
The hallmarks of human malignant gliomas are their marked inva-

siveness and vascularity. Glioma tumour cells invade beyond the

main tumour mass at diagnosis (Burger et al, 1983; Kelly et al,

1987) and render these surgically incurable. Since angiogenesis

and tumour invasion have been associated with increased extra-

cellular matrix (ECM) degradation in which the matrix metallo-

proteinase (MMP) family of enzymes plays a critical role, the

involvement of MMPs in glioma biology is coming under

increasing scrutiny.

MMPs are the principal secreted proteinases required for ECM

degradation in a variety of physiological and pathological tissue

remodelling processes, including wound healing, embryo implan-

tation, tumour invasion, metastasis and angiogenesis (Woessner,

1991; Aznavoorian et al, 1993; Mignatti and Rifkin, 1993).

At least 18 MMPs have been described (Pendas et al, 1997; Yong

et al, 1998), which are subdivided into the collagenases,

stromelysins, gelatinases and membrane-type MMPs (MT-MMPs)

(Sato, 1994). Their activities are controlled at the levels of gene

transcription, zymogen activation by proteolysis and inhibition of

active forms by the tissue inhibitors of metalloproteinases

(TIMPs) (Edwards et al, 1996). There is a wealth of evidence

for an association between either deregulated MMPs and aggres-

sive/invasive behaviour in human cancers (Davies et al, 1993;

Bernhard et al, 1994; Heppner et al, 1996). This is particularly

significant for gelatinase-A (MMP-2) and gelatinase-B (MMP-9)

since these are critical factors in basement membrane degradation.

Gelatinase-A and gelatinase-B are controlled through distinct

mechanisms. Progelatinase-A is widely expressed and is activated

by a cell surface mechanism involving MT-1, -2 or -3 MMPs

(Butler et al, 1997; Murphy and Knauper, 1997; Ueno et al, 1997).

In contrast, progelatinase-B is controlled primarily at the level of

gene expression, its transcription being activated by mitogens and

inflammatory mediators (Azzam et al, 1993; Cornelius et al, 1995;

Edwards et al, 1996). Furthermore, it is not activated by MT-

MMPs, but is activated more promiscuously by plasmin,

stromelysin-1 and gelatinase-A (Murphy and Knauper, 1997). The

levels of active, rather than latent, gelatinase-A correlate best with

the invasive cancer phenotype (Azzam et al, 1993; Brown et al,

1993); in breast cancer MT1-MMP is its activator (Ueno et al,

1997).
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Summary Matrix metalloproteinases (MMPs) have been implicated as important factors in gliomas since they may both facilitate invasion into

the surrounding brain and participate in neovascularization. We have tested the hypothesis that deregulated expression of gelatinase-A or B,

or an activator of gelatinase-A, MT1-MMP, may contribute directly to human gliomas by quantifying the expression of these MMPs in 46 brain

tumour specimens and seven control tissues. Quantitative RT-PCR and gelatin zymography showed that gelatinase-A in glioma specimens

was higher than in normal tissue; these were significantly elevated in low grade gliomas and remained elevated in GBMs. Gelatinase-B

transcript and activity levels were also higher than in normal brain and more strongly correlated with tumour grade. We did not see a close

relationship between the levels of expression of MT1-MMP mRNA and amounts of activated gelatinase-A. In situ hybridization localized

gelatinase-A and MT1-MMP transcripts to normal neuronal and glia, malignant glioma cells and blood vessels. In contrast, gelatinase-B

showed a more restricted pattern of expression; it was strongly expressed in blood vessels at proliferating margins, as well as tumour cells in

some cases. These data suggest that gelatinase-A, -B and MT1-MMP are important in the pathophysiology of human gliomas. The primary

role of gelatinase-B may lie in remodelling associated with neovascularization, whereas gelatinase-A and MT1-MMP may be involved in both

glial invasion and angiogenesis.
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Gelatinase-A, -B and MT1-MMP are over-expressed in glioma

cell lines/surgical specimens (Apodaca et al, 1990; Nakano et al,

1993, 1995; Rao et al, 1993, 1996; Nakagawa et al, 1994, 1996;

Rutka et al, 1995; Saxena et al, 1995; Sawaya et al, 1996; Uhm

et al, 1996; Yamamoto et al, 1996; Forsyth et al, 1998).

