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Abstract. The Gell-Mann and Low switching allows to transform eigenstates
of an unperturbed Hamiltonian H0 into eigenstates of the modified Hamilto-
nian H0 + V . This switching can be performed when the initial eigenstate is
not degenerate, under some gap conditions with the remainder of the spec-
trum. We show here how to extend this approach to the case when the ground
state of the unperturbed Hamiltonian is degenerate. More precisely, we prove
that the switching procedure can still be performed when the initial states
are eigenstates of the finite rank self-adjoint operator P0V P0, where P0 is the
projection onto a degenerate eigenspace of H0.

1. Introduction

Adiabatic switching is a crucial ingredient of many-body theory. It provides a way
to express the eigenstates of a Hamiltonian H0 + V in terms of the eigenstates
of H0. Its basic idea is to switch very slowly the interaction V , i.e., to transform
H0 +V into a time-dependent Hamiltonian of the typical form H0 +e−ε|t|V , where
the small parameter ε > 0 eventually vanishes. It may be expected that an eigen-
state of H0 + V is obtained by taking the limit of an eigenstate of H0, evolved
according to the time-dependent Hamiltonian H0 + e−ε|t|V when ε tends to zero.
It turns out that this naive expectation is not justified since the time-dependent
eigenstate has no limit when ε → 0 because of some non-convergent phase factor.
When the initial state belongs to a non-degenerate eigenspace, Gell-Mann and Low
solved the problem by dividing out the oscillations by a suitable factor [7]. The
ratio becomes, in the limit ε → 0, the Gell-Mann and Low wavefunction. Math-
ematically, the convergence of this procedure has been proved in 1989 by Nenciu
and Rasche [16], elaborating on the adiabatic theorem [3,6,12].

On the other side, the physics community realized about 50 years ago [2] that
a generalization of the Gell-Mann and Low formula is needed in the case of a degen-
erate eigenvalue of H0. This happens in many practical situations, for instance,



1286 C. Brouder et al. Ann. Henri Poincaré

when the system contains unfilled shells. This problem has been discussed in sev-
eral fields, including nuclear physics, solid state physics, quantum chemistry, and
atomic physics (see the references in [4,5]). In most cases, it is assumed that there
is some eigenstate in the degenerate eigenspace E0 of H0 for which the Gell-Mann
and Low formula holds. In general, however, the Gell-Mann and Low formula is
not applicable when this state is chosen at random in the degenerate subspace, as
illustrated in the simple model analytically studied in [4].

We show in this paper that the switching can be performed provided the
initial eigenstates are also eigenstates of P0V P0

∣
∣
E0

, the perturbation restricted
to act on the degenerate eigenspace. If the latter operator has itself degenerate
eigenvalues, a further analysis is required, as discussed in Sect. 3.4. The result is
based on the recent progress in the mathematical analysis of adiabatic problems
(see [1,8–10,14,15,17,21,22] and references therein).

The physical consequences of our result are discussed in the companion phys-
ics paper [5], where we also comment on the formal relation with different types
of Green functions.

2. Statement of the Results

2.1. Spectral Structure of the Problem

Consider a Hilbert space H, a self-adjoint operatorH0, with dense domainD(H0)⊂
H, and a symmetric perturbation V ,H0-bounded with relative bound a < 1. Then,
according to the Kato–Rellich theorem (Theorem X.12 in [18]), H0 + λV is self-
adjoint on D(H0) for any 0 ≤ λ ≤ 1. We denote1

H̃(λ) = H0 + λV,

with λ ∈ [0, 1]. In all this study, we assume that the spectrum has the following
structure:

Assumption 1. (Structure of the spectrum) The spectrum of H̃(λ) = H0 + λV ,
λ ∈ [0, 1], consists of two disconnected pieces

σ
(

H̃(λ)
)

= σN (λ) ∪
(

σ
(

H̃(λ)
)

\σN (λ)
)

,

where σN (λ) is a finite subset of the discrete spectrum:

σN (λ) =
{

Ẽj(λ), j = 1, . . . , N
}

⊂ σdisc

(

H̃(λ)
)

,

and the initial state is degenerate: Ẽj(0) = Ẽk(0) for all 1 ≤ j, k ≤ N .

In order to apply results and techniques from adiabatic theory [1,3,12,15], we
make the following standard assumption on the existence of a gap in the spectrum.

1 For reasons that will become clear once a time variable is introduced, we will always denote
with a ˜ functions of the variable λ ∈ [0, 1]. Untilded functions will have time as an argument.
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Assumption 2. (Gap condition) There is a gap between the two parts of the spec-
trum, in the sense that

∆(λ) = min
j=1,...,N

(

min
{∣
∣
∣Ẽj(λ) − E

∣
∣
∣ , E ∈ σ(H(λ))\

{

Ẽ1(λ), . . . , ẼN (λ)
}})

,

is bounded from below by a positive constant:

inf
λ∈[0,1]

∆(λ) = ∆∗ > 0.

The projectors associated with the N eigenvalues Ẽj(λ) (counted with their
multiplicities) are denoted by P̃j(λ), for 1 ≤ j ≤ M with M ≤ N . The projector
onto the subspace orthogonal to the eigenspace spanned by the N eigenvectors is
P̃N+1(λ) = I − ∑M

j=1 P̃j(λ). We denote in the sequel

P0 =
M∑

j=1

P̃j(0)

the projector onto the eigenspace E0 = Ran(P0) spanned by the N degenerate
eigenstates of H0. For simplicity, we assume that the perturbation V is sufficient
to split the degeneracy (so that M = N), in the sense that the following assump-
tion holds true:

Assumption 3. (Degeneracy splitting) The finite rank self-adjoint operator P0V
P0 : E0 → E0 has non-degenerate eigenvalues, and there is a gap between the N
first levels in the interval (0, 1]: for any λ∗ > 0, there exists α (depending on λ∗)
such that

inf
λ∗≤λ≤1

min
k �=l

∣
∣
∣Ẽk(λ) − Ẽl(λ)

∣
∣
∣ ≥ α > 0. (2.1)

This implies that the projectors P̃j(λ) are rank-1 projectors for any λ > 0
(since it can be proved that the perturbation V is enough to split the eigensub-
spaces, and the gap condition on (0, 1] ensures that no crossing can happen (see
Sect. 3.1 for more details).

Remark 4. Assumption 3 may be relaxed in several ways. First, the operator
P0V P0 can have degenerate eigenvalues, but then higher-order terms should be
considered in the perturbative expansion of the eigenvalues. The gap assumption
can be relaxed as well, and some crossings could be allowed. Besides, the general
case of M < N projectors of ranks greater or equal to 1 can be treated similarly
upon modifying the condition

∥
∥
∥P̃j(1) − P̃j(0)

∥
∥
∥ < 1 required in Theorem 7. All

these extensions are discussed in Sect. 3.4.

2.2. Switching Procedure

Consider, for τ ∈ (−∞, 0],

H(τ) = H̃(f(τ)) = H0 + f(τ)V,
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where the switching function f has values in [0, 1] (in order for the operator H(τ)
to be well-defined as a self-adjoint operator on D(H0)). We denote by Pj(τ) the
eigenprojectors and eigenvalues corresponding to the first N eigenvalues Ej(τ) of
H(τ); also, PN+1(τ) = I − ∑N

k=1 Pk(τ). Of course,

Pj(τ) = P̃j(f(τ)), Ej(τ) = Ẽj(f(τ)).

