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Abstract

The main aim of this paper is to recall the notion of the Gelfand-Tsetlin
bases (GT bases for short) and to use it for an explicit construction of or-
thogonal bases for the spaces of spherical monogenics (i.e., homogeneous
solutions of the Dirac or the generalized Cauchy-Riemann equation, re-
spectively) in dimension 3. In the paper, using the GT construction, we
obtain explicit orthogonal bases for spherical monogenics in dimension 3
having the Appell property and we compare them with those constructed
by the first and the second author recently (by a direct analytic approach).
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1 Introduction

The main aim of this paper is to discuss explicit constructions of orthogonal
bases for the spaces of spherical monogenics (i.e., homogeneous solutions of
the Dirac or the generalized Cauchy-Riemann equation, respectively) mainly in
dimension 3. The theory of solutions to the Dirac or to the Cauchy-Riemann
operator can be seen at the same time as generalization of the (one-dimensional)
complex function theory as well as refinement of harmonic analysis. Both func-
tion classes share many properties with each other and are quite analogous to
the complex case. The theory for the solutions of the Cauchy-Riemann opera-
tor contains the concept of hypercomplex derivability whereas in the case of the
Dirac equation due to the full rotational invariance of the solutions more tools
from harmonic analysis find a direct application.

To construct orthogonal bases for spaces of solutions of differential equations
is, in general, a difficult problem. We show in the first part of the paper that the
approach formulated by Gelfand and Tsetlin makes a construction of orthogonal
bases easier in case of the Dirac equation.

The notion of a Gelfand-Tsetlin basis (GT basis) was formulated for irre-
ducible (finite dimensional) modules over a general classical simple Lie algebra
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g (see [28] for the original paper and [37] for a review paper with many further
citations). The main problem solved in [28] was to write down matrices repre-
senting basis elements of g with respect to the GT basis. In the case when an
irreducible g-module is realized explicitly (usually as a subspace of the space of
solutions of invariant differential equations), it is often possible to construct its
GT basis in quite algorithmic way. The main advantage of GT bases for practi-
cal applications is the fact that the GT bases are automatically orthogonal with
respect to any invariant inner product on the given irreducible module.

The problem of constructing basis functions in spaces of monogenic func-
tions has a long history. In the very beginning it was the task to construct
sufficiently many concrete monogenic functions. Already the work of R. Fueter
contains the idea to consider a special kind of homogeneous monogenic polyno-
mials as generalization of the complex powers zn and to look for an analogue
of the Taylor series expansions. The result was a series expansion in Fueter
polynomials [27]. The important progress compared with the real Taylor series
expansion for real analytic functions was the possibility to express the incre-
ment of a quaternion-valued functions by the hypercomplex increment of the
arguments. Much later in [4] these series were reinvented and in [34] connected
with the problem of hypercomplex derivability. Finally, it could be shown that
for Clifford algebra valued functions the existence of a local Taylor series ex-
pansion in the symmetric powers [34], the hypercomplex derivability and the
monogenicity are equivalent, which is a very comfortable situation and advan-
tageous for the solution of more complicated differential equations by means of
monogenic functions. With the needs of numerical approximations, motivated
also by geometrical properties and invariance properties, a construction of sim-
ple orthogonal systems of monogenic polynomials was needed. These problems
were connected with the idea of the Fischer decomposition (originally in the pa-
per [26]) and with the so called Almansi decompositions (see citations in [35]).
The main disadvantage of the Fueter polynomials for numerical purposes was
that they are not orthogonal with respect to L2-inner product. That is why
it was not possible to relate Taylor and Fourier expansions so easily as in the
complex case, i.e., to relate the local and the global behaviour of the functions.
First explicit constructions of complete orthonormal polynomial systems in the
important case of dimension 3 were done by I. Cação [16], the first and the
second author and H. Malonek [10], [9], [11]. Main idea was the application of
the Cauchy-Riemann operator to an orthogonal system of spherical harmonics
and an explicit orthonormalization of the resulting system. These results were
the basis for Fourier expansions and related applications like the definition of
a continuous operator of monogenic primitivation in the L2-space of monogenic
functions.

Furthermore, in [23, pp. 254-264] and [40, 42, 33], another constructions of
orthogonal bases for spherical monogenics even in all dimensions are explained.
In particular, in [23, Theorem 2.2.3, p. 315], the so-called Cauchy-Kovalevskaya
(CK) method has already been developed. But this method is not used in [23]
for a construction of orthogonal bases although the construction is obvious not
only in dimension 3 but in an arbitrary dimension as we explain in Section 3.
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Actually, in this paper we use the CK method for an explicit construction of the
GT bases for spherical monogenics in dimension 3. In [32], the GT bases for this
case are obtained in quite a different way and, in particular, simple expressions
of elements of these bases in terms of the Legendre polynomials are given there.
By the way, the Cauchy-Kovalevskaya method is applicable in other settings
as well, see [7, 8, 5, 6] and [22]. Similar questions were also considered by R.
Delanghe for the Riesz system, see [20] and also [43], [38].

Looking back at the complex case we observe that the basis functions for
Taylor and Fourier expansions are principally the same, they are real multiples of
each other. An important property of this basis is the so-called Appell property
of the system {zn}n∈N with respect to the complex derivative. Originally, P. Ap-
pell introduced in [3] polynomials with the property that d

dx
Pn(x) = nPn−1(x).

This property makes it possible to differentiate and integrate power series ex-
pansions easily summand by summand and to obtain immediately a series of
the same structure. Later on Sheffer [39] invented generating functions to con-
struct Appell systems or Appell sequences and depending on the interests of the
authors nowadays one of these approaches is preferred.

The generalization of the Appell idea to monogenic polynomials (as solutions of
the Cauchy-Riemann equations) requires the correct understanding of the hyper-
complex derivative (see [41], [36] and [30]). First Appell systems of paravector-
valued monogenic polynomials could be constructed by H. Malonek et. al. [18],
[24], [25]. These systems were orthogonal but not complete with respect to L2-
inner product and it was observed that the system coincides also with a system
of ”special monogenic functions” as constructed in [1] without mentioning the
Appell property. In [31] it was shown that the same Appell system can be ob-
tained by the Fueter-Sce extension of the complex Appell system {zn}n∈N. In
[19], I. Cação and H. Malonek constructed an orthogonal Appell basis in L2,
equipped with the real inner product, for the solutions of the Riesz system in
dimension 3. Later on, in a series of papers [15], [14], [13] the first and the
second author elaborate an orthogonal Appell basis of monogenic polynomials
for the space of square integrable solutions of the Cauchy-Riemann system in R

3

(Moisil-Teodorescu system) with respect to the quaternion-valued inner prod-
uct. In [14], this system was used to approximate solutions of the Lamé - Navier
equations of linear elasticity theory.

Important for practical applications is also that this Appell system can be
defined recursively (see [13] and Theorem 6 below) and that it is not longer
necessary to start with spherical harmonics.

The question arises if this system is only one that fortunately could be con-
structed or if it is unique (in a certain sense). Because of the increasing amount
of calculations it becomes important to understand the underlying general prin-
ciple of the constructions, to find a way to construct bases in all dimensions.
First results were obtained in [12] where a unified and explicit construction
principle of monogenic Appell bases in dimension 2, 3 and 4 was proved.