Immunohistochemistry shows gelatinase-A, -B, and MT1-MMP in

glioma tumour cells (Costello et al, 1994; Nakagawa et al, 1994;

Rao et al, 1996; Sawaya et al, 1996; Yamamoto et al, 1996). The

distribution of gelatinase-A and -B may be different, however, in

the tumour microvasculature. Some found both gelatinase-A and -

B in endothelial cells (Costello et al, 1994; Rao et al, 1996;

Sawaya et al, 1996) but others found only gelatinase-B in the

tumour microvasculature (Nakagawa et al, 1994). This difference

in the spatial distribution suggests the function of these in gliomas

may be quite different. We hypothesize that gelatinase-B may be

more important in neovascularization where it may be used by

capillary endothelial cells to degrade the basement membrane and

allow them to migrate towards the angiogenic stimuli; endothelial

cells are known to produce MMPs and TIMPs in-vitro

(Hanemaaijer et al, 1993; Cornelius et al, 1995; Lewalle et al,

1995; Zucker et al, 1995; Foda et al, 1996).

We compared the expression of gelatinase-A, -B and MT1-

MMP in 47 brain tumour specimens to seven control tissues and

tested the hypothesis that deregulated expression of gelatinase-A

or -B, or the activator of gelatinase-A, MT1-MMP, may contribute

to the aggressiveness of human gliomas. By studying these three

MMPs simultaneously in a large number of the same tumour

samples, we hoped to clarify their respective roles in glioma

biology.



Tissue collection

Procedures on patients were performed under a general anaesthetic

and tumour specimens placed immediately in liquid nitrogen and

stored at –80°C. The cervical lymph node containing the metas-

tasis of patient no.1 was obtained at autopsy by dissection, snap

frozen in liquid nitrogen and stored at –80°C. This study has the

approval of our institutional ethics board. All patients gave signed,

informed consent for their tissue to be used. The following tissues

were studied: 19 glioblastoma multiforme (GBMs) (including two

from the patients with extraneural metastases), one cervical metas-

tasis from a GBM, five meningiomas (M), seven anaplastic astro-

cytomas (AA), five malignant oligodendrogliomas (MO), eight

low grade gliomas (LGG), one clival chordoma and one spinal

ependymoma; these were compared to seven controls (two normal

brain samples obtained during non-brain tumour surgery and five

from autopsy). All glioma tissue was obtained from regions of

tumour corresponding to actively growing tumour; tumour regions

containing only necrosis or relatively normal brain were not

sampled.

Zymography

This in vitro assay uses gelatin-substrate gel electrophoresis to

measure the levels of metalloproteinase activity in tumour

samples. Frozen tissues were pulverized in liquid nitrogen and

homogenized in buffer (0.5 M Tris-HCl, pH 7.6; 0.2 M NaCl;

10 mM CaCl
2
; 1% Triton-X100) in an Ultra-Turrax-25 homo-

genizer. Ten Milligrams of total protein from homogenate

supernatants were electrophoresed on 10% denaturing sodium

dodecyl sulphate (SDS) polyacrylamide gels containing 1 mg

ml-1 of gelatin. Gels were washed overnight in washing buffer

(50 mM Tris-HCI; pH 8.0; 5 mM CaCl
2
; 2.5% Triton-X100) and

then incubated for 24 h at 37°C in the above buffer without Triton-

X100 so that renaturation of enzyme could occur. Gels were

stained with Coomassie blue and de-stained. Gelatinolytic activi-

ties were visualized as clear bands against a blue background. Gels

were analysed by computerized densitometric scanning of the

images using a Hewlett-Packard Scan Jet IIc Scanner, Deskscan II

software and the NIH ‘Image’ Program. The size and intensity of

each band were determined and its area plotted on graphs.

RT-PCR

RNA preparation
Total RNA was extracted from cells by the acid guanidinium isoth-

iocyanate method. The final RNA concentrations were determined

by absorption using a GeneQuant spectrophotometer (Pharmacia).