For the subsequent analysis, we assume that

Assumption 5. The switching function f : (−∞, 0] → [0, 1] is a C2 function such
that
(i) f is non-decreasing;
(ii) f(0) = 1 and limτ→−∞ f(τ) = 0;
(iii) f, f ′′ ∈ L1((−∞, 0]).

The most common choice in practice is f(τ) = eτ . Notice, however, that any
C2 non-decreasing compactly supported function with f(0) = 1 satisfies the above
assumptions. In the latter case, the monotonicity of f implies that the support
of f is a compact interval [Rf , 0], and f(t) > 0 for t ∈ (Rf , 0]. The assumption
f ∈ C2 ensures that the adiabatic evolution (see (3.13)) is well defined.

As a consequence of these assumptions, f ′ ≥ 0 and f ′ ∈ L1((−∞, 0]) ∩
L∞((−∞, 0]); hence f ′ ∈ L2((−∞, 0]). Indeed, the boundedness of f ′ is a conse-
quence of the fundamental theorem of calculus and the fact that f ′′ ∈ L1((−∞, 0]).
Besides,

∫ 0

t
f ′ = f(0) − f(t) ≤ 1, and f ′ ≥ 0; hence f ′ ∈ L1((−∞, 0]).

Remark 6. It can be shown that eigenprojectors and eigenvectors are analytic with
respect to λ = f(τ) (see Sect. 3.1). When the switching function f is analytic, the
eigenvalues Ej(τ) (and the associated eigenvectors and eigenprojectors) are also
analytic with respect to τ .

We denote by Uε(s, s0) the unitary evolution generated by H(εs), i.e., the
unique solution (which is well defined by Theorem X.70 in [18]) of the problem:

i
dUε(s, s0)

ds
= H(εs)Uε(s, s0), Uε(s0, s0) = I.

In order to remove divergent phase factors (see the proof in Sect. 3.3.1), it is
convenient to consider evolution operators in the interaction picture:

Uε,int(s, s0) = eisH0Uε(s, s0) e−is0H0 .

It is actually more convenient to rescale the time and to consider a macroscopic
time t = εs. The unitary evolution Uε(t, t0) in terms of the macroscopic time is
the solution of

iε
dUε(t, t0)

dt
= H(t)Uε(t, t0), Uε(t0, t0) = I,

and, in the interaction picture,

Uε
int(t, t0) = eitH0/ε Uε(t, t0) e−it0H0/ε.
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Standard results show that Uε
int(t,−∞)ψ = limt0→−∞ Uε

int(t, t0)ψ exists for ψ ∈
D(H0) (for instance, by using a Cook’s type argument and rewriting this operator
as the integral of its derivative with respect to t0).

2.3. Main Results

We are now in position to state our main results.

Theorem 7. Suppose that the gap conditions on H0 and V (Assumptions 1 and 2)
are satisfied, and that the perturbation term V lifts the degeneracy (Assumption 3).
Consider a switching function verifying Assumption 5. Let (ψ1, . . . , ψN ) be an
orthonormal basis of E0 which diagonalizes the bounded operator P0V P0

∣
∣
E0

. Then,
if

‖Pj(−∞) − Pj(0)‖ < 1, (2.2)

the limit

Ψj = lim
ε→0

Uε
int(0,−∞)ψj

〈ψj | Uε
int(0,−∞)ψj 〉 (2.3)

exists and is an eigenstate of H0 + V .

Notice that, for a generic state ψ ∈ RanP0 which is not an eigenvector of
P0V P0

∣
∣
E0

the above limit generically does not exist, as showed in [4] by using a
simple toy model. It is therefore crucial to select the appropriate initial states, so
that the Gell-Mann & Low limit (2.3) does exist.

As an intermediate step, the eigenprojector Pj(0) and a corresponding eigen-
function Ψj can be recovered by Kato’s geometric evolution [12].

Definition 8. The Kato evolution operator A(s, s0), for s, s0 ∈ R is the unique
solution of the problem

dA(s, s0)
ds

= K(s)A(s, s0), A(s0, s0) = I, (2.4)

with

K(s) = −
N+1∑

j=1

Pj(s)
dPj

ds
(s).

By our assumptions, the operator K(s) is uniformly bounded (see the comment
after Definition 11). The Kato evolution operator is a unitary operator which
intertwines the spectral subspaces of H(s) and H(s0), in the sense that

A(s, s0)Pj(s0) = Pj(s)A(s, s0).

Equipped with this notation, we have the following result, where no condition
analogous to (2.2) is assumed:

Proposition 9. Let Assumptions 1, 2, 3 and 5 be satisfied. Let (ψ1, . . . , ψN ) be an
orthonormal basis of E0 which diagonalizes the operator P0V P0

∣
∣
E0

. Then

Ψj := A(0,−∞)ψj

is an eigenvector of H0 + V .
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It is actually much simpler to consider the geometric evolution operator A
rather than the evolution operator Uε

int since less conditions on V and H0 are
required. Indeed, there is no denominator which needs to be considered in order
to remove a divergent phase. However, the many-body theory used in physics is
defined in terms of Uε

int and not in terms of A.
We sketch shortly the structure of the proof, which is done in four steps:

(i) first, we use the Kato geometric evolution backward in time, in order to
identify, though in a non-explicit manner, the initial subspaces of P0 whose
vectors can be considered as convenient initial states;

(ii) in a second step (Sect. 3.2), we give an explicit description of these initial
subspaces, in terms of the eigenvectors of P0V P0

∣
∣
E0

. At this stage, we are
already in position to prove Proposition 9;

(iii) then, we show how the limit of the full evolution Uε
int can be related to the

geometric evolution as ε → 0 (Sect. 3.3). A first step is to introduce an inter-
mediate concept, the adiabatic evolution, which takes some dynamics into
account (arising from the Hamiltonian operator). The adiabatic evolution is
also an intertwiner. Since intertwiners differ only by a phase (in a sense to
be made precise), and, provided this phase can be removed, the adiabatic
evolution can be reduced to the geometric one (see Sect. 3.3.1);

(iv) the last point is to show that the limit as ε → 0 of the full evolution is the
adiabatic evolution (see Sect. 3.3.2).

Steps (iii) and (iv) are straightforward extensions of previous results in adiabatic
theory, and we heavily relied on the paper by Nenciu and Rasche [16] for Sect. 3.3.1
and the book by Teufel [22] for Sect. 3.3.2.

