phenolic compounds
is a hard task since this activity depends on the electronic and steric effects of their ring substituents,
the strength of hydrogen-bonding interactions between the phenol and the solvent in the essential oil,
and the interactions with matrix and food [56].

In order to protect additives from temperature or light, encapsulation is a promising technique
that can be used during film processing [58,59]. Liu et al. investigated the applicability of gelatin-based
films packaged with sunflower oil with different free/encapsulated tea polyphenol ratios through
the synthesis of chitosan nanoparticles at 3 different encapsulation efficiencies (50%, 80% and 100%).
The results showed a reduction in the oxidation of sunflower oil obtaining lower peroxide (PV) and
thiobarbituric acid reactive substance (TBARS) values for oils exposed to the new films. In addition,
an improvement in antioxidant activity when using an optimum partition of free and encapsulated
(20:80, respectively) additives was demonstrated over a long period of storage (6 weeks) as well as the
preservation of the functional properties of the new films [49].

2.3. Other Agents

As it has been mentioned before, as a consequence of gelatin’s highly hygroscopic nature, it tends
to swell or dissolve easily in contact with food despite its good barrier properties to oxygen and carbon
dioxide [11]. Also, gelatin films show lower mechanical strength compared to synthetic ones [60].
To avoid these drawbacks, gelatin can be blended with different substances and/or polymers to obtain
bio-composite films and coatings that combine the advantages of each component [11].

Hydrophobic substances such as lipids and oils have been used to improve the water vapour
barrier properties of gelatin films. Limpisophon et al. [61] introduced stearic and oleic fatty acids
into edible films based on blue shark skin gelatin by the casting technique. Stearic and oleic acid
content in film solution were 25%, 50% and 100% (w/w) of the protein content. As stearic acid content
increased, a reduction in WVP from 1.04 ± 0.09 to 0.70 ± 0.06 × 10−10 g·m−1·Pa−1·s−1 was reported,
which was higher than that obtained for oleic acid at the same concentration (from 1.02 ± 0.06 to
0.91 ± 0.06 × 10−10 g·m−1·Pa−1·s−1). Tongnuanchan et al. recently studied the physical, barrier,
structural and thermal properties of fish skin gelatin films containing palm oil at 25%, 50%, 75%
and 100% (based on protein) showing a reduction in WVP of 35.83%, 53.54%, 56.30% and 72.52%,
respectively [62]. In other study, Bertan et al. evaluated the incorporation of Brazilian elemi oil
(1%, 2.5%, 5%, 10%, 15% and 20%, w/w of dry gelatin) into bovine hide type A gelatin to obtain films
by the casting technique, using a blend of palmitic and stearic acids (1:1 stearic/palmitic acid, 10%, w/w
of dry gelatin) [63]. As a result, the addition of 10% elemi oil reduced WVP by about 57% compared to
the film containing only plasticizer and the fatty acid blend. Similarly, Ma et al. developed composite
films from bovine hide gelatin type B with olive oil (olive oil/ protein weight ratios of 5%, 10%, 15%
and 20%) by the microfluidic emulsification technique [64]. A decrease in WVP from 5.610 ± 0.068
to 4.194 ± 0.044 × 10−10 g·m−1·Pa−1·s−1 when 20% of oil was incorporated was obtained. Xiao et al.
reported the development of new bio-films by the casting technique based on the addition of palm oil
at different degrees (8◦, 18◦, 24◦, 33◦ and 44◦) with a significant reduction in WVP at 36 wt % of gelatin
content compared to the control gelatin film [65]. In particular, the lowest WVP value was achieved
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for the film containing the palm oil with 24◦ (2.19 ± 0.07 × 10−11 g·m−1·s−1·Pa−1) in contrast to the
control (1.55 ± 0.05 × 10−11 g·m−1·s−1·Pa−1). Finally, Nilsuwan et al. investigated the influence of
palm oil concentration (250, 500, 750 and 1000 g·kg−1 protein) and soy lecithin surfactant (500 g·kg−1

palm oil) on the stability of film-forming dispersion and properties of fish tilapia skin gelatin films
obtained by the casting technique [66]. In general, films showed an improvement in WVP properties
with increasing palm oil concentration, obtaining values of WVP of 24.52 ± 0.51 for the control and
6.37 ± 0.30 × 10−11 g·m−1·s−1·Pa−1 for 1000 g·kg−1 for the films added with palm oil. As a conclusion,
from these studies it could be suggested that oils added into a gelatin matrix could act as hydrophobic
and nonpolar substances, increasing hydrophobicity with a decrease in the permeation of moisture
through the films [65].