Reverse transcription reactions
Each 20 µl cDNA synthesis reaction contained 1 µg of total RNA,

1 × PCR buffer (10 mM Tris-HCl; pH 9.0; 50 mM KCl; 1.5 mM

magnesium chloride), 1 mM each of deoxynucleotide triphos-

phates (dATP, dGTP, dCTP, and dTTP), 20 units placental

ribonuclease inhibitor (RNAguard, Pharmacia), 200 units of

MuLV-reverse transcriptase (RT) (Bethesda Research

Laboratories) and 100 pmol of random hexamer oligodeoxynu-

cleotides (Pharmacia). Reaction mixtures were preincubated

10 min at 21°C prior to cDNA synthesis. The reverse transcription

reactions were carried out for 50 min at 42°C and were heated to

95°C for 5 min to terminate the reaction. Samples were cooled to

4°C or stored at –20°C until use.

PCR reactions
Multiplex PCRs were performed in 50 µl reaction volumes. Each

reaction contained 2 µl of RT reaction product as template DNA

(corresponding to cDNA synthesized from 100 ng of total RNA), 1

× PCR buffer, 80 µm of each deoxynucleotide (in addition to the

dNTP left over from the RT reaction, resulting in a final concen-

tration of approximately 180 µM) and 20 pmol each of 5′ and 3′

target primers. Two units of  DNA polymerase (Gibco-BRL)

were added to each tube during the first denaturation step (‘hot

start’) and equal aliquots (20 pmol) of GAPDH primer sets were

added at the appropriate cycle number by the ‘primer dropping’

method (Wong et al, 1994). Each PCR cycle consisted of a heat-

denaturation step at 94°C for 1 min, a primer-annealing step at

55°C for 30 s, and a polymerization step at 72°C for 1 min. PCR

amplifications were performed in a Temp-Tronic Thermal Cycler

(Barnstead/Thermolyne). Aliquots of PCR reaction products

(approximately 10 µl) equalized to give equivalent signals from

the internal control mRNA (GAPDH) were electrophoresed

through 2% agarose gels containing 0.2 mg of ethidium bromide.

To allow quantification of RT-PCR data, an initial ‘cycle test’ was

performed for each sample and primer set to determine the appro-

priate number of cycles required for detection of amplification

products while remaining in the exponential phase of PCR. For

gelatinase-A, gelatinase-B and MT1-MMP amplifications, the

operative cycle numbers were 29, 33 and 30 respectively. GAPDH

primers were added to the last 23 cycles. Gels were illuminated
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with UV light, photographed using Polaroid film, and analysed by

computerized densitometric scanning as described above. The

intensities of the ethidium bromide fluorescence signals were

determined from the area under the curve for each peak and the

data were plotted on graphs.

The following primers were employed:

Gelatinase-A 5′-primer=5′-GCGGATCCAGCGCCCAGAGAGACAC

3′-primer=3′-TTAAGCTTCCACTCCGGGCAGGATT

Gelatinase-B 5′-primer= 5′-TGGACGATGCCTGCAACGTG

3′-primer= 5′-GTCGTGCGTGTCCAAAGGCA

MT1-MMP 5′-primer= 5′-GCCCATTGGCCAGTTCTGGCCGG

3′-primer= 5′-CCTCGTCCACCTCAATGATGATC

GAPDH 5′-primer= 5′-CGGAGTCAACGGATTTGGTCGTAT

3′-primer= 5′-AGCCTTCTCCATGGTGGTGAAGAC

The size of the amplification products were 473 bp for gelatinase-

A, 454 bp for gelatinase-B, 548 bp for MT1-MMP and 306 bp for

GAPDH respectively.

In situ hybridization for gelatinase-A, -B and MT1-MMP

mRNA

A 348 bp l-HI fragment of human gelatinase-A (sequence

corresponding to 1404–1752) was obtained by RT-PCR from

human Hs68 cell RNA and cloned into pBluescript KS-

(Stratagene). The construction of the 390 bp gelatinase-B probe

has been described previously (Urbanski et al, 1992). The MT1-

MMP probe was a 420 bp region encompassing the pro-domain

and part of the catalytic domain, cloned in pBluescript SK+ based

on the sequence of Sato et al (1994) and generously provided by

Dr Suneel Apte, Cleveland Clinic Foundation, Cleveland, OH,

USA. For gelatinase-A, antisense riboprobe was generated with T3

polymerase from template linearized with I, and sense ribo-

probe was produced with T7 polymerase and HI-cut plasmid.