3. Proof of the Results

3.1. Geometric Evolution and Definition of the Initial States

In view of the local gap assumption, the projectors and eigenvalues of H̃(λ) are
real analytic functions of λ ∈ (0, 1]. Besides, Theorem II.6.1 in [13] shows that the
eigenvalues Ẽj and projectors P̃j can be analytically continued in the limit λ → 0.
The Kato construction of unitary operators A intertwining projectors can then
be performed, see for instance Theorem XII.12 in [19] or Sections II.4 and II.6.2
in [13]. Consider the operator

K̃(λ) = −
N+1∑

j=1

P̃j(λ)
dP̃j

dλ
(λ),

first proposed in [12], and the unique solution of

dÃ(λ, λ0)
dλ

= K̃(λ) Ã(λ, λ0), Ã(λ0, λ0) = I. (3.1)
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Since K̃(λ) is uniformly bounded, the operator Ã(λ, λ0) is well-defined and strongly
continuous (see Theorem X.69 in [18]). Besides, Ã(λ, λ0) is unitary, and intertwines
the spectral subspaces:

P̃j(λ) = Ã(λ, λ0)P̃j(λ0)Ã(λ, λ0)∗.

It is also easily shown that Ã(λ2, λ1)Ã(λ1, λ0) = Ã(λ2, λ0), for instance, by com-
puting the derivative of both expressions with respect to λ2 and using the unique-
ness of the solution of (3.1).

We define the initial subspaces by evolving backwards eigenstates of the Ham-
iltonian H̃(λ) for which the perturbation has split the degeneracy: the correspond-
ing eigenprojector is defined as

P init
j := Ã(0, λ)P̃j(λ)Ã(λ, 0), (3.2)

the definition being independent of λ > 0.
Eigenstates of H̃(1) = H0 + V are then obtained by evolving initial states

belonging to the range of P init
j according to the Kato evolution operator. Indeed,

Ã(1, 0)P init
j = Ã(1, 0)Ã(0, λ)P̃j(λ) = Ã(1, λ)P̃j(λ). Thanks to the intertwining

property of A, it holds

P̃j(1) = Ã(1, 0)P init
j Ã(0, 1). (3.3)

3.2. Characterization of the Initial States

The above paragraph shows that it is crucial to identify Ran(P init
j ). We now char-

acterize these spaces by an explicit condition.

General expressions of the eigenvalues and eigenvectors. Since the eigenvalues
and eigenprojectors of H̃(λ) are analytic in λ ∈ [0, 1], the following expansions are
valid for 1 ≤ j ≤ N :

Ẽj(λ) =
+∞∑

n=0

λnEj,n, (3.4)

and

P̃j(λ) =
+∞∑

n=0

λnPj,n.

Of course, Ej,0 = E0 = Ẽj(0), the common value of the energy in the degenerate
ground-state. Notice also that the operators Pj,n are not necessarily orthogonal
projectors.

To define P̃j(λ), it is more convenient to consider an eigenvector φj(λ) asso-
ciated with Ẽj(λ), i.e., a non-zero element of H satisfying

H̃(λ)φj(λ) = Ẽj(λ)φj(λ). (3.5)
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Such an eigenvector can be chosen to be analytic, by the same results which allow
to conclude to the analyticity of the eigenprojectors. We therefore write

φj(λ) =
+∞∑

n=0

λnϕj,n. (3.6)

Once such an eigenvector is known, the analytic eigenprojector can be constructed
as

P̃j(λ) =
∣
∣
∣
∣

φj(λ)
‖φj(λ)‖

〉〈
φj(λ)

‖φj(λ)‖
∣
∣
∣
∣
.

The aim of this section is to provide an explicit expression of the leading
terms of the above expansions, in order to have a more explicit definition of P init

j .
To this end, we first construct a basis of E0, which will turn out to be particularly
useful to characterize the terms in the expansions (3.4) and (3.6).

Diagonalization of P0V P0. Since P0V P0 and P0 commute, it is possible to con-
struct an orthonormal basis (ϕ1,0, . . . , ϕN,0) of E0 such that

P0V P0 ϕj,0 = αjϕj,0 (3.7)

for some real numbers α1, . . . , αN , and

∀j = k, 〈ϕk,0 | P0V P0 |ϕj,0 〉 = 0. (3.8)

Expressions for the terms in the expansions (3.4)–(3.6) at order 1. We identify the
terms associated with the same powers of λ in (3.5). An additional normalization
condition should be added in order to uniquely define the solution, so we impose

∀λ ∈ [0, 1], 〈ϕj,0 | φj(λ) 〉 = 1, (3.9)

as is done in [20]. As will be seen below, this condition is simpler to work with
than the standard condition ‖φj(λ)‖ = 1. The identification of the terms in (3.5)
gives, for 1 ≤ j ≤ N , the following hierarchy of equations:

(H0 − E0)ϕj,0 = 0,
(H0 − E0)ϕj,1 = (Ej,1 − V )ϕj,0,

(H0 − E0)ϕj,2 = (Ej,1 − V )ϕj,1 + Ej,2ϕj,0,

and, for n ≥ 2,

(H0 − E0)ϕj,n+1 = (Ej,1 − V )ϕj,n +
n−1∑

m=0

Ej,n+1−mϕj,m. (3.10)

The equation on the term of order zero does not give any information on the
choice of the initial states ϕj,0. This information can be obtained from the first
order condition:

(H0 − E0)ϕj,1 = (Ej,1 − V )ϕj,0. (3.11)

A necessary condition for this equation to have a solution is that the right-
hand side belongs to E⊥

0 (since the left-hand side does):
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∀1 ≤ j, k ≤ N, 〈ϕk,0, (Ej,1 − V )ϕj,0 〉 = 0. (3.12)

This requires

Ej,1 = 〈ϕj,0, V ϕj,0 〉 ,
and

∀k = j, 〈ϕk,0, V ϕj,0 〉 = 0.

Therefore, the conditions (3.12) for k = j cannot be fulfilled for a general basis.
A necessary condition is that the basis {ϕk,0}k=1,...,N of E0 diagonalizes P0V P0.
Besides, the first-order term in the energy shifts are exactly the eigenvalues of
P0V P0. This condition determines uniquely the basis when P0V P0 has non-degen-
erate eigenvalues. If this is not the case, information about the higher-order equa-
tions in the hierarchy is needed (see Sect. 3.4).

Remark 10. Assuming that the bands do not recross after the initial splitting, and
if the degenerate state is the ground state of H0, then the ground state of H0 + V
is obtained by following the eigenstate associated with the lowest Ej,1.

Once the initial basis and the first energy shifts have been defined, the first-
order term in the variation of the eigenstates can be obtained from (3.11) as the
sum of the reduced resolvent applied to the right-hand side, and some solution of
the homogeneous equation (H0 − E0)ψ = 0:

ϕj,1 =
N∑

k=1

c1j,kϕk,0 + (H0 − E0)
−1

∣
∣
∣
E⊥
0

(Ej,1 − V )ϕj,0

=
∑

k �=j

c1j,kϕk,0 −R0V ϕj,0,

where

R0 = (H0 − E0)−1
∣
∣
∣
E⊥
0

= (I − P0) (H0 − E0)
−1 (I − P0)

is a bounded operator from E⊥
0 to E⊥

0 ∩D(H0), and c1j,j = 0 in view of the normal-
ization condition (3.9). The coefficients c1k,j (for k = j) are undetermined at this
stage. They have to be chosen so that the right-hand side of the next equation in
the hierarchy is in E⊥

0 .