In low dimensions (3 or 4), it is quite common to consider quaternion valued
functions instead of spinor valued ones, and to replace complex vector spaces of
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solutions with vector spaces over the skew field of real quaternions. Analyzing
all the mentioned concrete results on Appell systems of monogenic polynomials
and relating them to the case of the Dirac equation it becomes visible that there
is some general scheme in the background - the so-called Gelfand-Tsetlin bases.
It is possible to relate both picture, and we shall do it below.

In the paper, we apply a general scheme of GT bases to the case of spherical
monogenics in dimension 3 and we write down explicit formulae for the corre-
sponding orthogonal GT bases in terms of spinor valued and quaternion valued
functions. The elements of the obtained bases can be easily renormalized to
have the Appell property. Actually, it turns out that such an requirement is
characterizing the bases uniquely (see Theorem 5 below). We compare then the
formulae obtained for quaternion valued functions with those obtained by the
first and the second author in [15] and we show that they coincide.

In Section 2, we start with a short summary of notation needed to formu-
late a general construction of the GT bases. In Section 3, we show that the
branching rules needed to perform the construction of the GT bases explicitly
can be realized using only classical tools of Clifford analysis, namely, the Fischer
decomposition and the Cauchy-Kovalevskaya extension. Actually, we just ap-
ply the Cauchy-Kovalevskaya method developed already in [23, Theorem 2.2.3,
p. 315]. In the rest of this paper, we study properties of GT bases mainly in
dimension 3. A detailed study of GT bases in higher dimensions will be given
in a next paper. An explicit construction of the GT bases in dimension 3 is
written down in Section 4, see Theorem 4 and Corollary 3. To do it, we use the
Fischer decomposition in dimension 2 in the same way as it is done in higher
dimensions. Let us remark that the Fischer decomposition in dimension 2 (see
Theorem 3) is not usually considered in Clifford analysis and it has a slightly
different form than in higher dimensions. In particular, we show that the GT
bases for spinor valued spherical monogenics in dimension 3 possess a general-
ization of the Appell property, that is, they possess an Appell property not only
w.r.t. the last real variable x3 but also w.r.t. the remaining complex variables z
and z, see Corollary 3. Finally, in Section 5, we introduce the quaternionic for-
mulation and we describe its relation to the spinor case. We reformulate the GT
bases in quaternionic language (see Theorem 5 and Corollary 4 below) and we
show that the bases having the Appell property coincide with those constructed
by the first and the second author in [15] for the Cauchy-Riemann system. This
system has the Appell property with respect to the hypercomplex derivative on
the basis polynomials orthogonal to the hyperholomorphic constants and then
with respect to a complex derivative on the remaining basis functions. In the
end of the paper we present some applications of both approaches and construct
new Taylor series and Fourier series expansions, respectively.

2 Preliminaries

First we introduce some notation. Let (e1, . . . , em) be the standard basis of the
Euclidean space R

m and let Cm be the complex Clifford algebra generated by
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the vectors e1, . . . , em such that e2j = −1 for j = 1, . . . ,m. As usual, we identify
a vector x = (x1, . . . , xm) ∈ R

m with the element x1e1+· · ·+xmem of Cm. Recall
that the Spin group Spin(m) is defined as the set of products of even number of
unit vectors of Rm endowed with the Clifford multiplication. Now we introduce
spaces of spherical monogenics. For a vector space V, we denote by Pk(R

m, V )
the space of V -valued polynomials in R

m which are homogeneous of degree k.
Let S be a subspace of Cm invariant with respect to the left multiplication by
elements of Spin(m). Then put

Mk(R
m, S) = {P ∈ Pk(R

m, S) : ∂P = 0} (1)

where the Dirac operator ∂ in R
m is defined as

∂ = e1
∂

∂x1
+ · · ·+ em

∂

∂xm
.

It is well-known that if S is a basic spinor representation of the group Spin(m)
then the space Mk(R

m, S) of spherical monogenics is an irreducible module
under the so-called L-action, defined by

[L(s)(P )](x) = s P (s−1xs), s ∈ Spin(m) and x = (x1, . . . , xm) ∈ R
m.

In this paper, we are interested in a construction of GT bases of spherical
monogenics. Let us recall briefly the concept of GT bases for the orthogonal case,
see [37, 28]. In what follows, we deal with complex representations of the Lie
algebra so(m) of the Spin group Spin(m). Let us consider a general irreducible
so(m)-module V (µm) with the highest weight µm. In the even dimensional case
m = 2n, the highest weight µm is a vector

µm = (λm,1, . . . , λm,n)

consisting entirely of integers or entirely of non-zero half-integers which satisfy
the relation

λm,1 ≥ λm,2 ≥ · · · ≥ λm,n−1 ≥ |λm,n|. (2)

In the odd dimensional case m = 2n + 1, the vector µm = (λm,1, . . . , λm,n)
satisfies instead the condition

λm,1 ≥ λm,2 ≥ · · · ≥ λm,n ≥ 0. (3)

Furthermore, as is well known, the Lie algebra so(m) can be realized as the
space of bivectors of Clifford algebra Cm. In what follows, we consider a chain
of Lie algebras

so(m) ⊃ so(m− 1) ⊃ · · · ⊃ so(2) (4)

where, for k = 2, . . . ,m,

so(k) = 〈{eij : 1 ≤ i < j ≤ k}〉.

Here eij = eiej and 〈M〉 stands for the span of a set M.
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The key ingredient for introduction of a GT basis is the following branching
rule well-known in representation theory: As an so(m − 1)-module, the given
module V (µm) decomposes into a multiplicity free direct sum of irreducible
so(m− 1)-modules

V (µm) =
⊕

µm−1

V (µm, µm−1) (5)

where the direct sum is taken over the highest weights µm−1 satisfying the
conditions (6) and (7) below. Moreover, it is well-known that if the weight µm

consists entirely of non-zero half-integers (or integers), then so do all highest
weights µm−1. In the case when m = 2n, the direct sum (5) is taken over all
highest weights µm−1 = (λm−1,1, . . . , λm−1,n−1) such that

λm,1 ≥ λm−1,1 ≥ λm,2 ≥ · · · ≥ λm,n−1 ≥ λm−1,n−1 ≥ |λm,n|. (6)

In the case when m = 2n+1, the direct sum (5) is taken over all highest weights
µm−1 = (λm−1,1, . . . , λm−1,n) such that

λm,1 ≥ λm−1,1 ≥ λm,2 ≥ · · · ≥ λm,n−1 ≥ λm−1,n−1 ≥ λm,n ≥ |λm−1,n|. (7)

Moreover, with respect to any given invariant inner product on the module
V (µm), the decomposition (5) is even orthogonal.

