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Gelation in Physically Associating Polymer Solutions
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Simulations were performed on solutions of associating polymers, where the pairing energy between
“stickers” is comparable to thermal energy, to gain insights into the nature of reversible gelation. At
high temperatures, interchain associations relax over microscopic time scales, so that geometrical perco-
lation is unrelated to macroscopic gelation. However, with decreasing temperature, the stickers undergo
a clustering “transition,” resulting in a transient localization of stickers and hence the chains. These
findings imply a close similarity between the dynamics of associating polymer solutions and vitrification
of glass-forming liquids, in agreement with many experimental results.
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Solutions of macromolecules with moieties capable of
physical association commonly form thermoreversible
gels either on heating or cooling [1-4]. This poorly un-
derstood state of matter, which exhibits elasticity for small
and rapid deformations and flow over long times, is ubiq-
uitous in contexts ranging from colloids, emulsions, foods,
viscosity modifiers and to the cytoskeleton of living or-
ganisms [5,6]. There are two extreme types of gels formed
by physically associating polymer solutions. When the
sticker pairing energy is large (i.e., €, > kpT) the sticker
cluster lifetimes are effectively infinite. In these well-
studied examples, geometrical percolation closely cor-
responds to gelation, i.e., the point where the solution
acquires solidlike character [7—16]. In the other extreme,
when €, ~ kpT, the stickers pair and unpair rapidly.
Since the clustering times are comparable to the time
scales for monomer size displacements, percolation does
not guarantee solidlike behavior at long times. Indeed,
recent experimental [17] and theoretical [18] studies
of gelation in colloid solutions have suggested that
gelation is not synonymous with percolation, but rather
is a dynamic, ergodicity breaking transition, similar to
vitrification. While these ideas accord with many recent
experiments on polymer solutions (see, for example,
[19-21]), the molecular origins of this behavior have not
been established.

Here we present computer simulation results on the on-
set of thermoreversible gelation in solutions of associating
polymers. We begin by determining the phase boundary
for liquid-liquid coexistence for these solutions. Next, we
locate the geometrical percolation line, and find hardly any
changes in chain dynamics when this line is crossed [22].
Instead, stickers cluster into multiplets on further cooling
(“clustering transition”), leading to an abrupt increase in
cluster lifetimes over a small temperature range. Analysis
of the diffusivity of the chains, their mean squared dis-
placement, and the non-Gaussian parameter [see Eq. (1)]
show that the dynamics of these associating polymer so-
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lutions is phenomenologically similar to vitrification [23].
The surprising aspect of our findings is that, in contrast
to traditional glass formers, such glasslike behavior occurs
even though the polymer concentrations are low.

We consider polymer chains on a cubic lattice with
periodic boundary conditions in all directions. Chain
lengths of N = 100 are considered, where stickers are
regularly placed 10 monomers apart. Each chain thus
contains r = 10 stickers. The lattice consists of chains
and holes, a system which is isomorphic with an incom-
pressible polymer solution. Nearest neighbor pairs of
chain monomers have interaction energies as follows:
—€s # 0 and €, = €,,, =0, where the subscript
s stands for a sticker, while m denotes a nonsticky
monomer. The energy of interaction of any species
with a hole is zero. Thus, the “sticking” energy — ey
represents the only attractive interaction, and the chain
backbone is in an athermal solvent (the “holes”). The
reduced temperature is defined as T* = kpT/€;,. We
determined the phase coexistence of these solutions by the
histogram reweighting method as in [24]. Figure 1 shows
the phase boundary where the solution separates into
polymer-rich and solvent-rich phases.

Next, we focus on locating the geometrical percolation
line. We consider systems in the canonical ensemble,
i.e., fixed N,,V,T, and consider equilibrium snapshots.
We define two chains to be “clustered” in a snapshot if a
pair of nearest neighbors corresponds to an intermolecu-
lar sticker-sticker contact. For polymer volume fractions,
¢, beyond the percolation threshold, the probability distri-
bution function for cluster sizes is bimodal, with one peak
corresponding to the “sol” and the other to the “perco-
lated component.” (This distribution has been illustrated
in [24].) The volume fraction of monomers that span
the system, ¢y, is an “order parameter” for the perco-
lation transition. We plot ¢, as a function of ¢, and
identify the percolation transition as the extrapolated point
where ¢ = 0 [24]. Figure 1 shows that the geometrical
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FIG. 1. Behavior of chains of length N = 100. The closely
spaced symbols (diamonds) represent phase equilibria between
a polymer rich and a polymer lean phase, and the dark full line is
a fit to the data using an Ising model scaling function [25]. The
phase equilibria were enumerated for three box sizes 253, 30°,
and 36° and found to be independent of system size. The squares
are the geometrical percolation transition line, the triangles the
clustering line, and circles the Vogel line. All dotted and dashed
lines are guides to the eye.

percolation line determined in this fashion rises sharply
when plotted as T* vs ¢ [26].