Conclusion: characterization of the initial subspaces. The above computations
show that P̃j(λ) = Pj,0 + O(λ), with Pj,0 = |ϕj,0〉〈ϕj,0|. Besides, ‖Ã(0, λ) − I‖ =
O(λ) in view of the differential equation (3.1) satisfied by Ã. The initial subspace
(3.2) is therefore

P init
j = Ã(0, λ)Pj(λ) = lim

λ→0
Ã(0, λ) [Pj,0 + O(λ)] = Pj,0.

Proof of Proposition 9. Let ψ ∈ E0 be an eigenvector of P0V P0. Then, there exists
j ∈ {1, . . . , N} such that ψ ∈ Ran(Pj,0) = Ran(P init

j ). Using (3.3), it follows
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A(0,−∞)ψj = Ã(1, 0)ψj ∈ Ran
(

P̃j(1)
)

,

which proves the claim.

3.3. Adiabatic Evolution and Limit of the Full Evolution

Definition 11. The adiabatic evolution operator UA(s, s0) is defined for (s, s0) ∈ R
2

as the unique solution of the problem

i
dUA(s, s0)

ds
= HA(s)UA(s, s0), UA(s0, s0) = I, (3.13)

where the adiabatic Hamiltonian is

HA(s) = H(s) + iK(s),

with

K(s) = −
N+1∑

j=1

Pj(s)
dPj

ds
(s).

Notice that K(s) = f ′(s) K̃(f(s)) so that

‖K(s)‖ ≤ Cf ′(s) (3.14)

for some constant C > 0. Therefore,K(s) is uniformly bounded since f ′ is bounded
by our assumptions on the switching function.

Compared to the geometric evolution (3.1), a Hamiltonian term has been
added, which is at the origin of some dynamical phase factor in the dynamics. The
adiabatic dynamics is well defined in view of the assumptions made on H0, V , and
f (see Theorem X.70 in [18]). A simple computation shows that it intertwines the
spectral subspaces:

Pj(s) = UA(s, s0)Pj(s0)UA(s, s0)∗.

Switching to the interaction picture, we define

UA,int(s, s0) = eisH0 UA(s, s0) e−is0H0 .

The factor ε is introduced by slowing down the switching as

i
dUε,A(s, s0)

ds
= HA(εs)Uε,A(s, s0), Uε,A(s0, s0) = I, (3.15)

and the corresponding operator in the interaction picture is eisH0Uε,A(s, s0)
e−is0H0 . It is convenient to rewrite the evolution (3.15) in the rescaled time variable
t = εs:

iε
dUε

A(t, t0)
dt

= Hε
A(t)Uε

A(t, t0), Uε
A(t0, t0) = I, (3.16)

with Hε
A(t) = H(t) + iεK(t). The associated operator in the interaction picture is

Uε
A,int(t, t0) = eitH0/εUε

A(t, t0) e−it0H0/ε.

Theorem 7 is then a consequence of the following results.
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Lemma 12. Let ψj ∈ P init
j (defined by (3.2)). Then, under the assumptions of

Theorem 7, the vector

Uε
A,int(0,−∞)ψj

〈ψj | Uε
A,int(0,−∞)ψj〉 =

UA,int(0,−∞)ψj

〈ψj | UA,int(0,−∞)ψj〉 (3.17)

is an eigenstate of H0.

Lemma 13. Let ψj ∈ P init
j . Then, under the assumptions of Theorem 7,

lim
ε→0

(

Uε
int(0,−∞)ψj

〈ψj | Uε
int(0,−∞)ψj〉 − Uε

A,int(0,−∞)ψj

〈ψj | Uε
A,int(0,−∞)ψj〉

)

= 0.

3.3.1. Proof of Lemma 12. We show first in this section that ψj can be trans-
formed into an eigenstate of H(0) = H̃(1) using the adiabatic evolution defined
from (3.13), and then the equality of the ratios (3.17). The proof presented here
reproduces the argument of Nenciu and Rasche [16], which was given in the case
N = 1 with our notation, but can be applied mutatis mutandis to the case consid-
ered here. We, however, present the proof for completeness.

Evolution in the case ε = 1. Since both UA and A are intertwiners, they differ
only by a phase which commutes with the spectral projectors. Indeed, define

Φ(s, s0) = A(s, s0)∗UA(s, s0),

so that UA(s, s0) = A(s, s0)Φ(s, s0). Then,

[Φ(s, s0), Pj(s0)] = 0,

as can be seen using the intertwining properties:

[Φ(s, s0), Pj(s0)] = A(s, s0)∗UA(s, s0)Pj(s0) − Pj(s0)A(s, s0)∗UA(s, s0)
= A(s, s0)∗Pj(s)UA(s, s0) −A(s, s0)∗Pj(s)UA(s, s0) = 0.

The time-evolution of the phase matrix can be simplified due to this commutation
property. First,

dΦ(s, s0)
ds

= −iA(s, s0)∗H(s)UA(s, s0),

since K(s)∗ = −K(s). Besides,

Φ(s, s0) =

(
N+1∑

k=1

Pk(s0)

)

Φ(s, s0)

(
N+1∑

k=1

Pk(s0)

)

=
N+1∑

k=1

Φk(s, s0),

where Φk(s, s0) = Pk(s0)Φ(s, s0)Pk(s0). The time evolution of the projected phase-
matrix is a scalar phase since

d
ds

Φk(s, s0) = −iEk(s)Φk(s, s0);
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hence

Φ(s, s0)Pj(s0) = exp

⎛

⎝−i

s∫

s0

Ej(r) dr

⎞

⎠Pj(s0).

The geometric evolution and the adiabatic evolution are therefore related through
some global dynamical phase:

UA(s, s0)Pj(s0) = A(s, s0)Φ(s, s0)Pj(s0) = exp

⎛

⎝−i

s∫

s0

Ej(r) dr

⎞

⎠A(s, s0)Pj(s0).

To describe the asymptotic evolution, we follow closely the approach of [16].
In order for UA(s, s0)Pj(s0) to be defined in the limit s0 → −∞, it is important
to work in the interaction picture. Then,

UA,int(s, s0)Pj(−∞) = eisH0A(s, s0)Φ(s, s0)e−is0H0Pj(−∞)

= e−is0E0eisH0A(s, s0)e−isH0eisH0Φ(s, s0)Pj(−∞).

