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GEM: Glare or Gloom, I Can Still See You –

End-to-End Multi-Modal Object Detection
Osama Mazhar , Robert Babuška , and Jens Kober

Abstract—Deep neural networks designed for vision tasks are
often prone to failure when they encounter environmental condi-
tions not covered by the training data. Single-modal strategies are
insufficient when the sensor fails to acquire information due to
malfunction or its design limitations. Multi-sensor configurations
are known to provide redundancy, increase reliability, and are
crucial in achieving robustness against asymmetric sensor fail-
ures. To address the issue of changing lighting conditions and
asymmetric sensor degradation in object detection, we develop a
multi-modal 2D object detector, and propose deterministic and
stochastic sensor-aware feature fusion strategies. The proposed
fusion mechanisms are driven by the estimated sensor measure-
ment reliability values/weights. Reliable object detection in harsh
lighting conditions is essential for applications such as self-driving
vehicles and human-robot interaction. We also propose a new
“r-blended” hybrid depth modality for RGB-D sensors. Through
extensive experimentation, we show that the proposed strategies
outperform the existing state-of-the-art methods on the FLIR-
Thermal dataset, and obtain promising results on the SUNRGB-D
dataset. We additionally record a new RGB-Infra indoor dataset,
namely L515-Indoors, and demonstrate that the proposed object
detection methodologies are highly effective for a variety of lighting
conditions.

Index Terms—computer vision for automation, deep learning
for visual perception, object detection, RGB-D perception,
segmentation and categorization, sensor fusion.

I. INTRODUCTION

M
ODERN intelligent systems such as autonomous vehi-

cles or assistive robots should have the ability to reli-

ably detect objects in challenging real-world scenarios. Object

detection is one of the widely studied problems in computer

vision. It has been addressed lately by employing deep convolu-

tional neural networks where the state-of-the-art methods have

achieved fairly accurate detection performances on the existing

datasets [1]–[4]. However, these vision models are fragile and

do not generalize across realistic unconstrained scenarios, such
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as changing lighting conditions or other environmental circum-

stances which were not covered by the training data [5]. The

failure of the detection algorithms in such conditions could lead

to potentially catastrophic results, as in the case of self-driving

vehicles.

One way of addressing this problem is to employ a data-

augmentation strategy [6]. It refers to the technique of perturbing

data without altering class labels, and it has been proven to

greatly improve robustness and generalization performance [7].

Nevertheless, this is insufficient for the cases where the sensor

fails to acquire information due to malfunction or its technical

limitations. For example, the output of standard passive cameras

degenerates with reduced ambient light, while thermal cameras

or LiDARs are less affected by illumination changes.

Multi-sensor configurations are known to provide redundancy

and often enhance the performance of the detection algorithms.

Moreover, efficient sensor fusion strategies minimize uncertain-

ties, increase reliability, and are crucial in achieving robustness

against asymmetric sensor failures [8]. Although, increasing the

number of sensors might enhance the performance of detection

algorithms, this comes with a considerable computational and

energy cost. This is not desirable in mobile robotic systems,

which typically have constraints in terms of computational

power and battery consumption. In such cases, intelligent choice

and combination of sensors are crucial.

Furthermore, multi-modal data fusion often requires an es-

timate of the sensor signal uncertainty to guarantee efficient

fusion and reliable prediction without a priory knowledge of

the sensor characteristics [9]. The existing multi-modal object

detection methods fuse the sensor data streams without explicitly

modeling the measurement reliability. This may have severe

consequences when the data from an individual sensor degrades

or is missing due to sheer sensor failure.