Since gelation is experimentally defined in connection
with transport properties [17,27], we consider the dy-
namical properties of these systems. Kovacs and others
[28,29] have shown that Monte Carlo simulations with
local flip elementary moves allows for the simulation of
the dynamics of these systems. However, it must be noted
that momentum is not conserved during each Monte Carlo
move. Since hydrodynamic interactions are ignored, the
dynamics of the chains will follow the Rouse model. We
have utilized this method to simulate the mean squared
displacement of the centers of mass of the chains, {r2), as
a function of ¢, the number of Monte Carlo cycles. We
obtain linear plots of (r?) vs ¢ at long times (see Fig. 2a),
except at the lowest temperature. For the ¢ = 0.2 systems
considered in Fig. 2, geometrical percolation occurs for
T*~1 (see Fig. 1). However, Fig. 2a shows that the chain
dynamics hardly change between T = % and T = 0.4.
Consequently, the stickers do not significantly affect chain
dynamics near the geometrical percolation transition
[22,30]. Thus, the geometrical percolation line is not
synonymous with gelation in our model of associating
polymers.

To understand the reversible gelation in these systems,
we consider if a thermodynamic signature of the onset
of this transition can be located. We calculated U™
(= U/eg), the dimensionless mean energy per mono-
mer, and the dimensionless heat capacity C; = (dU*/
dT*)yn, as a function of 7. While the U* data (not
shown) are relatively featureless, Fig. 3 suggests a change
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in the variation of C in the vicinity of 7™ = 0.37
for ¢ = 0.1. At high temperatures, entropy dominates
and stickers do not tend to cluster. For T* < 0.37,
however, the stickers have a strong propensity to as-
sociate, and, consequently, the average size of the
clusters grows upon cooling. We define the “cluster-
ing onset temperature,” Thusters as the point where C}
shows a strong increase, and a plot of its locus as a
function of ¢ is given in Fig. 1. Notably, the clustering
temperature is generally below the geometrical percolation
temperature at any given ¢ (Fig. 1). We do not calculate
the clustering line for concentrations below percolation,
i.e., at lower ¢, since the resulting chain clusters, which
do not percolate the system, cannot yield gel-like struc-
tures which are of interest to this work.

Since the average size of sticker clusters, n, increases
below Tusters We expect that the effective monomer flip
time, 7 = 7o exp(n/T") increases dramatically on cooling.
Here 7y is the microscopic attempt time, and 7 is the aver-
age number of stickers that neighbor the sticker of interest.
Consistent with these ideas, Figs. 2a and 4 show that the
sticker dynamics and hence chain dynamics noticeably
slow on cooling. Figure 4a plots the waiting time distri-
bution, i.e., the probability that a sticker moves at time ¢
after not having moved from time t = 0 to t = ¢ [31].
It is clear that, for the lowest two temperatures, the
sticker dynamics are dramatically slowed, as evidenced
by this probability distribution function showing a long
time tail. Figure 4b plots the cluster survival probability,
Peuster(?), which is the fraction of the largest cluster that
does not break off after ¢ time steps. This quantity clearly
illustrates the dramatic increase in the lifetime of the per-
colating cluster on cooling. Consistent with these ideas,
Figure 2a shows that, as temperature is lowered, the chain
displacements show an increasing tendency towards local-
ization, as indicated by a flattening of the (r?) vs ¢ plots at
intermediate times. Similarly, the diffusion constant, D,
which is extracted from the long-time Brownian limit fol-
lowing the Einstein equation, (r?) = 6Dt, rapidly drops
with decreasing temperature, especially below 7* ~ 0.4
(see Fig. 2b) [32]. This dramatic slowing down is a conse-
quence of the stickers: athermal chain systems (7 = )
at these low volume fractions show no sign of glass for-
mation. Notably, these results are not a manifestation of
slowing down in the vicinity of the critical point for
polymer-solvent phase separation, since much of our data
are far from the estimated critical composition of ¢ = 0.1
(see Fig. 1).

We estimate the characteristic time of the crossover be-
tween chain localization and Brownian motion by employ-
ing the non-Gaussian parameter «,

IO
a = 5(r2)2

which is 0 for Brownian motion. Figure 2c shows that
a vs t has a maximum whose magnitude increases with

-1, ey
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FIG. 2.