Oils have also been used to enhance the structural and mechanical properties of gelatin.
Tongnuanchan et al. developed new bio-films based on fish gelatin obtained from tilapia skin and
25% (w/w) of basil and citronella essential oils at a ratio of 1:1 (w/w) by the casting technique [67].
In general, higher opaqueness, lower Tg and thermal degradation temperatures were reported with
essential oils incorporation. Wang et al. evaluated the effect of pH and corn oil addition on the
mechanical properties of porcine skin gelatin films [68], obtaining an optimum film-forming solution
with 55.18% of corn oil with a pH of 10.54 and a predictive value of tensile strength of 17.58 MPa,
elongation at break of 305.90% and WVP of 44.21 g mm kPa−1·d−1·m−2. These results suggest the
interruption of protein–protein interactions with an increase in chain mobility in gelatin. A simplified
illustration of film matrix interactions with and without oil incorporation after the casting technique is
showed in Figure 3. When oil is incorporated into the gelatine matrix, the protein–protein interactions
by hydrogen bonds are reduced and a different orientation of the gelatine matrix takes place. Then,
two different phases coexist in the matrix, the hydrophobic phase of the oil and the hydrophilic
phase, characteristic of the protein which is stabilized by hydrogen and hydrophobic interactions
among them.
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Regarding polymer blends, shellac, a special natural polymer obtained from purified resinous
secretion of lac insects, Laccifer Lacca, has been widely studied as an edible film coating. Puncture
strength and percentage elongation of composite films based on shellac (6% w/w) and gelatin type A
(10%, 20%, 30%, 40% and 50% w/w into the shellac solution), obtained by the casting technique,
increased from 3.61 to 15.58 MPa and from 3.80% to 32.47% as the gelatin concentration increased to
50% w/w, respectively, indicating an enhancement in strength and flexibility of the shellac film [69].
Regarding other blends, sago starch and fish gelatin at different ratios (1:0, 2:1, 3:1, 4:1, and 5:1)
plasticized with glycerol or sorbitol (25%, w/w) were developed by the casting technique [70].
In this study, fish gelatin was extracted from fish waste provided by a local surimi processing plant.
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By varying the ratio of the two polymers, the strength and extensibility of the composite films can be
modified. Starch/gelatin solutions at 4:1 ratio formed good flexible films with tensile strength values
of 9.87 ± 0.64 MPa for the control film containing only gelatin matrix compared to 18.06 ± 0.55 MPa
for the 4:1 film. Also, elongation at break and Young modulus decreased from 17.11% ± 6.11% and
6.17 ± 0.01 N·m−2 × 107 for the control sample to 5.53% ± 0.42% and 1.71 ± 0.05 N·m−2 × 107 for
the 4:1 film, respectively. In addition, Tao et al. studied the effect of pH (3, 7 and 10) on the physical
properties of surimi-gelatin composite films at different blending ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8
and 0:10) by the casting technique [71]. The composite films of surimi and gelatin could be formed
irrespective of pH, and they became stronger under acidic or alkaline conditions. In general, as a higher
content of gelatin was used in the blend, higher values of tensile strength and lower elongation at
break were obtained.

Other biopolymers have been blended with gelatin with an improvement in gelatin film properties
such as chitosan [72,73], lignin [74], lignosulphonates isolated from spent sulphite liquors [75] or fish
protein isolate [76].