To address the above problems, we propose sensor-aware

multi-modal fusion strategies for object detection in harsh light-

ing conditions, thus the title “GEM: Glare or gloom, I can still

see you - End-to-end Multimodal object detection”. The output

samples of GEM are shown in Figure 1. Two fusion methods are

proposed: deterministic weighted fusion and stochastic feature

fusion. In the deterministic weighted fusion, the measurement

certainty of each sensor is estimated either by learning scalar

weights or masks through separate neural networks. The learned

weights are then assigned to the feature maps extracted from

the feature extractor backbones for each sensor modality. The

weighted feature maps can be fused either by averaging or

concatenation. Moreover, we can visualize and interpret the

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Output samples of the proposed multi-modal object detector. The
blue/green bar at the top illustrates the contribution/reliability of each sensor
modality in obtaining the final output. Images from two modalities are merged
diagonally only for illustration purposes. (a) Shows the results on the FLIR-
Thermal dataset with RGB and thermal sensor modalities, (b) Shows the output
on the SUNRGB-D dataset with RGB and our proposed “r-blended” hybrid
depth modality.

measurement certainty of each sensor in the execution phase,

which provides deeper insights into the relative strengths of

each data stream. The stochastic feature fusion creates a one-

hot encoding of the feature maps of each sensor, which can

be assumed as a discrete switch that allows only the domi-

nant/relevant features to pass. The obtained selected features are

then concatenated before they are passed to the object detection

and classification head. The proposed sensor-aware multi-modal

object detector, referred to simply as GEM in the rest of the

paper, is trained in an end-to-end fashion along with the fusion

mechanism.

Most modern object detectors, including YOLO, Faster-

RCNN and SSD employ many hand-crafted features such as

anchor generation, rule-based assignment of classification and

regression targets as well as weights to each anchor, and non-

maximum suppression postprocessing. The overall performance

of these methods often relies on careful tuning of the above-

mentioned hyper-parameters. Following their success in se-

quence/language modeling, transformers have lately emerged

in vision applications, outperforming competitive baselines and

demonstrating a strong potential in this field. Therefore, we

employ transformers in our work as in [10], which thanks

to their powerful relational modeling capability eliminates the

need of hand-crafted components in object detection. Our main

contributions in this paper are:
� Evaluation of feature fusion in two configurations, i.e.,

deterministic weighted fusion and stochastic feature fusion

for multi-modal object detection.
� Estimation of measurement reliability of each sensor as

scalar or mask multipliers through separate neural net-

works for each modality to efficiently drive the determin-

istic weighted fusion.
� Use of transformers for multi-modal object detection to

harness the efficacy of self-attention in sensor fusion.

II. RELATED WORK

In this section, we first review deep learning-based object de-

tection strategies, followed by a discussion on existing methods

for multi-modal fusion methods in relevant tasks.

A. Deep Learning-Based Object Detection

Detailed literature surveys for deep learning-based object

detectors have been published in [11], [12]. Here we briefly

discuss some of the well-known object detection strategies.

Typically, object detectors can be classified into two types,

namely two-stage and singe-stage object detectors.

1) Two-Stage Object Detection: Two-stage object detectors

exploit a region proposal network (RPN) in their first stage.

RPN ranks region boxes, alias anchors, and proposes the ones

that most likely contain objects as candidate boxes. The features

are extracted by region-of-interest pooling (RoIPool) operation

from each candidate box in the second stage. These features

are then utilized for bounding-box regression and classification

tasks.

2) Single-Stage Object Detection: Single-stage detectors

propose predicted boxes from input images in one forward pass

directly, without the region proposal step. Thus, this type of ob-

ject detectors are time efficient and can be utilized for real-time

operations. Lately, an end-to-end object detection strategy has

been proposed in [10] that eliminates the need for hand-crafted

components like anchor boxes and non-maximum suppression.

The authors employ transformers in an encoder-decoder fashion,

which have been extremely successful and become a de facto

standard for natural language processing tasks. The transformer

implicitly performed region proposals instead of using an R-

CNN. The multi-head attention module in transformers jointly

attended to different semantic regions of an image/feature maps

and linearly aggregates the outputs through learnable weights.

The learned attention maps can be visualized without requiring

dedicated methods, as in the case of convolutional neural net-

works. The inherent non-sequential architecture of transformers

allows parallelization of models. Thus, we opted to build upon

the methodology of [10] for our multi-modal object detector for

harsh lighting conditions.