Of course, we can decompose further each module V (µm, µm−1) of the de-
composition (5) into irreducible so(m − 2)-modules V (µm, µm−1, µm−2) and
so on. Hence we end up with the decomposition of the given so(m)-module
V (µm) into irreducible so(2)-modules V (µ). Moreover, any such module V (µ)
is uniquely determined by the so-called Gelfand-Tsetlin pattern

µ = (µm, µm−1, . . . , µ2). (8)

Here µ as in (8) is called the Gelfand-Tsetlin pattern provided that each vector
µj satisfies the conditions (2)-(7) (with m replaced by j) and the numbers λj,k

are either all integers or all non-zero half-integers. We denote by P (µm) the
set of the Gelfand-Tsetlin patterns whose first term is the highest weight µm.
To summarize, we decompose the given module V (µm) into the direct sum of
irreducible so(2)-modules

V (µm) =
⊕

µ∈P (µm)

V (µ). (9)

Moreover, the decomposition (9) is obviously orthogonal. Let us note that
the decomposition (9) is uniquely specified by the choice of the chain of Lie
subalgebras (4).

Since all submodules V (µ) are, in fact, one-dimensional we obtain easily an
orthogonal basis of V (µm) by taking a non-zero vector e(µ) from each module
V (µ). The orthogonal basis

E = {e(µ) : µ ∈ P (µm)}

is then called a GT basis of the module V (µm). It is easily seen that, by the
definition, the vector e(µ) is uniquely determined by µ ∈ P (µm) up to a scalar
multiple.
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3 The Cauchy-Kovalevskaya method

To construct a GT basis for the so(m)-module Mk(R
m, S) it is clear that we

need to describe quite explicitly the branching rule (5) for this module, that is,
its decomposition into irreducible so(m − 1)-submodules. To this end we use
only two basic tools from Clifford analysis, namely, the Cauchy-Kovalevskaya
extension and the Fischer decomposition of spinor-valued polynomials. Actu-
ally, we just apply the Cauchy-Kovalevskaya method developed already in [23,
Theorem 2.2.3, p. 315]. We first state the Fischer decomposition, see [23, p.
206].

Proposition 1. Let m ≥ 3 and let S be a spinor space of the Clifford algebra
Cm, that is, S is an irreducible (left) module over Cm. Then

Pk(R
m, S) =

k
⊕

j=0

xjMk−j(R
m, S).

Remark 1. An analogous decomposition is valid also in the dimension m = 2,
see Theorem 3 below for details.

Now we recall the Cauchy-Kovalevskaya extension. Let p be a k-homogeneous
polynomial in R

m which takes values in a spinor space S of Cm. Such a poly-
nomial p can be uniquely expressed as

p(x) =

k
∑

j=0

pj(x) x
j
m

where pj is an S-valued polynomial in x = (x1, . . . , xm−1) ∈ R
m−1 which is

homogeneous of degree k − j. Moreover, putting

∂ = e1
∂

∂x1
+ · · ·+ em−1

∂

∂xm−1
,

it is easy to see that the Dirac equation ∂p = 0 holds if and only if, for each
j = 0, . . . , k,

pj =
1

j
(em∂) pj−1 = · · · =

1

j!
(em∂)jp0.

In this case, we have thus that

p(x) =

k
∑

j=0

1

j!
(emxm∂)jp0(x) = (eemxm∂p0)(x).

Now it is easy to obtain the following result, see [23, p. 152].

Proposition 2. Let S be a basic spinor representation of the group Spin(m).
Then the Cauchy-Kovalevskaya extension operator

CK = eemxm∂

is an so(m − 1)-invariant isomorphism of the module Pk(R
m−1, S) onto the

module Mk(R
m, S).
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As we explain later on, to describe explicitly the branching rules in our
situation we need to understand the CK extension of particular terms in the
Fischer decomposition, that is, the CK extension of polynomials of the form
xjp(x) with p being a spherical monogenic. But first recall that the Gegenbauer
polynomial Cν

j is defined as

Cν
j (z) =

[j/2]
∑

i=0

(−1)i(ν)j−i

i!(j − 2i)!
(2z)j−2i with (ν)j = ν(ν + 1) · · · (ν + j − 1), (10)

see [2, p. 302].

Lemma 1. Let j ∈ N0 and p ∈ Mk(R
m−1, S). Then we have that

CK((xem)jp(x)) = X(j)p(x)

where X(0) = 1 and, for j ∈ N, the polynomial X(j) = X
(j)
k is given by

X
(j)
k (x, xm) = µj

kr
j

(

C
m/2+k−1
j (

xm

r
) +

m+ 2k − 2

m+ 2k + j − 2
C

m/2+k
j−1 (

xm

r
)
xem
r

)

with r = (x2
1 + x2

2 + · · ·+ x2
m)1/2, µ2l

k = (−1)l(C
m/2+k−1
2l (0))−1 and

µ2l+1
k = (−1)l

m+ 2k + 2l − 1

m+ 2k − 2
(C

m/2+k
2l (0))−1.

Proof. In [23, p. 312, Theorem 2.2.1], the corresponding polynomial we denote

here by X̃
(j)
k is computed for the Cauchy-Riemann operator. Fortunately, there

is an obvious relation between these two polynomials. Namely, we have that

X
(j)
k (x, xm) =







X̃
(j)
k (xem, xm), j even,

− X̃
(j)
k (xem, xm)em, j odd.

To complete the proof it is sufficient to use the explicit formula for the polyno-

mial X̃
(j)
k .

At this moment we are ready to describe the decomposition of the so(m)-
module Mk(R

m, S) into irreducible so(m − 1)-submodules. We start with the
even dimensional case.

The even dimensional case In the case when m = 2n, there is a unique
(up to equivalence) irreducible module Sm over Cm. As a Spin(m)-module, Sm

is reducible and decomposes into two inequivalent irreducible submodules

Sm = S+
m ⊕ S−

m.

Actually, S±
2n are unique basic spinor representations of the group Spin(2n)

and, putting θ2n = (−i)ne1e2 · · · e2n, we have that

S±
2n = {u ∈ S2n : θ2nu = ±u}. (11)
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Furthermore, as Spin(2n−1)-modules, S+
2n and S−

2n remain still irreducible but
become equivalent to each other.

Let S be a basic spinor representation for Spin(2n), that is, S ≃ S+
2n or

S ≃ S−
2n. In any case, it is easy to see that Proposition 2 implies that

Mk(R
2n, S) = CK(Pk(R

2n−1, S).

Moreover, using Proposition 1, we get the following decompositions of the spaces
Pk(R

2n−1, S) into inequivalent irreducible so(2n− 1)-submodules

Pk(R
2n−1, S) =

k
⊕

j=0

(xe2n)
jMk−j(R

2n−1, S).

Finally, applying the CK extension to this decomposition and using Lemma
1, we get obviously the next result, cf. [23, Theorem 2.2.3, p. 315].

Theorem 1. Let n ≥ 2 and let S be a basic spinor representation for Spin(2n).
Then the so(2n)-module Mk(R

2n, S) decomposes into inequivalent irreducible
so(2n− 1)-submodules as

Mk(R
2n, S) =

k
⊕

j=0

X(j)Mk−j(R
2n−1, S).

Of course, using Theorem 1, it is easy to construct GT bases in dimension
2n when we know GT bases in dimension 2n− 1.

Corollary 1. Let B2n−1
j (S) be GT bases of the modules Mj(R

2n−1, S) for all
j = 0, . . . , k. Then we have that the set

B2n
k (S) =

k
⋃

j=0

X(j)B2n−1
k−j (S)

is a GT basis of the module Mk(R
2n, S). Here the polynomial X(j) is defined

as in Lemma 1 and, of course, we put

X(j)B2n−1
k−j (S) = {X(j)p | p ∈ B2n−1

k−j (S)}.