Corresponding probes for gelatinase-B involved: T7 polymerase

and dIII-cut template (antisense), T3 polymerase and I-cut

template (sense). For MT1-MMP, we used T3 polymerase and

I-cut template (anti-sense); T7 polymerase and RI-cut

plasmid (sense). Riboprobes were prepared and labelled with

digoxygenin (DIG)-labelled-UTP (Boehringer Mannheim, Laval,

Quebec, Canada) following the manufacturer’s instructions.

Confirmation of sense and antisense riboprobe was confirmed by

Northern blot analysis. Antisense probes but not sense probes,

detected a single band of the appropriate size for all three genes.

In situ hybridization was performed as described previously

(Harvey et al, 1995; Leco et al, 1997). Briefly, 4-µm paraffin-

embedded brain sections were dewaxed in xylene and rehydrated

through a series of graded ethanols. Sections were treated with

proteinase K (20 µg ml-1), acetylated and then prehybridized in

buffer containing 50% formamide, 5 × SSPE, 1 × Denhardt’s solu-

tion, 20 mM DTT for 6 h at 50°C. Hybridization was done at 60°C

overnight in the same buffer to which 20 ng ml-1 of probe and

8 µg ml-1 of  tRNA were added. After hybridiza-

tion, sections were then washed once in 2 × SSC at 37°C, treated

with 20 mg ml-1 RNase A at 37°C, washed once in 2 × SSC at

50°C, once in 50% formamide at 50°C, twice in 2 × SSC at 50°C

and once in 0.5 × SSC at 50°C; all for 30 min each time. Following

blocking, sections were incubated in a 1:1000 dilution of sheep

anti-DIG-alkaline phosphatase conjugated antibody (Boehringer

Mannheim), for 4 h at room temperature. After extensive washing,

NBT/BCIP chromogens were applied to sections and colour was

developed in the dark until the desired intensity was obtained. The

reaction was terminated by placing sections in 20 mM Tris-HCl,

pH 7.5, 10 mM EDTA. Sections were then dipped briefly in water,

counter-stained for 3 min in 0.02% fast green, washed for 1 min in

water and mounted with Advantage aqueous mounting medium

(Accurate Chemical). The slides were photographed on Kodak

Royal Gold 35 mm film using a Zeiss photomicroscope II under

bright-field illumination.

Statistical analysis

The quantitative expression of gelatinase-A and -B in terms of

lysis per mg of protein from the zymograms, or in terms of their

transcript intensity for gelatinase-A, -B and MT1-MMP from

RT-PCR were compared using the Kruskal–Wallis test. These

quantitative expressions were correlated with glial malignancy

(normal low grade versus malignant glioma versus GBM) using

Spearman’s rank correlation coefficient. Data for meningiomas

and other brain tumours were plotted but not analysed statistically.



Detection of gelatinase-A, -B, and MT1-MMP mRNA by

RT-PCR analysis

Gelatinase-A, -B and MT1-MMP mRNA expression was evalu-

ated by RT-PCR and compared with frozen samples of histologi-

cally defined normal brain tissue and brain tumours (Figure 1).