B. Sensor Fusion

Sensor fusion strategies can be roughly divided into three

types according to the level of abstraction where fusion is per-

formed or in which order transformations are applied compared

to feature combinations, namely low-level, mid-level, and high-

level fusion [13]. In low-level or early fusion, raw information

from each sensor is fused at pixel level, e.g., disparity maps in

stereovision cameras [14]. In mid-level fusion, a set of features

is extracted for each modality in a pre-processing stage, while

multiple approaches [15] are exploited to fuse the extracted

features. Late-fusion often employs a combination of two fusing

methods, e.g., convolution of stacked feature maps followed by

several fully connected layers with dropout regularization [16].

In high-level fusion or ensemble learning methods, predictions

are obtained individually for each modality and the learnt scores

or hypotheses are subsequently combined via strategies such as

weighted majority votes [17]. Deep fusion or cross fusion [18]

is another type of fusion strategy which repeatedly combines

inputs, then transforms them individually. In each repetition,

the transformation learns different features. For example in [8],

features from the layers of VGG network are exchanged among
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all modalities driven by sensor entropy after each pooling

operation.

C. Multi-Sensor Object Detection

Most of the efforts on multi-modal object detection in the

literature are focused on pedestrian or vehicle detection in the au-

tomotive context. Sensor fusion strategies are typically proposed

for camera-LiDAR, camera-radar, and camera-radar-LiDAR se-

tups. Here, we briefly go through the relevant state-of-the-art

methods.

The authors in [8] proposed an entropy-steered multi-modal

deep fusion architecture for adverse weather conditions. The

sensor modalities exploited in their method include RGB cam-

era, gated camera (NIR band), LiDAR, and radar. Instead of

employing BeV projection or point cloud representation for

LiDAR, the authors encoded depth, height, and pulse intensity

on an image plane. Moreover, the radar output was also projected

onto an image plane parallel to the image horizontal dimension.

Considering the radar output invariant along the vertical image

axis, the scan was replicated across the horizontal image axis.

They utilized a modified VGG architecture for feature extrac-

tion, while features were exchanged among all modalities driven

by sensor entropy after each pooling operation. Fused feature

maps from the last 6 layers of the feature extractors were passed

to the SSD object detection head. In [19], the authors proposed a

pseudo multi-modal object detector from thermal IR images in a

Faster-RCNN setting. The features from ResNet-50 backbones

for the two modalities are concatenated and a 1× 1 convolution

is applied to the concatenated features before they are passed to

the rest of Faster-RCNN network. They exploited I2I translation

networks, namely CycleGAN [20] and UNIT [21] to transform

thermal images from the FLIR Thermal [22] and KAIST [23]

datasets to the RGB domain, thus the names MM-CG and

MM-UNIT.

Here, we also discuss some fusion strategies which were

originally proposed for applications other than object detection

but are relevant to our work. In [24], the authors proposed

a sensor fusion methodology for RGB and depth images to

steer a self-driving vehicle. The latent semantic vector from

an encoder-decoder segmentation network trained on RGB im-

ages was fused with the depth features. The fusion architecture

proposed by [24] is similar to the gating mechanism driven

by the learned scalar weights presented in [25]. The method

proposed in [26] is closest to our work. The authors proposed

two sensor fusion strategies for Visual-Inertial Odometry (VIO),

namely soft fusion and hard fusion. In soft fusion, they learned

soft masks which were subsequently assigned to each element

in the feature vector. Hard fusion employed a variant of the

Gumbel-max trick, which is often used to sample discrete data

from categorical distributions. Learning masks equal to the

size of feature vectors might introduce computational overhead.

Therefore, we learn dynamic scalar weights for each sensor

modality, which adapt to the environmental/lighting conditions.

These scalar weights represent the reliability or relevance of the

sensor signals. Moreover, we also learn single-channel masks

with a spatial size equal to that of the feature maps obtained from

Fig. 2. Our proposed pipeline for a multi-modal object detector with trans-
formers. The features from each backbone are fused and passed to the trans-
former encoder-decoder network. The decoder output is subsequently exploited
by Multilayer Perceptrons (MLPs) for bounding box regression and object
classification.

the feature extractor backbone. Nevertheless, we also implement

the Gumbel-Softmax trick for comparison, as a stochastic feature

fusion for multi-modal object detectors.