Using

Φ(s, s0)Pj(s0) = Pj(s0)Φ(s, s0)Pj(s0) = exp

⎛

⎝−i

s∫

s0

Ej(r) dr

⎞

⎠Pj(s0),

it holds

e−is0E0eisH0Φ(s, s0)Pj(−∞)

= e−is0E0eisH0Φ(s, s0)Pj(s0) + e−is0E0eisH0Φ(s, s0)(Pj(−∞) − Pj(s0))

= exp

⎛

⎝−i

s∫

s0

Ej(r) dr − is0E0

⎞

⎠ eisH0Pj(s0)

+ e−is0E0eisH0Φ(s, s0)(Pj(−∞) − Pj(s0))

= exp

⎛

⎝−i

s∫

s0

Ej(r) dr − is0E0

⎞

⎠
[

eisH0Pj(−∞) + eisH0(Pj(s0) − Pj(−∞))
]

+ e−is0E0eisH0Φ(s, s0)(Pj(−∞) − Pj(s0))

= exp

⎛

⎝−i

s∫

s0

Ej(r) − E0 dr

⎞

⎠Pj(−∞) +W (s, s0)(Pj(s0) − Pj(−∞)),

where ‖W‖ ≤ 2. Since λ �→ Ej(λ) is C1 on the compact interval [0, 1], there exists
a constant C > 0 such that

|Ej(r) − E0| =
∣
∣
∣Ẽj(f(r)) − Ẽj(0)

∣
∣
∣ ≤ Cf(r).
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Since f ∈ L1((−∞, 0]), this shows that the function r �→ Ej(r) − E0 is integrable
on (−∞, 0]. Besides, P (s0) → Pj(−∞) when s0 → −∞. The limit s0 → −∞ of
UA,int(s, s0)Pj(−∞) is therefore well-defined:

UA,int(s,−∞)Pj(−∞) = exp

⎛

⎝−i

s∫

−∞
Ej(r) − E0 dr

⎞

⎠ eisH0A(s,−∞)e−isH0Pj(−∞).

(3.18)

The above equality reads, for s = 0,

UA,int(0,−∞)Pj(−∞) = exp

⎛

⎝−i

0∫

−∞
Ej(r) − E0 dr

⎞

⎠A(0,−∞)Pj(−∞).

Since Pj(0)A(0,−∞) = A(0,−∞)Pj(−∞), it holds, for ψj ∈ P init
j = Pj(−∞) =

Ran(ϕj,0),

Pj(0)ψj = A(0,−∞)Pj(−∞)A(0,−∞)∗ψj = 〈ψj | A(0,−∞)∗ψj 〉 A(0,−∞)ψj .

(3.19)

Finally,

Pj(0)ψj

‖Pj(0)ψj‖2
=

Pj(0)ψj

〈ψj | Pj(0)ψj 〉 =
A(0,−∞)ψj

〈ψj | A(0,−∞)ψj 〉 =
UA,int(0,−∞)ψj

〈ψj | UA,int(0,−∞)ψj 〉 ,

which shows that the adiabatic evolution transforms the initial eigenstate into
an eigenstate of H(1) provided ‖Pj(0)ψj‖ = 0, which is the case when ‖Pj(0) −
Pj(−∞)‖ < 1.

Evolution in the case ε > 0. Let us conclude this section by proving the equality
(3.17). Computations similar to the ones performed in the case ε = 1 lead to

Uε
A,int(0,−∞)Pj(−∞) = exp

⎛

⎝− i
ε

0∫

−∞
Ej(τ) − E0 dτ

⎞

⎠A(0,−∞)Pj(−∞).

This can be seen for instance by noticing that (3.16) can be rewritten in the form
(3.13), upon considering the Hamiltonian H/ε in (3.13). Therefore, Uε

A,int(0,−∞)
Pj(−∞) is equal, up to the ε-dependence in the phase factor, to UA,int(0,−∞)
Pj(−∞). The non-convergent phase factor can be eliminated precisely by consid-
ering the Gell-Mann and Low ratio (3.17).

3.3.2. Proof of Lemma 13. It is sufficient to prove that

lim
ε→0

‖Uε(0,−∞) − Uε
A(0,−∞)‖ = 0,

which indeed gives the result since

‖Uε
int(t, t0) − Uε

A,int(t, t0)‖ = ‖Uε(t, t0) − Uε
A(t, t0)‖.
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Notice that, although none of the operators Uε(0,−∞), Uε
A(0,−∞) has a limit

when ε → 0, the difference nonetheless vanishes in this limit.
The proof is based on the proofs of Theorem 2.2 and Corollary 2.5 in the

book by Teufel [22], which are extended to the case of non-compactly supported
switching functions and N > 1 with our notation. In this section, C and C ′ denote
constants, which may change from line to line, but are always independent of t, ε,
etc., and depend only on the relative H0-bound of V , on N , on ∆∗ and on bounds
on the functions P̃j and their derivatives on [0, 1].

We denote by δj(t) ≥ 0 the local gap around Ej(t):

δj(t) = min {|Ej(t) − E|, E ∈ σ(H(t))\{Ej(t)}} .

Notice that δj(t) > 0 when f(t) > 0, but δj(t) → 0 when f(t) → 0 since the
initial eigenvalue is N -fold degenerate (see Assumption 3). In fact, the analysis of
Sect. 3.2 shows that there exist α1, α2 > 0 such that

α1 ≤
∣
∣
∣
∣

δj(t)
f(t)

∣
∣
∣
∣
≤ α2 (3.20)

when f(t) > 0.

Rewriting the difference as an integral. The difference between the two unitary
evolutions is rewritten as the integral of the derivative, as

Uε(t, t0) − Uε
A(t, t0) = −Uε(t, t0)

t∫

t0

d
dt′

(Uε(t0, t′)Uε
A(t′, t0)) dt′

= − i
ε
Uε(t, t0)

t∫

t0

Uε(t0, t′) [H(t′) −HA(t′)]Uε
A(t′, t0) dt′

= −Uε(t, t0)

t∫

t0

Uε(t0, t′)K(t′)Uε
A(t′, t0) dt′.

The idea is to rewrite K(t) as a commutator, so that t �→ Uε(t0, t)K(t)Uε
A(t, t0) is

the derivative of a function (up to negligible terms), and an integration by parts
gives the required estimates. The proof proposed here is an extension of the proof
presented in [22, Chapter 2] in the case when several pieces of the discrete spec-
trum are considered independently. It would also have been possible to use the
twiddle operation introduced in [1], which is, in some sense, the inverse operation
of the commutator with the Hamiltonian.

Construction of the function used in the commutator. Consider −∞ < t ≤ 0 such
that f(t) > 0 (for compactly supported switching functions, this means that t is



Vol. 10 (2010) Gell-Mann and Low Formula 1299

in the interior of the support). Define

F (t) = −1
2

⎛

⎝

N+1∑

j=1

Fj(t) +Gj(t)

⎞

⎠ ,

with, for 1 ≤ j ≤ N ,

Fj(t) =
1

2iπ

∮

Γj(t)

P⊥
j (t)R(z, t)Ṙ(z, t) dz, (3.21)

Gj(t) =
1

2iπ

∮

Γj(t)

Ṙ(z, t)R(z, t)P⊥
j (t) dz, (3.22)

where

R(z, t) = (H(t) − z)−1, Ṙ(z, t) =
d
dt

[

(H(t) − z)−1
]

= −R(z, t)
dH(t)

dt
R(z, t),

and Γj(t) is a contour enclosing Ej(t) and no other element of the spectrum (such
a contour exists in view of Assumption 3). For j = N + 1, we denote by ΓN+1(t)
a contour enclosing all the first N eigenvalues Ek(t), k = 1, . . . , N , and separated
from the remainder of the spectrum (such a contour exists in view of Assump-
tion 2), and define

FN+1(t) = − 1
2iπ

∮

ΓN+1(t)

(
N∑

k=1

Pk(t)

)⊥

R(z, t)Ṙ(z, t) dz, (3.23)

GN+1(t) = − 1
2iπ

∮

ΓN+1(t)

Ṙ(z, t)R(z, t)

(
N∑

k=1

Pk(t)

)⊥

dz. (3.24)

By definition of the contours,

− 1
2iπ

∮

Γj(t)

R(z, t) dz = Pj(t), 1 ≤ j ≤ N,

and

− 1
2iπ

∮

ΓN+1(t)

R(z, t) dz =
N∑

k=1

Pk(t) = P⊥
N+1(t).