Gelatinase-A, -B and MT1-MMP RNA expression was very low

in the normal samples. PCR amplification of cDNA prepared

from frozen samples defined histologically as low grade glioma

(oligodendroglioma, astrocytoma, oligo-astrocytoma, pilocytic

Control LG MA/MO GBM Meningioma

Gelatinase A
GAPDH

GAPDH
Gelatinase B

MT-MMP1
GAPDH

Figure 1 Representative examples of expression of gelatinase-A, -B and
MT1-MMP mRNA using RT-PCR in human brain tumour and normal brain
tissue. Two control samples have low levels of transcripts of all three genes.
Tumour levels of gelatinase-A and MT1-MMP were higher than in normal
tissues and varied somewhat but did not strongly correlate with tumour
malignancy. Gelatinase-B RNA levels were also variable but were much
higher in GBMs than in low grade gliomas. Higher levels of gelatinase-A and
MT1-MMP than gelatinase-B RNAs were seen in meningiomas.
Abbreviations for all Figures: AA = anaplastic astrocytoma; AO = anaplastic
oligodendroglioma; CLN-1 = cervical lymph node metastasis; ENM =
extraneural metastasis; GBM = glioblastoma multiforme; GBM-1, -2 = first
and second GBM patient with extramural metastases; LGG = low grade
glioma; MO/MA = malignant oligodendroglioma or malignant astrocytoma;
N1-7 = normal tissue; Other = 1 clival chordoma and 1 spinal ependymoma;
RA = reactive astrocytes
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astrocytoma), malignant gliomas (anaplastic astrocytomas or

malignant oligodendroglioma), glioblastoma, meningioma, or

other (clival chordoma or spinal ependymoma) demonstrated the

presence of gelatinase-A, -B and MT1-MMP transcripts; these

were consistently over-expressed in tumour samples compared to

normal tissues. Expression of gelatinase-A and MT1-MMP was

highly variable and did not correlate with degree of glioma

malignancy ( = 0.2024 Spearman’s rank correlation coefficient,

 = 0.2185 and  = 0.2406 Spearman’s rank correlation coefficient,

 = 0.1436 respectively) (Figure 2). In contrast, gelatinase-B RNA

levels were also variable but correlated more strongly with glioma

malignancy with higher levels seen in higher grades

( = 0.4453 Spearman’s rank correlation coefficient,  = 0.0068).
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Figure 2 Quantification of gelatinase-A, -B, and MT1-MMP mRNA in
human brain tumours. The relative intensities of bands using densitometry
were compared to the average of two control samples, and plotted in
arbitrary units. Correlations between normal tissues and the various grades
of gliomas were determined for gelatinase-A (A), gelatinase-B (B), and MT1-
MMP (C)
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Figure 3 Zymographic analysis of gelatinase-A and -B activities in human
brain tumours and normal brain. Progelatinase-A and progelatinase-B were
detected as prominent bands of activity at 72 kDa and 92 kDa respectively.
Minor, faster migrating forms that may be activated species were seen in a
few specimens. Higher molecular weight forms which may correspond to
complexes of pro-gelatinases with TIMPs were also observed
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A B C

IHG

D E F

Figure 5 Paraffin sections of GBMs stained using in situ hybridization for gelatinase-A (A, B, C), MT1-MMP (D, E, F), and gelatinase-B (G, H, I). Gelatinase-A:
(A) Normal cortex shows signal in neurons, less in glia, and blood vessels (100×). (B) The tumour margin of a GBM shows diffusely positive staining; signal is
seen in tumour cells and blood vessels (100×). (C) A higher power (400×) picture of the GBM seen in panel B which shows diffusely positive staining even in the
centre of the tumour. MT1-MMP: The distribution of MT1-MMP mRNA is similar to gelatinase-A. (D) Normal cortex shows MT1-MMP signal is present in
neurons and glia. (E) Both tumour cells and blood vessels show staining for MT1-MMP at lower (100×) and higher powers (400×) (F) both at the centre and
tumour margins in this GBM. Gelatinase-B: (G) Normal hippocampal cortex shows gelatinase-B is localized to neurons (the cytoplasm more than nucleus) and
glia. (H) At the tumour margin in this GBM the gelatinase-B is localized to perivascular cells (100×). There was no signal seen at the tumour centre but only at
the proliferating margins. (I) A higher magnification (400×) of panel H showing expression is restricted to cells that are not immediately adjacent to the lumens of
these small blood vessels which may be smooth muscle cells or pericytes
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Though few meningiomas were studied, there were very high

levels of gelatinase-A and MT1-MMP expression. Of the four

tumour specimens showing the highest levels of gelatinase-B

expression, two were from patients whose tumours subsequently

had extraneural metastases and a third from a patient whose GBM

eroded through his skull (Table 1); both are very rare events.