Now we are going to deal with the odd dimensional case.

The odd dimensional case In the case when m = 2n + 1, there are just
two different irreducible Cm-modules (equivalent to) S±

m+1. On the other hand,
there exists only a unique basic spinor representation S of the group Spin(m).
In particular, as Spin(m)-modules, the modules S±

m+1 are both equivalent to S.
Moreover, S can be viewed also as an irreducible C2n-module, that is, S ≃ S2n.
As we know (see (11)), we have therefore that S = S+ ⊕ S− where

S± = {u ∈ S : θ2nu = ±u}

9



are both irreducible Spin(2n)-modules.
Furthermore, according to Proposition 2, we have that

Mk(R
m, S) = CK(Pk(R

m−1, S)).

By Proposition 1, we can easily obtain the following decomposition of the space
Pk(R

m−1, S) into inequivalent irreducible so(m− 1)-submodules

Pk(R
m−1, S) =

k
⊕

j=0

(xem)jMk−j(R
m−1, S+)⊕ (xem)jMk−j(R

m−1, S−).

Applying the CK extension to this decomposition together with Lemma 1 gives
the following result, cf. [23, Theorem 2.2.3, p. 315].

Theorem 2. Let n ≥ 2 and let S stand for a basic spinor representation of
Spin(2n + 1). Then the so(2n + 1)-module Mk(R

2n+1, S) decomposes into in-
equivalent irreducible so(2n)-submodules as follows:

Mk(R
2n+1, S) =

k
⊕

j=0

X(j)Mk−j(R
2n, S+)⊕X(j)Mk−j(R

2n, S−).

Corollary 2. Let B2n
j (S±) be GT bases of the modules Mj(R

2n, S±) for all
j = 0, . . . , k. Then we have that the set

B2n+1
k (S) =

k
⋃

j=0

X(j)B2n
k−j(S

+) ∪X(j)B2n
k−j(S

−)

is a GT basis of the module Mk(R
2n+1, S). Here the polynomial X(j) is defined

as in Lemma 1.

To summarize Corollaries 1 and 2 tell us that GT bases for spherical mono-
genics can be obtained inductively. Indeed, whenever we know GT bases in
dimension m− 1 we can easily construct GT bases in dimension m.

4 The Gelfand-Tsetlin bases in dimension 3

In this section, we construct explicitly GT bases for spinor valued spherical
monogenics in dimension 3. First we recall a realization of basic spinor repre-
sentations S±

2n.

Basic spinor representations S±
2n For j = 1, . . . , n, put

wj =
1

2
(e2j−1 + ie2j), wj =

1

2
(−e2j−1 + ie2j) and Ij = wjwj .

10



Then I1, . . . , In are mutually commuting idempotent elements in C2n.Moreover,
I = I1I2 · · · In is a primitive idempotent in C2n and

S2n = C2nI

is a minimal left ideal in C2n. Putting W = 〈w1, . . . , wn〉, we have that

S2n = Λ(W )I, S+
2n = Λ+(W )I and S−

2n = Λ−(W )I

where Λ(W ) is the exterior algebra over W with the even part Λ+(W ) and the
odd part Λ−(W ). See [23, pp. 114-118] for details.

Furthermore, it is well-known that, for each u ∈ C2n, there is a unigue
complex number [u]0 such that IuI = [u]0I and that an inner product on S2n

is given by
(s, t) = [uv]0 for s = uI, t = vI with u, v ∈ C2n. (12)

Here, for each Clifford number u ∈ Cm, u stands for its Clifford conjugate. See
[23, pp. 120-125] for details.

In the next paragraph, we introduce invariant inner products on the spin
modules of spherical monogenics.

Invariant inner products Let us remark that, on each (finite-dimensional)
irreducible representation of Spin(m) there exists always an invariant inner
product and, in addition, that the invariant inner product is determined uniquely
up to a positive multiple. In what follows, we recall two well-known realizations
of the invariant inner product on the module Mk(R

m, S), namely, the L2-inner
product and the Fischer inner product. For P,Q ∈ Mk(R

m, S), we define the
L2-inner product of P and Q as

(P,Q)1 =

∫

Bm

(P,Q) dλm (13)

where Bm is the unit ball in R
m and dλm is the Lebesgue measure in R

m.
Now we introduce the Fischer inner product. Each P ∈ Pk(R

m, S) is of the
form

P (x) =
∑

|α|=k

aαx
α

where the sum is taken over all multi-indexes α = (α1, . . . , αm) of N
m
0 with

|α| = α1 + · · · + αm = k, all coefficients aα belong to S and xα = xα1

1 · · ·xαm
m .

For P,Q ∈ Pk(R
m, S), we define the Fischer inner product of P and Q as

(P,Q)2 =
∑

|α|=k

α! (aα, bα) (14)

where α! = α1! · · ·αm!, P (x) =
∑

aαx
α and Q(x) =

∑

bαx
α. It is easily seen

that

(P,Q)2 = [(P (
∂

∂x
)Q)(0)]0 with P (

∂

∂x
) =

∑

|α|=k

aα
∂|α|

∂xα
.

Here ∂|α|/∂xα = (∂α1/∂xα1

1 ) · · · (∂αm/∂xαm
m ) as usual.
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Fischer decompositions in the dimension m = 2 As we have remarked in
Introduction, the Fischer decomposition in dimension 2 is not usually considered
in Clifford analysis and it has a slightly different form than in higher dimensions.
In this case, we have that so(2) = 〈e12〉, S = S2 = 〈I1, w1I1〉, S

+ = 〈I1〉 and
S− = 〈w1I1〉 with

I1 =
1

2
(1− ie12) and w1I1 =

1

2
(e1 + ie2).

Each s ∈ S is of the form s = s+I1+ s−w1I1 for some complex numbers s±. We
write s = (s+, s−). Let us remark that each P ∈ Pk(R

2, S) can be expressed
as P = (P+, P−) for some complex valued k-homogeneous polynomials P± in
variables z = x1+ ix2 and z = x1− ix2. Furthermore, the action of so(2) on the
space Pk(R

2, S) is given by

dL(e12/2) =
d

dt
L(exp(te12/2))|t=0 =

e12
2

+ x2
∂

∂x1
− x1

∂

∂x2
.

Put L12 = dL(e12/2). Now it is easy to show the next result.

Theorem 3. Let M2,±
j = Mj(R

2, S±) for each j = 0, . . . , k. Then we have

that M2,+
j = 〈(zj , 0)〉, M2,−

j = 〈(0, zj)〉,

Pk(R
2, S+) =

k
⊕

j=0

zjM2,+
k−j and Pk(R

2, S−) =

k
⊕

j=0

zjM2,−
k−j .

In addition, for each j = 0, . . . , k, the so(2)-modules zjM2,+
k−j and zjM2,−

k−j are

both irreducible with the highest weights k+ 1
2 −2j and −k− 1

2 +2j, respectively.

Proof. Let P ∈ Pk(R
2, S) and P = (P+, P−). Denote

∂

∂z
=

1

2
(
∂

∂x1
− i

∂

∂x2
) and

∂

∂z
=

1

2
(
∂

∂x1
+ i

∂

∂x2
).