Besides, in view of the continuity of t �→ Ej(t) for all 1 ≤ j ≤ N , it is possible to
use contours which are locally constant in time, i.e., for a given t > −∞ such that
f(t) > 0, there exists a (small) time interval (t − τ, t + τ) and a contour Γt

j such
that

∀s ∈ (t− τ, t+ τ), − 1
2iπ

∮

Γt
j

R(z, s) dz = Pj(s)
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for 1 ≤ j ≤ N , a similar result holding for j = N + 1. Using such locally constant
contours, the time derivative of the contour integral defining the projector can be
restated as a contour integral of the time derivative of the resolvent:

− 1
2iπ

∮

Γj(t)

Ṙ(z, t) dz =
dPj(t)

dt
, 1 ≤ j ≤ N,

and

− 1
2iπ

∮

ΓN+1(t)

Ṙ(z, t) dz =
N∑

k=1

dPk(t)
dt

= −dPN+1(t)
dt

.

Boundedness of F . The operator F (t) is bounded. To see this, we first rewrite Fj

(1 ≤ j ≤ N) as

Fj(t) = P⊥
j (t)R(Ej(t), t)P⊥

j (t)
dPj(t)

dt
. (3.25)

Indeed, using the expression (3.21) of Fj ,

Fj(t) − P⊥
j (t)R(Ej(t), t)P⊥

j (t)
dPj(t)

dt

=
1

2iπ

∮

Γj(t)

P⊥
j (t)(R(z, t) −R(Ej(t), t))P⊥

j (t)Ṙ(z, t) dz

− 1
2iπ

∮

Γj(t)

P⊥
j (t)(R(z, t) −R(Ej(t), t))P⊥

j (t)R(z, t)Ḣ(t)R(z, t) dz.

When the contour encircles closely enough Ej(t),

‖R(z, t)‖ ≤ 2
δj(t)

.

Using the resolvent identity, it follows

‖P⊥
j (t)(R(z, t) −R(Ej(t), t))P⊥

j (t)R(z, t)‖
= |z − Ej(t)| · ‖R(z, t)P⊥

j (t)R(Ej(t), t)P⊥
j (t)R(z, t)‖

≤ 8|z − Ej(t)|
δj(t)3

.

Then, the difference
∥
∥
∥
∥
∥
∥
∥

∮

Γj(t)

P⊥
j (t)(R(z, t) −R(Ej(t), t))R(z, t)P⊥

j (t)Ḣ(t)R(z, t) dz

∥
∥
∥
∥
∥
∥
∥

≤ C
f ′(t)
δj(t)3

|Γj(t)|

can be made arbitrarily small by decreasing the radius of the contour Γj(t), with
a constant C depending on the relative H0-bound of V .
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From the expression (3.25), and the bound ‖P⊥
j (t)R(Ej(t), t)P⊥

j (t)‖ ≤
δj(t)−1, it holds finally

‖Fj(t)‖ ≤ ‖Ṗj(t)‖
δj(t)

≤ C
f ′(t)
f(t)

,

where we recall that both f and f ′ are non-negative. This shows that Fj(t) is a
bounded operator when f(t) > 0. A similar bound holds for Gj .

The terms FN+1(t), GN+1(t) require a different treatment. In this case, the
uniformity of the gap between the N eigenvalues encircled by ΓN+1(t) and the
remainder of the spectrum may be used to construct a contour ΓN+1(t) such that

∀z ∈ ΓN+1(t), ‖R(z, t)‖ ≤ 4
∆(t)

.

This can be done by ensuring that the contour remains far away enough from
the remainder of the spectrum, while still being at a finite distance of the first N
eigenvalues. In particular, it is possible to construct a contour intersecting the real
axis at a point γ such that |γ − EN (t)| ≥ ∆(t)/4 and

inf {|γ − E|, E ∈ σ(H(t))\{E1(t), . . . , EN (t)}} ≥ ∆(t)/4.

Then,

‖FN+1(t)‖ =

∥
∥
∥
∥
∥
∥
∥

f ′(t)
2iπ

∮

ΓN+1(t)

(
N∑

k=1

Pk(t)

)⊥

R(z, t)2V R(z, t) dz

∥
∥
∥
∥
∥
∥
∥

≤ C
f ′(t)
∆(t)3

, (3.26)

and so FN+1 is bounded since ∆(t) ≥ ∆∗ > 0 and f ′ is bounded. A similar bound
holds for GN+1.

In conclusion,

‖F (t)‖ ≤ CF
f ′(t)
f(t)

, (3.27)

for some constant CF independent of t.

Computation of the commutator. It is easily seen that F (t) maps the Hilbert space
H to D(H0). The commutator [H(t), F (t)] can then be defined as an unbounded
operator with domain D(H(t)) = D(H0). For a given 1 ≤ j ≤ N , it holds, using
the commutation property P⊥

j (t)H(t) = H(t)P⊥
j (t),

[H(t), Fj(t)] =
1

2iπ

∮

Γj(t)

[H(t), P⊥
j (t)R(z, t)Ṙ(z, t)] dz

=
1

2iπ

∮

Γj(t)

[H(t) − z, P⊥
j (t)R(z, t)Ṙ(z, t)] dz

=
1

2iπ

∮

Γj(t)

P⊥
j (t)Ṙ(z, t) − P⊥

j (t)R(z, t)Ṙ(z, t)(H(t) − z) dz



1302 C. Brouder et al. Ann. Henri Poincaré

= −P⊥
j (t)

dPj(t)
dt

+ P⊥
j (t)

⎛

⎜
⎝

1
2iπ

∮

Γj(t)

R(z, t)2 dz

⎞

⎟
⎠ Ḣ(t)

= −(I − Pj(t))
dPj(t)

dt
,

following the proof of Theorem 2.2 in [22]. Similar computations show

[H(t), Gj(t)] =
dPj(t)

dt
(I − Pj(t)).

Finally, for 1 ≤ j ≤ N ,

[H(t), Fj(t) +Gj(t)] =
[

Pj(t),
dPj(t)

dt

]

.

In the same way,

[H(t), FN+1(t) +GN+1(t)] = −
[

PN+1(t),
dP⊥

N+1(t)
dt

]

=
[

PN+1(t),
dPN+1(t)

dt

]

.

Since

K(t) = −
N+1∑

j=1

Pj(t)
dPj(t)

dt
= −1

2

N+1∑

j=1

[

Pj(t),
dPj(t)

dt

]

,

it holds

[H(t), F (t)] = K(t). (3.28)

Integration by parts. Consider now −∞ < t0 < t ≤ 0 such that f(t0) > 0 (hence
f(t) > 0 since f is non-decreasing). Define

K(t) = −iεUε(t0, t)F (t)Uε(t, t0).