Zymographic analysis

The activities of gelatinase-A and -B in human brain tumours and

normal tissue were analysed by gelatin zymography. The latent

form of gelatinase-A (72 kDa) was detected in almost every tissue

extract. Low levels of both gelatinase-A and -B activity were

found in the control specimens and these were similar to the

activities seen in low grade gliomas. Progelatinase-A levels were

highly variable within each tumour type and correlated with the

degree of tumour malignancy ( = 0.4091 Spearman’s rank corre-

lation coefficient,  = 0.0061) (Figures 3 and 4). We found active

gelatinase-A only in the two patients who had extraneural metas-

tases from their GBM and in the cervical extraneural metastasis

itself in one patient. Progelatinase-A was high or intermediate in

meningiomas.

For gelatinase-B there was a trend for higher levels of activity to

be seen in more malignant gliomas; levels were highest in

GBMs, and consistently higher than activities in controls or low

grade gliomas ( = 0.3543 Spearman’s rank correlation coefficient,

 = 0.018). Gelatinase-B activity was much lower than gelatinase-

A in meningiomas (see Figure 4).

Localization of gelatinase-A, -B and MT1-MMP mRNA in

normal brain and human brain tumour tissues

The identity of cells expressing gelatinase-A, -B and MT1-MMP

was determined by in situ analysis of paraffin-embedded sections.

As observed in our analysis above, gelatinase-A and MT1-MMP

were expressed in very low, but detectable, levels in normal brain

tissue, most prominently in neurons with much less signal in glial

cells and blood vessels. In tumours, gelatinase-A and MT1-MMP

were expressed in the tumour cells and in many cell types in the

surrounding stroma, including neurons, glia and blood vessels

(Figure 5A–F). Gelatinase-B expression (Figure 5G–I) was

present at very low levels in normal tissues (principally neurons in

the hippocampus; Figure 5G and data not shown) but in the

tumours it was largely restricted to regions in blood vessels that

were undergoing endovascular proliferation at the infiltrating

border of the tumour (Figure 5H, I). For most tumours studied

there was no detectable staining of gelatinase-B in tumour cells

themselves, in the rest of the surrounding stroma, or in blood

vessels in other areas that were not proliferating, such as the centre

of the tumour. However, in three other patients the pattern of

expression was more diffuse and gelatinase-B expression was

present in all cell types in the tumour.

These in situ hybridization data can be summarized as follows:

1. Expression of gelatinase-A and MT1-MMP showed close

correspondence. Both were present in neurons in normal brain,

and in both tumour and stromal cell types in tumour. Though

in situ hybridization is not quantitative, signals were weak in

normal brain, but usually strong in tumours, indicating a

general concordance with the RT-PCR data in Figure 1.

2. Gelatinase-B was also weakly expressed in neurons in normal

brain, but in contrast to gelatinase-A and MT1-MMP its

expression in tumours was most evident in proliferating blood

vessels at tumour margins. Some tumours showed endothelial

cell positivity for gelatinase-B transcripts, while the example

shown in Figure 5 had pronounced expression in surrounding

cell types which are likely vascular smooth muscle cells or

pericytes.



The significance of the present work rests on several key points.

Firstly, this is the largest study undertaken to date on primary

human brain tumour specimens to assess the role of MMPs, and

the first to simultaneously evaluate the contributions of gelatinase-

A, gelatinase-B and MT1-MMP in a common set of brain tumour

specimens. Secondly, our results show that although all three

MMPs are likely connected in some way with malignant behaviour

in gliomas, gelatinase-B is the most closely correlated with tumour

grade. Thirdly, we provide the first in situ hybridization data to

localize the cellular origins of MMP expression in gliomas. These

studies lead to the notion that gelatinase-B is primarily involved in

tumour neovascularization, wheras the widespread and similar

localization of gelatinase-A and MT1-MMP mRNAs suggests

involvement in both invasion and angiogenesis.

Our in situ hybridization results show that the transcripts of

gelatinase-A, -B and MT1-MMP have different cellular origins.