Since e1P = (−P−, P+), e12P = (iP+,−iP−) and ∂ = e1(
∂
∂x1

− e12
∂
∂x2

) we
have that

∂P = 2(−
∂P−

∂z
,
∂P+

∂z
).

Assume now that P is S+-valued, that is, P = (P+, 0) and

P+(z, z) =

k
∑

j=0

ajz
jzk−j (aj ∈ C).

Obviously, ∂P = 0 if and only if P+ = akz
k. Hence it remains to show that the

module zjM2,+
k−j has the highest weight k+ 1

2 − 2j. But it follows from the fact
that weights are just eigenvalues of the operator H = −iL12 and

H((zjzk−j , 0)) = (k +
1

2
− 2j)(zjzk−j , 0).

For S−-valued polynomials, an analogous proof works.
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The decompositions of the spaces P+
k = Pk(R

2, S+) are depicted in columns
of Figure 1. In this diagram, we write zjzk for (zjzk, 0).Moreover, all irreducible
submodules with the same highest weight are contained in the row labeled by
this highest weight.

P+
0 P+

1 P+
2 P+

3 P+
4

7
2 〈z3〉 · · ·

5
2 〈z2〉 〈zz3〉

3
2 〈z〉 〈zz2〉 · · ·

1
2 〈1〉 〈zz〉 〈z2z2〉

− 1
2 〈z〉 〈z2z〉 · · ·

− 3
2 〈z2〉 〈z3z〉

− 5
2 〈z3〉 · · ·

Figure 1: The decomposition of the modules P+
k = Pk(R

2, S+).

Of course, an analogous diagram can be created for S−-valued polynomials.
But, in this case, labels of rows of the diagram are shifted. In particular, the
row beginning with 〈1〉 is labeled by −1/2.

GT bases for the dimension m = 3 In this paragraph, we obtain explicit
formulae for the GT bases of spinor valued spherical monogenics in dimension
3. In this case, we have that S ≃ S±

4 , so(3) = 〈e12, e23, e31〉 and so(2) = 〈e12〉.
Furthermore, the action of so(3) on the space Pk(R

3, S) is given by

Lij = dL(eij/2) =
eij
2

+ xj
∂

∂xi
− xi

∂

∂xj
(i 6= j).
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As a so(2)-module, the module S is reducible and decomposes into two inequiv-
alent irreducible submodules S = S+ ⊕ S− with

S± = {u ∈ S : −ie12 u = ±u}.

Let v± be generators of S±, that is, S± = 〈v±〉. We can construct a GT basis
in this case using Proposition 2 and Theorem 3.

Theorem 4. For each k ∈ N0, the polynomials

fk
2j = ex3e3∂ (

zjzk−j

j!(k − j)!
v+) and fk

2j+1 = ex3e3∂ (
zjzk−j

j!(k − j)!
v−), j = 0, . . . , k

form a GT basis of the irreducible so(3)-module Mk(R
3, S). Moreover, for each

j = 0, . . . , 2k+1, the polynomial fk
j is a weight vector with the weight k+ 1

2 − j,

that is, putting H = −iL12, we have that Hfk
j = (k + 1

2 − j)fk
j .

It is not difficult to express the GT bases from Theorem 4 even more explic-
itly. To do this we identify the space S with C

2. Indeed, each s ∈ S is of the
form

s = s+v+ + s−v−

for some complex numbers s+ and s−. We write s = (s+, s−) for short. For the
sake of explicitness, we limit ourselves to the case when S = S+

4 or S = S−
4 .

In the former case, we put v+ = I and v− = w1w2I. In the latter case, we put
v+ = w2I and v− = w1I. In these cases, explicit formulae for GT-bases are
given in Corollary 3 below.

Corollary 3. Let {fk,±
0 , . . . , fk,±

2k+1} be the GT bases of Mk(R
3, S±

4 ) defined in
Theorem 4.

(a) For each k ∈ N0 and j = 0, . . . , k, we have that

fk,±
2j = (pkj ,∓qkj ) and fk,±

2j+1 = (±qkj+1, p
k
j )

where

pkj (z, z, x3) =

min(j,k−j)
∑

s=0

(−1)s
(2x3)

2s zj−s zk−j−s

(2s)!(j − s)!(k − j − s)!
and

qkj (z, z, x3) =

min(j−1,k−j)
∑

s=0

(−1)s
(2x3)

2s+1 zj−1−s zk−j−s

(2s+ 1)!(j − 1− s)!(k − j − s)!
.

Here qk0 = 0 = qkk+1.
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(b) Moreover, for each k ∈ N, we have that

∂fk,±
j

∂x3
=

{

∓(−1)j2 fk−1,±
j−1 , j = 1, . . . , 2k;

0, j = 0, 2k + 1;

∂fk,±
j

∂z
=

{

fk−1,±
j−2 , j = 2, . . . , 2k + 1;

0, j = 0, 1;

∂fk,±
j

∂z
=

{

fk−1,±
j , j = 0, . . . , 2k − 1;

0, j = 2k, 2k + 1.

(c) Finally, for k ∈ N0 and j = 0, . . . , 2k + 1, we have that

fk,±
2k+1−j = (−1)j(fk,±

j )∗

where s∗ = (−s2, s1) for each s = (s1, s2) ∈ S.

Proof. Let S = S±
4 . Obviously, we have that

e3∂P = e31
∂P

∂x1
+ e32

∂P

∂x2
= ±2(

∂P2

∂z
,−

∂P1

∂z
).

Putting P k
j = ( zjzk−j

j!(k−j)! , 0) and Qk
j = (0, zjzk−j

j!(k−j)! ), we get thus that

(e3∂)
2sP k

j = (−1)s22sP k−2s
j−s , (e3∂)

2sQk
j = (−1)s22sQk−2s

j−s ,

(e3∂)
2s+1P k

j = ∓(−1)s22s+1Q
k−(2s+1)
j−s−1 , (e3∂)

2s+1Qk
j = ±(−1)s22s+1P

k−(2s+1)
j−s .

Using these relations it is easy to obtain the explicit formulae for fk,±
j . Obvi-

ously, the statements (b) and (c) can be verified directly using these explicit
formulæ. On the other hand, the property (b) follows also from the following
formula

∂

∂x3
(ex3e3∂P ) = ex3e3∂(e3∂P )

and from the fact that the derivatives ∂/∂z and ∂/∂z both commute with the
CK extension operator ex3e3∂ .

Remark 2. It is easy to express the elements fk,±
j of the GT bases from Corollary

3 in terms of hypergeometric series 2F1 or Jacobi polynomials, see [2, pp. 64
and 99]. Indeed, we have that

pkj = 2F1(−j,−k + j,
1

2
;−

x2
3

|z|2
)

zjzk−j

j!(k − j)!
,

qkj = 2F1(−j + 1,−k + j,
3

2
;−

x2
3

|z|2
)

2x3 zj−1zk−j

(j − 1)!(k − j)!
.