Nowadays, agricultural by-products are normally incinerated or dumped, causing environmental
problems such as air pollution, soil erosion and decreasing soil biological activity [77].
The incorporation of agricultural residues into polymer matrices is currently a trending topic in
research due to the relatively high strength, stiffness and low density of natural fibres present in
these residues [78–80]. Coconut husk, the fibrous external portion of the fruit of coconut palms,
is a by-product of the copra extraction process and is generally considered waste [81]. To revalorize
this by-product, the effect of ethanolic extracts from coconut husks (0%–0.4% w/w, on protein basis)
on properties of tilapia skin gelatin films obtained by casting were reported [82]. Gelatin film with
0.05% of ethanolic extract from coconut husk showed an improvement in mechanical properties with
Young modulus, tensile strength and elongation at break of 1048.03 ± 31.40 MPa, 41.93 ± 0.49 MPa
and 7.90% ± 0.03% for the control sample compared to 1129.63 ± 25.58 MPa, 43.65 ± 0.68 MPa and
7.63% ± 0.01% for the formulation with 0.05%. These positive results could be explained due to higher
interactions between functional groups of gelatin and phenolic compounds.

Soy protein isolate is an abundant, inexpensive, biodegradable, and nutritious raw material,
whereas microcrystalline cellulose is a commercially available material prepared by acid hydrolysis of
wood fiber, back-neutralization with alkali, and spray-drying [83]. The effect of these two compounds
in a gelatin matrix was studied after casting preparation of films. In particular, microcrystalline
cellulose content of 2.5% in soy protein isolate and gelatin matrix significantly improved mechanical
and barrier to water properties with values of Young modulus of 45.32 ± 3.28 MPa for the control to
107.35 ± 6.13 MPa for the formulation at 2.5%. Also, moisture content decreased from 20.28% ± 9.07%
for control to 16.81% ± 8.75% for the 2.5% film.

In recent years, innovative food packaging technologies using biopolymer-based nanocomposites
have emerged in response to increasing global waste disposal problems caused by non-biodegradable
petroleum-based plastic packaging materials [84]. In this context, chitosan nanoparticles have been
used as reinforcement agents in gelatin matrix [85]. The application of chitosan nanoparticles
synthesized by the ionic cross-linking method modified the crystalline structure of gelatin mainly
due to the nucleating effect of nanoparticles as detected by X-ray diffraction assays. This addition
also decreased the Tg of gelatin increasing chains mobility. Finally, the thermal stability of the
nanocomposite films increased up to 7 ◦C for the onset degradation temperature. Other authors
reported a remarkable increase in tensile strength caused by the addition of chitosan nanoparticles
from 7.44 ± 0.17 MPa for the control sample to 11.28 ± 1.02 MPa for films with a chitosan nanoparticles
content of 8% [86]. Also, an increase in elastic modulus with additive content from 287.03 ± 14.25 MPa
for control to 467.2 ± 49.63 MPa for the addition of 8% of the additive was reported.

Recent trends in the use of nanoclays as reinforcement agents in gelatin have been reported in the
literature, such as montmorillonites [87–89] and laponites [90]. However, there is still some controversy
regarding the current legislation about the use of these compounds for food packaging applications
despite the fact that the research in this area is becoming more and more relevant.
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For food packaging applications, it is necessary to maintain the gelatin structure to guarantee
the film stability under humid conditions. Up to now, glutaraldehyde has been used as a crosslinker
agent, but it has one great disadvantage, since it is a systemic and cell toxic compound [4]. To avoid
the use of this substance, Biscarat et al. developed alternative matrices based on gelatin type A
with three different crosslinkers: N-hydroxysuccinimide, Bis(succinimidyl)nona(ethylene glycol) and
ferulic acid to prepare films by dry-casting [4]. Among them, the use of ferulic acid allowed flexible
films to be obtained without using toxic agents. Also, it was shown that gelatin films with ferulic
acid supported humid conditions (98% RH at 20 ◦C) for 15 days without breaking, making them
a promising, environmentally friendly packaging system for food applications.

Other agents have been used in gelatin matrices to develop innovative food packaging
technologies that include smart materials to extend the safety and quality of food products during
their shelf-life. As an example, Musso et al. developed bio-films by casting based on bovine gelatin,
glycerol and three acid-base indicators (methyl orange, neutral red and bromocresol green) capable
of sense pH changes [91]. Results showed that colour was reversibly modified in all samples when
they were put in contact with liquid, semisolid and gaseous media at different pHs, making them
an environmentally friendly alternative to replace synthetic indicators.

3. Edible Film and Coating Applications

As has been mentioned in the present review, gelatin has several advantages when used as edible
film and coating in different food products. The present section is focused on current applications of
gelatin in food packaging reported in recent years (Table 2).