Gelatinase-A and MT1-MMP were both expressed by many cell

types in gliomas, including the microvasculature and the tumour

cells themselves (Costello et al, 1994; Yamamoto et al, 1996;

Sawaya et al, 1996). We observed expression of both gelatinase-A

and MT1-MMP RNAs mostly in neurons in normal tissue, with

low signals from blood vessel elements. This suggests that an

important contribution of the increased expression of gelatinase-A

and MT1-MMP in malignant gliomas compared to normal brain

relates to neovascularization at tumour margins and blood vessel

expansion deep within the tumour. The other component of

increased gelatinase-A and MT1-MMP expression is the tumour

cells themselves, which confirms other immunolocalization work

(Yamamoto et al, 1996; Sawaya et al, 1996).

The restricted perivascular localization of gelatinase-B expres-

sion by in situ hybridization agrees with immunodetection of

gelatinase-B (Rao et al, 1996; Nakagawa et al, 1994). In some

tumours we observed gelatinase-B in endothelial cells and tumour

cells but in others we found expression confined to cells lying deep

to the vessel endothelium. These are most likely pericytes and/or

smooth muscle cells and angiogenesis involves cooperation

between these (Folkman, 1971; Hirschi and D’Amore, 1996).

Pericyte/vascular smooth muscle cell (VSMC) proliferation has

been suggested to be an early event in microvascular proliferation

in GBMs (Wesseling et al, 1995) where it may be critical for new

vessel formation (Wesseling et al, 1995; Haddad et al, 1992).

Gelatinase-B expression may be associated with early rapid peri-

cyte proliferation during angiogenesis and later during vessel

growth expression is taken over by endothelial cells themselves.

Several changes in gene expression in the tumour and the

surrounding vasculature must occur to induce neovascularization

(Hanahan & Folkman, 1996). Evidence that MMP activity is

required for neovascularization includes observations that TIMPs

and synthetic MMP inhibitors block angiogenesis in a number of

experimental systems (Rosenthal et al, 1994; Johnson et al, 1994;
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Schnaper et al, 1993; Taraboletti et al, 1995); though some

(Thorgeirsson et al, 1996) suggest the anti-angiogenic activities of

TIMP-1 may not be mediated by its anti-metalloproteinase effects.

Inhibition of MMP activity using a synthetic inhibitor GM6001

has also been shown to block smooth muscle cell migration in vivo

which may also contribute to the antiangiogenic actions of these

molecules (Bendeck et al, 1996). Our demonstration that gelati-

nase-B expression is localized to the vasculature at the prolifer-

ating borders in gliomas provides further support for the

importance of MMPs in angiogenesis.

We provide further support for the notion that in gliomas the

MMPs gelatinase-A and MT1-MMP are both produced and used

by the tumour cells themselves (Rao et al, 1996; Costello et al,

1994; Nakagawa et al, 1994; Yamamoto et al, 1996; Sawaya et al,

1996). While it would seem intuitively obvious that tumour cells

would produce MMPs in many systemic cancers it is the

surrounding non-tumoural stromal cells that produce them

(Heppner et al, 1996; Pyke et al, 1993; Poulsom et al, 1993). One

explanation for the differences in cellular expression of MMPs in

gliomas versus in systemic cancers may be the nature of the

specialized ‘stroma’ in the brain. Systemic cancers are often

confined by tough basement membranes and collagen-rich tissue

whereas the brain’s ECM is composed chiefly of hyaluronan and

proteoglycans (Giese and Westphal 1996). In addition to posing a

less formidable barrier to invasion the brain’s stromal environment

may regulate proteinase expression in glioma cells.

Malignant gliomas, and GBMs in particular, are both highly

invasive and vascular tumours and our results suggest that both of

these processes depend in part on the increased expression of

gelatinase-A, MT1-MMP and gelatinase-B. Changes in the

expression patterns of several MMPs might be important in

different human brain tumours at different times in their malignant

progression. For example, gelatinase-A may be expressed at an

early stage in tumorigenesis and support glioma invasion but

gelatinase-B may be employed at later stages in malignant

progression to help provide and maintain tumour vasculature. The

mechanisms underlying the upregulation of these MMPs in

gliomas are unknown and need to be better understood. This

would provide important information about the regulatory path-

ways controlling glioma invasion and angiogenesis and suggest

appropriate targets for clinical therapies.
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