Here |z|2 = zz and the hypergeometric series 2F1(a, b, c; y) is given by

2F1(a, b, c; y) =

∞
∑

s=0

(a)s(b)s
(c)ss!

ys.
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In Figure 2, structural properties of the GT basis in this case are shown. In
the k-th column of Figure 2, the decomposition of the so(3)-module

Mk = Mk(R
3, S)

into irreducible so(2)-submodules can be found. Moreover, all irreducible so(2)-
submodules with the same highest weight are contained in the row labeled by
this highest weight. By Theorem 4, it is easy to see that Figure 2 is, in an
obvious sense, composed of the diagrams for S+ and S−-valued polynomials in
R

2 (see Figure 1). By Corollary 3, we know that the application of the derivative
∂/∂x3 to the elements of the GT basis causes the shift in the given row to the
left, the derivative ∂/∂z moves them diagonally downward and ∂/∂z diagonally
upward. In other words, the GT bases in this case possess an Appell property
not only w.r.t. the last real variable x3 but also w.r.t. the complex variables z
and z. Moreover, the upper triangle in Figure 2 is mapped onto the lower one
by the transformation (·)∗.

M0 M1 M2 · · ·

5
2 〈f2

0 〉
∂
∂z

}}{{
{{

{{
{{

3
2 〈f1

0 〉

}}{{
{{

{{
{{

〈f2
1 〉

oo

}}{{
{{

{{
{{

· · ·

1
2 〈f0

0 〉 〈f1
1 〉

∂
∂x3

oo

}}{{
{{

{{
{{

〈f2
2 〉

oo

aaCCCCCCCC

}}{{
{{

{{
{{

− 1
2 〈f0

1 〉 〈f1
2 〉∂

∂x3

oo

aaCCCCCCCC

〈f2
3 〉

oo

}}{{
{{

{{
{{

aaCCCCCCCC

· · ·

− 3
2 〈f1

3 〉

aaCCCCCCCC

〈f2
4 〉

oo

aaCCCCCCCC

− 5
2 〈f2

5 〉

∂
∂z

aaCCCCCCCC

· · ·

Figure 2: The decomposition of the modules Mk = Mk(R
3, S).

Remark 3. Let S = S±
4 . It is not difficult to find non-zero constants dk,±j such
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that the polynomials f̂k
j = dk,±j fk,±

j satisfy the following properties

f̂k
0 = zkv+, f̂k

2k+1 = zkv− and
∂f̂k

j

∂x3
=

{

k f̂k−1
j−1 , j = 1, . . . , 2k;

0, j = 0, 2k + 1.
(15)

Indeed, it is sufficient and necessary to put, for each j = 0, . . . , k,

dk,±j = (∓1)j(−1)(j+1)j/2 2−j k! and dk,±2k+1−j = (−1)jdkj .

Moreover, we have obviously that

f̂k
2k+1−j = (f̂k

j )
∗,

∂f̂k
j

∂z
= ak,±j f̂k−1

j−2 and
∂f̂k

j

∂z
= bk,±j f̂k−1

j (16)

where the constants ak,±j and bk,±j are given by

ak,±j =



























0, j = 0, 1;

− 1
4k, 2 ≤ j ≤ k;

∓ 1
2k, j = k + 1;

k, k + 2 ≤ j ≤ 2k + 1;

bk,±j =



























k, 0 ≤ j ≤ k − 1;

± 1
2k, j = k;

− 1
4k, k + 1 ≤ j ≤ 2k − 1;

0, j = 2k, 2k + 1

Furthermore, by the definition of GT bases and their structural properties shown
in Figure 2, it is clear that, for k ∈ N0, the sets

{f̂k
j | j = 0, . . . , 2k + 1}

are the GT bases of the modules Mk(R
3, S), uniquely determined by the prop-

erty (15) and the condition that, for j = 0, . . . , 2k + 1,

Hf̂k
j = (k +

1

2
− j)f̂k

j with H = −iL12.

5 Quaternion valued polynomials in R
3

In this section, we reformulate the GT bases obtained in the previous section
for quaternion valued spherical monogenics.

Quaternionic formulation In what follows, H stands for the skew field of
real quaternions q with the imaginary units i1, i2 and i3, that is,

i21 = i22 = i23 = i1i2i3 = −1 and q = q0 + q1i1 + q2i2 + q3i3, (q0, q1, q2, q3) ∈ R
4.

For a quaternion q, put q = q0−q1i1−q2i2−q3i3. We realize H as the subalgebra
of complex 2× 2 matrices of the form

q =

(

q0 + iq3 −q2 + iq1
q2 + iq1 q0 − iq3

)

. (17)
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In particular, we have that

i1 =

(

0 i
i 0

)

, i2 =

(

0 −1
1 0

)

and i3 =

(

i 0
0 −i

)

.

If s = (q0 + iq3, q2 + iq1) ∈ C
2, then we write q(s) for the quaternion q as

in (17). For s = (s1, s2) ∈ C
2, q(s) is thus the 2 × 2 matrix which has s as

the first column and s∗ = (−s2, s1) as the second one. It is easy to see that
q(s) i2 = q(s∗) and that

q(s) = Re s1 + i1 Im s2 + i2 Re s2 + i3 Im s1

where, for a complex number z, we write Re z for its real part and Im z for its
imaginary part.

Furthermore, we identify so(3) with 〈i1, i2, i3〉 as follows: e12 ≃ i3, e23 ≃ i1
and e31 ≃ i2. Then we realize the basic spinor representation S as the space C

2

of column vectors

s =

(

q0 + iq3
q2 + iq1

)

.

Here the action of so(3) on S is given by the matrix multiplication from the left.
Now we are interested in quaternion valued polynomials Q = Q(y) in the

variable y = (y0, y1, y2) of R3. Let us denote by Mk(R
3,H) the space of H-

valued k-homogeneous polynomials Q satisfying the Cauchy-Riemann equation
DQ = 0 with

D =
∂

∂y0
+ i1

∂

∂y1
+ i2

∂

∂y2
.

We can consider naturally Mk(R
3,H) as a right H-linear Hilbert space with the

H-valued inner product

(Q,R)H =

∫

S2

QR dσ.

Moreover, we can identifyMk(R
3,H) with the so(3)-moduleMk(R

3, S) we have
studied in the previous paragraph as follows. Let P = P (x) be an S-valued
polynomial in the variable x = (x1, x2, x3) of R3. We define a corresponding
H-valued polynomial Q(P ) in R

3 by

Q(P )(y0, y1, y2) = q(P )(−y2, y1, y0). (18)

Then it is easy to see that Q(P ) ∈ Mk(R
3,H) if and only if

i1
∂P

∂x1
+ i2

∂P

∂x2
+ i3

∂P

∂x3
= 0,

that is, P ∈ Mk(R
3, S). In addition, for each P,R ∈ Mk(R

3, S), we have that

(Q(P ), Q(R))H = q((P,R)1, (P
∗, R)1) (19)

where (·, ·)1 is the complex valued inner product defined as in (13). Using
the identification (18) and Theorem 4, we obtain easily orthogonal bases of
quaternion valued spherical monogenics.
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Theorem 5. For each k ∈ N0, there exists an orthogonal basis

{gkj | j = 0, . . . , k} (20)

of the right H-linear Hilbert space Mk(R
3,H) such that:

(i) For j = 0, . . . , k, let hk
j and hk

2k+1−j be the first and the second column of

the (matrix valued) polynomial gkj , respectively. Then, for each j = 0, . . . 2k+1,
we have that

Hhk
j = (k +

1

2
− j)hk

j with H = −i(
i3
2
+ y2

∂

∂y1
− y1

∂

∂y2
). (21)

(ii) We have that

∂gkj
∂y0

=

{

kgk−1
j−1 , j = 1, . . . , k;

0, j = 0.