Then

K′(t) = Uε(t0, t)[H(t), F (t)]Uε(t, t0) − iεUε(t0, t)F ′(t)Uε(t, t0).

In view of (3.28), the difference between the evolution operators is rewritten as

Uε(t, t0) − Uε
A(t, t0)

= −Uε(t, t0)

t∫

t0

Uε(t0, t′)K(t′)Uε
A(t′, t0) dt′

= −Uε(t, t0)

t∫

t0

(
dK(t′)

dt′
+ iεUε(t0, t′)

dF (t′)
dt′

Uε(t′, t0)
)

Uε(t0, t′)Uε
A(t′, t0) dt′,

(3.29)
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so that, after an integration by parts for the term associated with K′,

‖Uε(t, t0) − Uε
A(t, t0)‖ =

∥
∥
∥
∥
∥
∥

t∫

t0

Uε(t0, t′)K(t′)Uε
A(t′, t0) dt′

∥
∥
∥
∥
∥
∥

(3.30)

≤ ‖K(t)‖ + ‖K(t0)‖ + ε

t∫

t0

‖F ′‖

+

∥
∥
∥
∥
∥
∥

t∫

t0

K(t′)
d
dt′

(Uε(t0, t′)Uε
A(t′, t0)) dt′

∥
∥
∥
∥
∥
∥

≤ ε

⎛

⎝‖F (t)‖ + ‖F (t0)‖ +

t∫

t0

‖F ′(t′)‖dt′

+

t∫

t0

‖F (t′)‖ ‖K(t′)‖dt′

⎞

⎠ . (3.31)

The first two terms in the above equality are bounded with the bound (3.27) on
F . For the last one, we use again the bound (3.27) on F , and the fact that K is
uniformly bounded (see (3.14)), so that

t∫

t0

‖F (t′)‖ ‖K(t′)‖dt′ ≤ C

t∫

t0

(f ′)2

f
≤ C

f(t0)

t∫

t0

(f ′)2. (3.32)

We now turn to the central term. For 1 ≤ j ≤ N , and using (3.25),

t∫

t0

‖F ′
j(t

′)‖dt′ ≤
t∫

t0

‖P̈j(t′)‖
δj(t′)

dt′ +

t∫

t0

‖Ṗj(t′)‖
∥
∥
∥
∥

d
dt′

(

P⊥
j (t′)R(Ej(t′), t′)P⊥

j (t′)
)
∥
∥
∥
∥

dt′

≤
t∫

t0

‖P̈j(t′)‖
δj(t′)

dt′ +

t∫

t0

2‖Ṗj(t′)‖2

δj(t′)
dt′

+

t∫

t0

‖Ṗj(t′)‖ ‖P⊥
j (t′)R(Ej(t′), t′)V R(Ej(t′), t′)P⊥

j (t′)‖ f ′(t′) dt′

≤
t∫

t0

‖P̈j(t′)‖
δj(t′)

+
2‖Ṗj(t′)‖2

δj(t′)
+ Cf ′(t)

‖Ṗj(t′)‖
δj(t′)2

dt′
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≤ C ′
t∫

t0

∣
∣
∣
∣

f ′′(t′)
f(t′)

∣
∣
∣
∣
+ 3

f ′(t′)2

f(t′)
+

(
f ′(t′)
f(t′)

)2

dt′

≤ C ′

⎛

⎝
1

f(t0)

t∫

t0

(|f ′′| + 3(f ′)2
)

+
1

f(t0)2

t∫

t0

(f ′)2

⎞

⎠ ,

for some constants C,C ′ > 0 (related to the relative H0-bound of V ). Similar
expressions can be obtained for Gj (1 ≤ j ≤ N). Straightforward estimates
can be used for FN+1, GN+1, following a treatment similar to what was done
to obtain (3.26), upon deriving the terms appearing in the contour integral:

‖F ′
N+1(t)‖ ≤ C

(

|f ′′(t)|
∆(t)3

+
f ′(t)
∆(t)3

N∑

k=1

‖Ṗk(t)‖ +
f ′(t)2

∆(t)4

)

,

with

‖Ṗk(t)‖ = f ′(t)
∥
∥
∥∂λP̃ (f(t))

∥
∥
∥ ≤ C f ′(t).

In conclusion,
t∫

t0

‖F ′(t′)‖dt′ ≤ C

⎛

⎝
1

f(t0)

t∫

t0

(|f ′′| + (f ′)2
)

+
1

f(t0)2

t∫

t0

(f ′)2

⎞

⎠ , (3.33)

for some constant C > 0.

Decomposition of the integral close to the degeneracy. In order to avoid the sin-
gularities when f(t0) → 0, the difference of the unitary operators is separated into
two contributions as

Uε(0, t0) − Uε
A(0, t0) = −Uε(0, t0)

T∫

t0

Uε(t0, t)K(t)Uε
A(t, t0) dt

−Uε(0, t0)

0∫

T

Uε(t0, t)K(t)Uε
A(t, t0) dt,

where T is chosen such that f(T ) > 0. The first term is bounded using the straight-
forward estimate

∥
∥
∥
∥
∥
∥

Uε(0, t0)

T∫

t0

Uε(t0, t)K(t)Uε
A(t, t0) dt

∥
∥
∥
∥
∥
∥

≤ C

T∫

t0

N∑

k=1

‖Ṗk(t)‖dt

≤ C ′
T∫

t0

f ′(t) dt ≤ C ′f(T ). (3.34)
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For t ∈ [T, 0], f(t) ≥ f(T ) > 0 and there is a gap proportional to f(T ) between
the eigenvalues:

∀1 ≤ j ≤ N, ∀t ∈ [0, T ], δj(t) ≥ αf(T ),

for some α > 0. The inequality (3.30), combined with (3.27), (3.32) and (3.33),
allows to bound the second term as

∥
∥
∥
∥
∥
∥

Uε(0, t0)

0∫

T

Uε(t0, t)K(t)Uε
A(t, t0) dt

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

0∫

T

Uε(T, t)K(t)Uε
A(t, T ) dt

∥
∥
∥
∥
∥
∥

≤ Cε

⎛

⎝
f ′(0)
f(0)

+
f ′(T )
f(T )

+
1

f(T )

0∫

T

(|f ′′| + (f ′)2
)

+
1

f(T )2

0∫

T

(f ′)2

⎞

⎠ . (3.35)

The limit t0 → −∞ can then be taken in the above expressions. Moreover, upon
choosing T small enough so that f(T ) = ε1/3 � 1, it follows, adding (3.34)
and (3.35), and using the fact that f ′ ∈ L1((−∞, 0]) ∩ L∞((−∞, 0]) and f ′′ ∈
L1((−∞, 0]),

‖Uε(0,−∞) − Uε
A(0,−∞)‖ ≤ C

(

f(T ) + ε

(

1 +
1

f(T )2

))

≤ 3Cε1/3. (3.36)

This concludes the proof.

3.4. Extensions

The above proofs can be straightforwardly extended to the following cases (see
Sect. 2 for the notation).