Table 2. Different gelatin matrices used in edible films and coatings for meat and fishery products.

Food
Applicability Product Matrix Processing Method Final Product Ref.

Meat products

Beef steaks Bovine gelatin type B mixed with chitosan Dipping into
matrix solution Coating [92]

Pork sausages Gelatin, pectin and sodium alginate blends Extrusion Film [93]

Pork loin Porcine gelatin Dipping into
gelatin matrix Coating [94]

Kabanosy dry sausages Pork gelatin, kappa-carrageenan
and glycerol

Dipping into
matrix solution Coating [95]

Chicken tenderloin Skate skin gelatin with thyme essential oil Casting Film [96]

Raw beef Gelatin, Tween 80 and essential oils of
Thymus vulgaris and Rosmarinus officinalis

Dipping into
matrix solution Coating [97]

Turkey bologna Gelatin, glycerol and Nisaplin and
Guardian CS1-50 antimicrobial additives Casting Film [98]

Bacon Gelatin Casting Film [99]

Fishery products

Rainbow trout Cold water fish skin, chitosan and glycerol Casting and dipping
into matrix solution

Film and
coating [100]

Cod fillets Bovine hide gelatin, chitosan, sorbitol and
glycerol with clove essential oil Casting Film [99]

Minced trout fillets
Cold water fish skin gelatin, chitosan,
glycerol, red grape seed extract and
Ziziphora linopodioides essential oil

Casting Film [101]

Rainbow trout fillets Food grade gelatin, glycerol, sorbitol,
Tween 20 and laurel leaf essential oil Casting Film [102]

Tuna meat
Gelatin, red pepper seed meal protein and
several plasticizers (glycerol, sorbitol,
fructose and sucrose)

Casting Film [96]

Fish sausages Warm-water fish gelatin, chitosan, shrimp
concentrate, Tween 80 and glycerol Casting Film [19]

Atlantic Salmon Warm-water fish gelatin, lignin, sorbitol
and glycerol Casting Film [103]

Salmon Porcine skin gelatin, barley bran protein,
sorbitol and grapefruit seed extract Casting Film [104]

Cold smoked Salmon Pork gelatin, chicken feather protein,
sorbitol and clove oil Casting Film [105]

Shrimps Gelatin, glycerol, sorbitol, Tween 20 and
orange leaf extract

Dipping into
matrix solution Coating [32]
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3.1. Meat Products

Regarding meat products, gelatin has been used blended with chitosan as a coating to reduce
colour deterioration from red to brown as a consequence of a gradual accumulation of metmyoglobin
in the meat’s surface, mainly due to oxygen exposition and lipid oxidation of beef steaks [92].
The gelatin-chitosan coating successfully maintained the organoleptic properties of beef steaks during
5 days of retail display increasing their shelf-life. In other work, the potential use of blend films from
pectin, gelatin and sodium alginate for breakfast pork sausages was reported [93].

According to Davis and Lin [106], approximately 50% of the worldwide daily protein intake is
from pork. The application of a gelatin coating (0%, 10% and 20%) led to an improvement in preserving
the quality and shelf-life of refrigerated pork meat during a storage period of 7 days. No significant
colour changes due to the retard of metamyoglobin formation and lipid oxidation were observed,
underlying the potential of gelatin as a bio-based material to be used as a coating to extend the shelf-life
of meat products. Similarly, Tyburcy and Kozyra studied the effect of coating dry sausages with pork
gelatin, kappa-carrageenan and glycerol as an alternative to vacuum packaging to avoid weight loss
which was directly related to profit loss [95]. As a result, coating meat reduced its weight loss and,
therefore, financial benefits could be achieved by the application of this type of packaging. However,
according to the authors, more studies are necessary to reduce coating thickness.