(iii) For each k ∈ N0, we have that gk0 = (y1 − i3y2)
k.

Moreover, the polynomials gkj are determined uniquely by the conditions (i), (ii)
and (iii).

In addition, for each k ∈ N0, the polynomials

hk
0 , hk

1 , . . . , h
k
2k+1

form a GT basis of the so(3)-module M̃k(R
3, S) of S-valued k-homogeneous

polynomials h in R
3 satisfying the Cauchy-Riemann equation Dh = 0. Moreover,

the polynomials hk
j are determined uniquely by the condition (21), by the Appell

property

∂hk
j

∂y0
=

{

khk−1
j−1 , j = 1, . . . , 2k;

0, j = 0, 2k + 1;
(22)

and by the condition that hk
0 = (uk, 0) and hk

2k+1 = (0, uk) with u = y1 + iy2
and u = y1 − iy2.

Proof. (a) We first construct GT bases of S-valued monogenic polynomials in
R

3 by applying Theorem 4. Indeed, for P ∈ Mk(R
3, S), we have that

i2
∂P

∂x1
− i1

∂P

∂x2
= 2(−

∂P2

∂z
,
∂P1

∂z
).

As in the proof of Corollary 3, we get easily that the set

{fk,−
0 , . . . , fk,−

2k+1}

is a GT basis of Mk(R
3, S).

(b) For each k ∈ N0 and j = 0, . . . , 2k + 1, put

ĥk
j (y0, y1, y2) = (fk,−

j )(−y2, y1, y0).
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Obviously, the set
{ĥk

j | j = 0, . . . , 2k + 1}

is a GT basis of the module M̃k(R
3, S). It is easy to see that

ĥk
2j = (−1)k−jik(pkj ,−iqkj ) and ĥk

2j+1 = (−1)k−jik(−iqkj+1, p
k
j )

where pkj = pkj (u, u, y0) and qkj = qkj (u, u, y0) are defined as in Corollary 3.

(c) We can find non-zero complex numbers ckj ∈ C such that the polynomials

hk
j = ckj ĥ

k
j satisfy, in addition, the condition (22), hk

0 = (uk, 0), hk
2k+1 = (0, uk)

and hk
2k+1−j = (hk

j )
∗. Indeed, for each k ∈ N0, put ck0 = ikk!. Moreover, it is

easy to see that

∂ĥk
j

∂y0
= (−1)j 2ĥk−1

j−1 .

This implies that we need to have ckj = (−1)j2−1kck−1
j−1 . Hence we are forced to

put, for each j = 0, . . . , k,

ckj = (−1)(j+1)j/2 2−j k! ik−j and ck2k+1−j = (−1)jckj .

(d) Finally, for each k ∈ N0 and j = 0, . . . , k, define an H-valued polynomial gkj
corresponding to the S-valued polynomial hk

j by

gkj = q(hk
j ).

By (c) and (19), we have that the set

{gkj | j = 0, . . . , k}

is orthogonal with respect to the H-valued inner product (·, ·)H. Actually, this
set is, in fact, a basis of the right H-linear Hilbert space Mk(R

3,H) because

gkj i2 = q(hk
j ) i2 = q((hk

j )
∗) = q(hk

2k+1−j).

Obviously, the conditions (i), (ii) and (iii) are satisfied.

(e) Since weight vectors of the operator H are determined uniquely up to non-
zero multiples the construction gives also the uniqueness of the bases satisfying
the conditions (i), (ii) and (iii).

From the proof of Theorem 5 we get easily the next result.

Corollary 4. Let the set {gkj | j = 0, . . . , k} be the orthogonal basis of the right

H-linear Hilbert space Mk(R
3,H) as in Theorem 5. Then, for each j = 0, . . . , k,

we have that

gkj =

{

(−1)l k! 2−j(Re pkl − i1 Re q
k
l + i2 Im qkl + i3 Im pkl ), j = 2l;

(−1)l k! 2−j(Re qkl+1 + i1 Re p
k
l − i2 Im pkl + i3 Im qkl+1), j = 2l + 1.

Here u = y1 + iy2, u = y1 − iy2 and pkj = pkj (u, u, y0), q
k
j = qkj (u, u, y0) are

complex polynomials defined as in Corollary 3.
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Remark 4. In [32], the GT bases for this case are obtained in quite a different
way. In particular, the elements gkj of these bases are expressed in terms of the
Legendre polynomials as follows. Using spherical co-ordinates

y0 = r cos θ, y1 = r sin θ cosϕ, y2 = r sin θ sinϕ

with 0 ≤ r, −π ≤ ϕ ≤ π and 0 ≤ θ ≤ π, we have namely that

gkj (r, θ, ϕ) = (k!/j!)(−2)k−jrk (gkj,0 + gkj,1 i1 + gkj,2 i2 + gkj,3 i3) where

gkj,0 = P j−k
k (cos θ) cos(j − k)ϕ, gkj,1 = −jP j−k−1

k (cos θ) cos(j − k − 1)ϕ,

gkj,2 = jP j−k−1
k (cos θ) sin(j − k − 1)ϕ, gkj,3 = P j−k

k (cos θ) sin(j − k)ϕ.

Here P 0
k is the k-th Legendre polynomial and P l

k are its associated Legendre
functions.

In the last paragraph, we show that the GT bases obtained for quaternion
valued spherical monogenics coincide with those constructed by the first and
the second author in [15].

Identification of the bases The condition (ii) of Theorem 5 tells us just that
the monogenic polynomials gkj form an Appell system. In [14] and [15, Theorem
7.2], an orthogonal Appell system of quaternion valued spherical monogenics
has been recently constructed quite explicitly from an orthogonal system of real
valued spherical harmonics. Further, in [14] and [13], very compact recursion
formulae have been obtained for the elements of the Appell basis. From these
recursion formulae it becomes also already visible that the wanted Appell system
can be constructed without starting with spherical harmonics. These results are
resumed in the following theorem:

Theorem 6 ([14, 15, 13]). The system of inner solid spherical monogenics
{

Al
n : l = 0, . . . , n

}

n∈N0

, where, for each n ∈ N and l = 0, . . . , n, the elements
are given by the two-step recurrence formula

Al
n+1 =

n+ 1

2(n− l + 1)(n+ l + 2)

[(

(2n+ 3)y + (2n+ 1)ȳ
)

Al
n − 2n yy Al

n−1

]

(23)
with

Al
l+1 =

1

4

[

(2l + 3)y + (2l + 1)ȳ
]

Al
l and Al

l = (y1 − i3y2)
l ,

is an orthogonal Appell basis in L2(B3,H) ∩ kerD such that for each n ∈ N

D0A
l
n =

{

nAl
n−1 : l = 0, . . . , n− 1
0 : l = n

and
DCA

n
n = nAn−1

n−1
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hold. Here, y := y0 + i1y1 + i2y2 denotes the reduced quaternion. The used

Cauchy-Riemann operators are defined by D0 := 1
2

(

∂
∂y0

− i1
∂

∂y1

− i2
∂

∂y2

)

and

DC := 1
2

(

∂
∂y1

+ i3
∂

∂y2

)

.