Definition of the initial states when P0V P0 has degenerate eigenvalues. Two
changes should be made in the proofs presented in this paper: (i) the estimate
obtained in the adiabatic limit degrades; (ii) more conditions are required to define
the initial states.

Denote by E0,i the M < N eigenspaces associated with the eigenvalues of
P0V P0, set ni = dim(E0,i), and define

Ni =
{

k ∈ {1, . . . , N}
∣
∣
∣ϕk,0 ∈ E0,i

}

,

the set of indices corresponding to the ith eigenspace of P0V P0. Of course,

M∑

i=1

ni = N, Card(Ni) = ni.

In view of Assumption 3, for any (k, l) ∈ N 2
i , k = l, there exists an integer pk,l ≥ 2

and an analytic function ekl(λ) such that

Ek(λ) − El(λ) = λpk,l ekl(λ), ek,l(0) = 0.
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Denote by p∗ the maximal integer for all couples 1 ≤ k, l ≤ N . Then, the final
estimate (3.36) in the proof of the adiabatic limit reads

‖Uε(0,−∞) − Uε
A(0,−∞)‖ ≤ C

(

f(T ) + ε

(

1 +
1

f(T )2p∗

))

≤ 3Cε1/(2p∗+1),

which is indeed larger than the ε1/3 bound found in the case p = 1 (no degeneracy
of the perturbation restricted to E0).

We now describe an iterative procedure which determines the initial states
in a unique manner, using the higher-order equations in the hierarchy (3.10). We
start with the conditions of order 2. A necessary condition for (3.10) to have a
solution is that its right-hand side belongs to E⊥

0 . This requires, for 1 ≤ j, k ≤ N ,

〈ϕk,0, V R0V ϕj,0 〉 + Ej,2δj,k + (Ej,1 − Ek,1)c1j,k = 0, (3.37)

where δa,b is the Kronecker symbol. In particular,

∀i ∈ {1, . . . ,M}, ∀(j, k) ∈ N 2
i , 〈ϕk,0, V R0V ϕj,0 〉 + Ej,2 δj,k = 0.

Therefore, {ϕj,0}j∈Ni
has to be an eigenbasis of P0,iV R0V P0,i where P0,i denotes

the projector onto E0,i. If P0,iV R0V P0,i has non-degenerate eigenvalues, the initial
eigenfunctions {ϕk,0}k∈Ni

are uniquely defined.
Otherwise, the procedure must be repeated. Recall that there exists an integer

p∗ such that after p∗ steps the degeneracy has no further split (see the discussion
at the beginning of this paragraph). When the degeneracy is not permanent (see
below for this case), this allows determining the initial states in a unique man-
ner. See for instance [11]. In many practical cases, however, degeneracy is never
totally split because V shares some symmetries with H0. In this case, permanent
degeneracy has to be taken into account (see below).

Decomposition of the switching. In the case when (2.2) is not satisfied, i.e.,
‖Pj(0) − P (−∞)‖ = 1 or equivalently ‖Pj(0)ψj‖ = 0 (since the eigenspaces are
assumed to be one-dimensional), the switching should be done in several steps. The
intermediate steps can be chosen by finding a finite number of values λk ∈ [0, 1]
(k = 1, . . . , N − 1), with λ0 = 0 and λN = 1, such that ‖P̃j(λk+1) − P̃j(λk)‖ < 1.
This is possible since P̃j is continuous on the compact interval [0, 1].

The initial state ψ0 is evolved into a state ψ1 by switching from H0 to H0 +
λ1V as

ψ1 = lim
ε1→0

Uε1
int,λ1

(0,−∞)ψ0
〈

ψ0

∣
∣
∣Uε1

int,λ1
(0,−∞)ψ0

〉 ,

where the evolution operator

Uε
int,λ1

(t, t0) = eitH0/ε Uε
λ1

(t, t0) e−it0H0/ε

is the following operator in the interaction picture:

iε
dUε

λ1
(t, t0)

dt
= (H0 + λ1f(t)V )Uε

λ1
(t, t0), Uε

λ1
(t0, t0) = I.
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The state ψ1 is then evolved into a state ψ2 by switching H0 + λ1V to H0 + λ2V
as

ψ2 = lim
ε2→0

Uε2
int,λ2,λ1

(0,−∞)ψ1
〈

ψ0

∣
∣
∣Uε2

int,λ2,λ1
(0,−∞)ψ0

〉 ,

where the evolution operator

Uε
int,λ2,λ1

(t, t0) = eitH0/ε Uε
λ2,λ1

(t, t0) e−it0H0/ε

is defined as the following operator in the interaction picture:

iε
dUε

λ2,λ1
(t, t0)

dt
= (H0 + λ1V + (λ2 − λ1)f(t)V )Uε

λ2,λ1
(t, t0), Uε

λ2,λ1
(t0, t0) = I.

This construction is repeated until an eigenstate ψN of H0 + V = H0 + λNV is
obtained. Notice that it is important to do the procedure sequentially.

Permanently degenerate eigenspaces. When there are permanently degenerate
eigenspaces associated with one of the eigenvalues Ẽj(λ) or Ej(t), the determi-
nation of the initial basis can still be performed as it is presented in Sect. 3.2.
However, the argument leading to (3.19) in Sect. 3.3.1 cannot be extended as such
to the case when Ran P̃j(0) is of dimension larger or equal to 2. This is not a
problem since A(0,−∞)ψj is still an eigenvector of Pj(0), and its phase can be
removed upon considering

Uε
A,int(0,−∞)ψj

〈φ | Uε
A,int(0,−∞)ψj〉 =

A(0,−∞)ψj

〈φ | A(0,−∞)ψj 〉

for some fixed state φ, provided the denominator is non-zero. In Theorem 7, the
choice φ = ψj is done, together with the assumption 〈φ | A(0,−∞)ψj 〉 = 0.
This assumption could in this specific case be translated into an assumption on
‖Pj(0) − Pj(−∞)‖, but in general it should then be assumed that there exists
φ ∈ H such that 〈φ | A(0,−∞)ψj 〉 = 0.

Existence of finitely many crossings. The projectors being analytic, the Kato oper-
ator can still be defined when there are eigenvalue crossings. The main issue in
extending the Gell-Mann and Low formula to this case is therefore the proof of
the adiabatic limit, which can, however, still be handled with [22, Corollary 2.5]
since the crossings are regular (again, because the eigenvalues are analytic).

Initial subspace composed of several degenerate spaces E0, E1, . . .. In this case,
the operator V should be diagonalized in each subspaces, i.e., the self-adjoint finite-
rank operators PjV Pj

∣
∣
Ej

are diagonalized in order to construct a basis of Ej . A
global basis is then obtained by concatenation (direct sum).
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Acknowledgements

G.P. is grateful to S. Teufel and J. Wachsmuth for a useful discussion in a pre-
liminary stage of this work. We gratefully thank an anonymous referee for useful
comments and remarks, which encouraged us to generalize the result appearing in
the first version of the paper.

References

[1] Avron, J.E., Seiler, R., Yaffe, L.G.: Adiabatic theorems and applications to the quan-
tum Hall effect. Commun. Math. Phys. 110, 33–49 (1987)
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