Gelatin extracted from natural sources such as skate skin was used with thyme essential oil to
prepare antimicrobial edible films for chicken tenderloin packaging [96]. The film containing 1%
thyme oil reduced the population of L. monocytogenes and E. coli on chicken tenderloin during storage.
The contamination of meat products with L. monocytogenes has been considered a serious public health
problem [107]. Oliveira et al. studied the antimicrobial effect of the addition of Thymus vulgaris and
Rosmarinus officinalis essential oils to gelatin solution in raw bovine meat pieces [97]. The effectiveness
and viability of this coating were proven with a reduction in L. monocytogenes proliferation accompanied
by acceptable sensory properties of the packaged meat. The use of antimicrobial coatings based on
gelatin to reduce L. monocytogenes growth was also reported in other ready-to-eat poultry meats such
as turkey bologna [98]. In this case, two commercial antimicrobial agents were added (Nisaplin
and Guardian CS1-50) into gelatin to obtain films using glycerol as a plasticizer by the casting
technique. The incorporation of the antimicrobial additives reduced the tensile strength of films
whereas increased the elongation at break. Despite these structural changes, active films effectively
inhibited L. monocytogenes on bologna at 4 ◦C up to 8 weeks.

The development of edible films and coatings and their applications on meat food products have
been subject of a great number of scientific publications during the last decade, but several patents have
also been commercialized. As an example, the development of gelatin and carboxymethylcellulose
films with potassium sorbate were proven to be effective in extending the shelf-life of bacon
(CN 102487988B patent) [108].

3.2. Fishery Products

Fish is one of the most perishable food products mainly due to chemical reactions, enzymatic
response, and microbial spoilage [109]. As a consequence of its reduced shelf-life, the freshness and
quality of fish have always gained the attention of Food Regulatory Agencies and Food Processing
Industries. Proper handling, pre-treatment and preservation techniques can improve the quality of fish
products. Much research in this field has been focused on the development of edible films and coatings
to increase fish products shelf-life maintaining their quality parameters. Coating and films based
on cold water fish-skin gelatin and chitosan blends were reported for rainbow trout fillet packaging,
showing antioxidant properties. However, higher protective effect against lipid oxidation was obtained
for coatings compared to films, due to higher chitosan migration in solution as an active additive [99].
Gelatin and chitosan blends were also used to obtain antimicrobial films for cod fillet packaging by
adding clove essential oil to the matrix, resulting in a drastic reduction in microorganism growth for
gram-negative bacteria [100]. In a different study, the development of chitosan-cold water fish skin
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gelatin films incorporated with grape seed extract (1% and 2%) and Ziziphora clinopodioides essential
oil (1% and 2%), separately and in combination, led to a decrease of L. monocytogenes and shelf-life
extension of minced trout fillets during refrigerated storage at 4 ◦C over a period of 11 days [101]. Also,
trout fillets wrapped with 8% gelatin films containing laurel essential oil (0%, 0.1% and 1%, w/w) and
vacuum packaged were evaluated to study the quality of fish during refrigerated storage at 4 ◦C over
a period of 26 days [102].

In order to revalorize a form of agricultural food waste, fatty tuna meat was packaged into blend
films of gelatin and red pepper seed meal isolated protein by the casting technique [96]. The results
showed the potential of this material as an antimicrobial and antioxidant packaging, being the optimal
formulation that containing 1% of gelatin and 4% of red pepper seed protein. As a result, tensile
strength and elongation at break were improved and L. monocytogenes and Salmonella Typhimurium
growths were reduced on tuna meat compared to the control. In a different work, the effect of
a formulation obtained from a shrimp concentrate waste from the seafood industry, as a coating
and film, on the shelf-life and characteristics of fish sausages was studied [19]. An extension of
the shelf-life of fish sausages to 15 days was observed with harder texture, lower pH and greater
microbiological control.

Regarding oxidative and organoleptic degradation, salmon is probably the most studied fish
since it is one of the most sensitive food products [110]. In fact, various studies have applied gelatin
in combination with other biopolymers or active additives such as lignin [103], and barley bran
protein and grapefruit seed extract [104] to protect salmon against cooking processes. In addition,
since cold-smoked salmon is generally consumed without cooking, it can cause serious health problems
in consumers due to contamination with pathogenic bacteria, mainly E. coli and L. monocytogenes [111].
To avoid this problem, chicken feathers, a by-product of the poultry industry, were successfully used
as a film base material after extraction of chicken feather protein in combination of gelatin and clove
oil as an antioxidant and antimicrobial active agent to package smoked salmon [105].