At this point, let us remark on some structural properties of the Appell
system (23) coming from a very analytical point of view. Firstly, the two-step
recurrence formulae relate Appell polynomials of different degree n however the
index l is fixed. Referring to Figure 3, this structurally means that the elements
of the (l+1)-th column are recursively generated by the initial elements Al

l which
are in fact belonging to the subset of the so-called hyperholomorphic constants.
Such generalized constants are characterized in a quite natural way: A function
f is called hyperholomorphic constant if f belongs to the considered function
space f ∈ kerD (the space of monogenic solutions to the Moisil-Teodorescu
system) and vanishes after (hypercomplex) derivation. In this context, we re-
fer again to [34] and [30], wherein the authors have proved that the operator
D0 = 1

2D corresponds to the concept of the hypercomplex derivative. Thus a
hyperholomorphic constant is analogously characterized as in the complex one-
dimensional case by f ∈ kerD0∩kerD. Secondly, Figure 3 further illustrates the
action of the differential operators on the Appell basis (23). Precisely, the ap-

Figure 3: Structural properties of the orthogonal Appell basis Al
n.

plication of the hypercomplex derivative D0 to an arbitrary Appell polynomial
Al

n causes a shifting of the degree in a fixed column l whereas the application of
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the lower dimensional (complex) derivative DC causes a shifting of the degree as
well as a shifting of the column. Here, it should be emphasized that the action
of the differential operator DC is restricted to the set of hyperholomorphic con-
stants and thus, referring to Figure 3, is mapping along the upper diagonal. As
a consequence of the afore said, one can conclude that for an arbitrary Appell
polynomial Al

n, l = 0, . . . , n, n ∈ N0 of the system (23) first the (n − l)-fold
application of D0 and afterwards the l-fold application of DC yields

D l
C
D

n−l

0 Al
n = n!.

This property essentially enables the definition of a new Taylor series expansion
(see section 6) in terms of the Appell set (23) at first introduced in [14, 15].
Finally, it is easy to see that the system from Theorem 6 satisfies the conditions
(i), (ii) and (iii) of Theorem 5. Hence using the GT approach and Theorem 5

based on it, it is possible to show that gkj = Ak−j
k for all k, j.

6 Orthogonal power series expansions

In view of some practical application of the basis, in [14, 15], the latter basis
was particularly used to define a new Taylor series expansion which is a direct
consequence of the Appell property of the basis:

Definition 1 (Taylor series in L2(B3,H) ∩ kerD). Let f ∈ L2(B3,H) ∩ kerD.
The series representation

f :=

∞
∑

n=0

n
∑

l=0

Al
ntn,l, with tn,l =

1

n!
D l

C
D

n−l

0 f(y)
∣

∣

∣

y=0
(24)

is called generalized Taylor series in L2(B3,H) ∩ kerD. The notations D
k

0 and
D k

C
indicate the k-fold application of the corresponding differential operators

(k ∈ N) and the corresponding identity operator (k = 0), respectively.

We observe that the Taylor coefficients are given by successive application of
the hypercomplex derivative D0 to the principal part of the monogenic function
and the ”complex” derivative DC to the ”constant” part (the subset of hyper-
holomorphic constants) of the monogenic function. This Taylor series expansion
meets exactly the concept of hypercomplex derivability and improves Fueter’s
approach which is based on partial derivatives with respect to the real variables
x1 and x2.

Similarly, in case of spinor valued functions, using again the Appell property
of the corresponding GT basis (see Remark 3 at the end of Section 4) we can
define the following Taylor series expansion:

Definition 2 (Taylor series in L2(B3, S) ∩ ker ∂). Let f ∈ L2(B3, S) ∩ ker ∂.
The series representation

f =

∞
∑

k=0

2k+1
∑

j=0

tkj f̂k
j (25)
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with the complex coefficients tkj such that

tkj v+ =
1

k!

∂kf(x)

∂xj
3 ∂zk−j

∣

∣

∣

x=0
for j = 0, . . . , k;

tkj v− =
1

k!

∂kf(x)

∂x2k+1−j
3 ∂zj−k−1

∣

∣

∣

x=0
for j = k + 1, . . . , 2k + 1.

is called generalized Taylor series in L2(B3, S) ∩ ker ∂.

Let us note that the partial derivatives ∂/∂x3, ∂/∂z and ∂/∂z commute with
each other.

It is interesting to compare both Taylor series from Definitions 1 and 2.
In both cases, the basis is orthogonal and the corresponding coefficients can be
expressed using (linear combinations of) partial derivatives of the corresponding
function. The derivatives used in both cases look different but there are trivially
related (at least for monogenic functions) to each other. In the formulation
using spinor valued functions, the Appell property is true even w.r.t. all three
variables. Hence in this case application of any of three basic derivatives map
any basis element to a multiple of another basis element. For quaternion valued
functions, it is not the case.

Applying a simple normalization (see, i.e., [14, 15]) to each element (23) of
the Appell basis, explicitly given by the relation

ϕl
n,H =

1

2l+1 n!

√

(2n+ 3) (n− l)! (n+ l + 1)!

π
Al

n, l = 0, . . . , n, n ∈ N0,

(26)
yields directly:

Corollary 5 ([14, 15]). The system of inner solid spherical monogenics

{

ϕl
n,H : l = 0, . . . , n

}

n∈N0

(27)

is an orthonormal basis in L2(B3,H) ∩ kerD.

Due to the orthogonality and the completeness of the orthonormal system
(27) we state the Fourier series expansion in L2(B3,H) ∩ kerD.

Corollary 6 (Fourier series in L2(B3,H) ∩ kerD). Let f ∈ L2(B3,H) ∩ kerD.
Then f can be uniquely represented in terms of the orthonormal system (27),
that is:

f :=
∞
∑

n=0

n
∑

l=0

ϕl
n,H αn,l, with αn,l =

∫

B3

ϕl
n,H f dλ3. (28)

Here, it should be emphasized that in contrast to the complex case the order
of ϕl

n,H and f in the inner products has to be respected. As a direct consequence
of relation (26) and the orthogonality of both series expansions, each Fourier
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coefficient (28) of a function f ∈ L2(B3,H) ∩ kerD can be explicitly expressed
in terms of the corresponding Taylor coefficient (24) and vice versa by

αn,l = 2l+1

√

π

(2n+ 3) (n− l)! (n+ l + 1)!
D l

C
D

n−l

0 f(x)
∣

∣

∣

x=0

,

where l = 0, . . . , n and n ∈ N0. This important analytic property of the series
expansions analogously corresponds to the complex one-dimensional case.
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dure for the construction of orthogonal bases in Hermitean Clifford analysis,
in: T.E. Simos, G. Psihoyios, Ch. Tsitouras (Eds.), Numerical Analysis and
Applied Mathematics, AIP Conference Proceedings, vol. 1281, American
Institute of Physics, Melville, NY, 2010, pp. 1508–1511.

[8] F. Brackx, H. De Schepper, R. Lávička, V. Souček, Orthogonal basis of
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