(a) Plots of the mean squared center of mass displacement of the chains of length N = 100 as a function of time (in units

of Monte Carlo cycles) at ¢ = 0.2 at various temperatures as indicated. The dashed line which effectively overlaps the data at
T* = 0.4 corresponds to 7% = 0. The lines shown for 7" = 0.3 and 0.2 correspond to slopes of 1, which is expected for chains
undergoing Brownian diffusion. (b) Plot of InD obtained from the Brownian regime in (a) for ¢ = 0.2 (squares) and 0.15 (triangles)
as a function of 7*. Lines are fits to the VF equation. There is considerable uncertainty in the low temperature data points [32].
(c) Plot of the non-Gaussian parameter « as a function of time for ¢ = 0.2. Again the dashed line corresponds to 7* = . Data
at 7" = 0.3, which overlap the data at 7* = 0.4 and % are not shown for convenience.

decreasing temperature, especially below 7* = 0.4. This
trend is consistent with an increased tendency for chain
localization with decreasing temperature. The time corre-
sponding to the maximum in «, t*, which determines the
crossover from localization to diffusive motion, is directly
related to the structural relaxation of the fluid as deter-
mined from viscoelastic measurements or from inelastic
scattering [33]. We find that ¢* increases with decreas-
ing temperature, and in particular, ¢* increases from ~10°
for T* ~ 0.4 to ~10® for T* = 0.2, which is in accord
with the reduction of D in the same temperature range.
Thus, although there is no dramatic slowing down of chain
diffusion near the geometrical percolation line, there is a
striking resemblance between chain dynamics at low tem-
peratures and diffusion in supercooled liquids [33]. While

05 [ T 17 77 T T T T T ]
s N=100 ]
04af A 4=0.1 ]
: N :

03 F \ .
g 02f ‘* :
0.1 F . :\* ]
A - A‘A‘ ]

- l\k .

0.0 :— \\ ‘AAM _:
C \ ]
01— PNy T
0.0 0.2 04 0.6 0.8 1.0

FIG. 3. Plot of the dimensionless heat capacity, C}, as a func-
tion of T* for a system with ¢ = 0.1.
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there are recent suggestions that gelation should have simi-
larities to vitrification [18,34], the evidence supporting this
hypothesis has been limited. The data presented in Fig. 2
establish this connection directly.

Glass-forming liquids exhibit a universal phenomenol-
ogy in the temperature dependence of viscosity and diffu-
sivity, and it is interesting to examine if these ideas also
apply to our gelation data. We find that the D data can be
ap%roximgtTely described by the Vogel-Fulcher (VF) form,
Inp: = 7=, where Dy and C (the “fragility” parameter)
are constants, and T represents an extrapolated tempera-
ture at which the diffusion constant goes to zero (Vogel
temperature in glass forming liquids). For this VF form
to be an appropriate descriptor of the diffusion data re-
quires that the fit values of C < 5 [23]. For larger C val-
ues an Arrhenius dependence of D on temperature is more
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FIG. 4. (a) Plot of probability that a sticker does not move

up to a time #, but then moves at that time, Pgce(f) as a
function of time ¢ in units of Monte Carlo cycles. Data are
shown for 4 temperatures at ¢ = 0.2. (b) Percolating cluster
survival probability, Pcyseer(2), for the same systems as in (a).
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appropriate. We find C = 1 for ¢ = 0.15 and C = 2 for
¢ = 0.2, which strongly argue in favor of using the VF
form to describe the D data. Thus, the diffusive behavior
of these systems is consistent with the behavior of frag-
ile glass formers [23]. Following experimental practice
[17,27], we define the gelation line as a locus of points
where the viscosity of the solution diverges, i.e., To(¢).
Figure 1 shows that Ty varies weakly over the ¢ range
considered in our work. While some of the extrapolated
T, values lie inside the binodal, we note that all of our ex-
trapolations were conducted with data in the single phase
alone. Thus, Ty is a hypothetical temperature relevant to
describing the slowing down of polymer solution dynam-
ics in the single phase region. Further, we emphasize that
the gel formation in these situations is driven primarily by
the clustering of stickers which slow down their dynamics,
and hence those of the chains. The geometrical percola-
tion of chains connected by these frozen sticker clusters
then yields solidlike behavior akin to gel formation.

The term “gelatinous” derives from the Latin “gelare”
which means to freeze [35]. Consistent with this notion,
we find that the vitrification of typical liquids is remark-
ably similar to the thermoreversible gelation of associating
polymers [36]. In both cases, we find a rapid drop in diffu-
sivity, transient particle localization, and increasingly long
structural relaxation times upon cooling. A striking as-
pect of our results is that such glasslike phenomena occur
for associating polymers and colloid solutions [17] even
at low solution concentrations, due to the dominance of
sticker pairing interactions.
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