3.3. Other Food Products

Aside from meat and fishery products, other food products are also susceptible to be coated
or packaged into gelatin-based solutions or films. Potential applications of gelatin edible films in
the food industry may include the transport of gases (O2 and CO2), water vapour, and flavours
for fruits and vegetables [112]. As an example, refrigerated Red Crimson grapes were coated
with gelatin type A, starch and glicerol films obtained by the casting technique [2]. As a result,
an increase in gelatin concentration in the mixture provided an increase in thickness, WVP and
mechanical resistance reducing the total weight loss without influencing consumers acceptance.
Also, the incorporation of red bean powder as colorant and flavouring agent into gelatin films was
studied for use in candies and brewing food as it was reported in CN 103589173A patent [113].
In another patent, gelatin and glucomannan films with garlic juice were described as antimicrobial
and favouring agents (CN 103589168A patent) [114]. Other vegetables and fruits recently reported to
be coated or wrapped with gelatin-based films and coatings are carrots [115], cherry tomatoes [116],
calyx from physalis [117], oranges [118], banana and eggplant epicarps [119], fresh-cut melons [120],
peppers [121], strawberries [122], blueberry fruit [123], pineapple fruit [124] and minimally processed
persimmon [125].

Gelatin films prepared from cold-water fish show significantly lower WVP values than those
from warm-water fish, due to their higher hydrophobicity directly related to lower amounts of
two aminoacids, proline and hydroxyproline. As a consequence, cold-water fish gelatin films are
particularly useful for applications related to reducing water loss from refrigerated or frozen food
systems [126].

Residues generated by fruit and vegetable processing are well-studied sources of antioxidants,
bio-polymers and dietary fibres [127]. Indeed, large amounts of oil nutraceutical capsule waste from
coconut, chia, safflower and linseed, composed mainly of gelatin, are being generated with high waste
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treatment costs for industry. A reduction in the oxidative rancidity of sunflower oil exposed to films
developed from chia oil nutraceutical capsule wastes by the casting technique after storage at 40 ◦C
in the presence of light for 13 days was obtained [128]. Gelatin was extracted from capsule wastes
composed of gelatin (48%), water (30%) and glycerol (22%). Blueberry pomace fibre and extract wastes
were used as active additives. All gelatin films retarded oil lipid oxidation during the studied period.
However, gelatin films added with fibre and extract significantly reduced lipid oxidation compared
to the control film without antioxidants addition after 8 days of the oxidative treatment. Similarly,
the effect of films based on beet root residue powder, obtained from peels, stalks, and shavings wastes
derived from the production of linseed oil nutraceutical capsules, on the retardation of sunflower oil
oxidation was recently reported [47]. Sunflower oil containing no artificial antioxidants was stored
for 35 days at 35 ◦C and 54% RH and exposed to fluorescent light with an intensity of 900–1000 lux.
Peroxide values were determined at different times. Films with antioxidants had a positive effect on
the stability of sunflower oil during the entire storage period and, also, at the end of the experiment,
presenting the packed oil peroxide values under the recommended limit of Codex Alimentarius
(10 milliequivalent per oil kilogram). As a result, biodegradable films based on residues of beet root
and gelatin capsules could be a potential tool to control and retard rancidity of different oils.

4. Conclusions

The use of gelatin-based edible films and coatings represents a stimulating route for creating
new food packaging materials. Due to the hygroscopic properties of gelatin, some research studies
have been conducted to evaluate the overall effect of the addition of different substances such as
crosslinkers, strengthening agents, plasticizers or additives with antimicrobial or antioxidant properties
to gelatin-based products to improve the functional properties of gelatin-based edible films and the
shelf-life of food products. An increasing number of publications have reported the development
of gelatin-based films for meat applications as coatings to reduce the colour deterioration from red
to brown as a consequence of lipid oxidation. Regarding fish products, different studies have been
focused on the application of gelatin in combination with other biopolymers or active additives to
protect fresh fish against cooking processes and microbial/oxidation deterioration. In addition to fish
and meat, some other food products such as fruits and vegetables can be coated with gelatin-based
films in order to retard degradation processes due to the transport of gases (O2 and CO2) and water
vapour. Extensive research is still needed on new methods for gelatin-based film formation to improve
the final properties and potential applications.
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