III. SENSOR-AWARE MULTI-MODAL FUSION

In this work, we propose a new method for sensor-aware

feature selection and multi-modal fusion for object detection.

We actually evaluate feature fusion in two configurations, i.e.,

deterministic weighted fusion with scalar and mask multipliers,

and stochastic feature fusion driven by the Gumbel-Softmax

trick that enables sampling from a discrete distribution. The

overall pipeline of the proposed multi-modal object detector is

illustrated in Figure 2. The proposed methodologies are trained

and evaluated on datasets with RGB and thermal or depth

images. However, it can be extended to include data from other

sensors like LiDAR or radar, either by projecting the sensor

output onto an image plane as proposed in [8] or by employing

sensor-specific feature extractors such as [27].

A. Deterministic Weighted Fusion

The proposed deterministic weighted fusion scheme is con-

ditioned on the measurement certainty of each sensor. These

values are obtained either by learning scalar weights or masks

through separate neural networks. Subsequently, the weights are

assigned to the feature maps extracted from the backbones as

(scalar or mask) multipliers for each sensor modality. Given the

output of the backbone feature extractors s for a single modality,

the neural network f optimizes parameters θ to obtain measure-

ment certainty w of the corresponding sensor as described as

follows:

w = f(s,θ)×
1

rows × cols × k

rows∑

l=1

cols∑

m=1

k∑

n=1

s(l,m, n) (1)

where k is the selected number of channels. The network f
learns the parameters θ in an end-to-end fashion. In the case of

sensor degradation, the output of the neurons in the early layers

of the corresponding backbone will remain close to zero. Thus,
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we multiply the output of the network f by the mean of first k
feature maps, 16 in our case, from s in a feed-forward setting

to obtain w. This allows f to dynamically condition its output

to changing lighting/sensor degradation scenarios, which subse-

quently guides the transformers to focus on the dominant sensor

modality for object detection. Furthermore, the multiplication of

the raw output of f with the mean of the selected feature maps is

performed without gradient calculation to prevent the distortion

of the feature maps in the back-propagation phase.

The weighted feature maps are fused by either taking an aver-

age of the two feature sets, or by concatenating them. The fused

features are then passed to the transformer for object detection

and localization. Our scalar fusion functions gsa (averaging) and

gsc (concatenating) are represented as:

gsa(sRGB, sIR) = φ(wRGB ⊙ sRGB, wIR ⊙ sIR)

gsc(sRGB, sIR) = [wRGB ⊙ sRGB;wIR ⊙ sIR] (2)

where φ denotes the mean operation, sRGB and sIR are feature

maps obtained from the backbone feature extractor for RGB and

thermal/IR imagers respectively, while wRGB and wIR are the

sensor measurement certainty weights obtained through Equa-

tion (1). Similar to the scalar fusion method, feature selection

is also modelled by learning masks for each modality, in this

case mRGB and mIR/mdepth, with a spatial size equal to that of

the features maps. The fusion scheme with mask multipliers is

represented as:

gma(sRGB, sIR) = φ(mRGB ⊙ sRGB,mIR ⊙ sIR)

gmc(sRGB, sIR) = [mRGB ⊙ sRGB;mIR ⊙ sIR] (3)

B. Stochastic Feature Fusion

In addition to the weighted fusion schemes, we exploit a

variant of the Gumbel-max trick to learn a one-hot encoding that

either propagates or blocks each component of the feature maps

for intelligent fusion. The Gumbel-max resampling strategy

allows to draw discrete samples from a categorical distribution

during the forward pass through a neural network. It exploits

the reparametrization trick to separate out the deterministic

and stochastic parts of the sampling process. However, it adds

Gumbel noise instead of that from a normal distribution, which

is actually used to model the distribution of the maximums

for samples taken from other distributions. Gumbel-max then

employs the argmax function to find the class that has the

maximum value for each sample.

Considering α be the n-dimensional probability variable con-

ditioned for every row on each channel of the feature volume

such that α = [π1, . . . , πn], representing the probability of each

feature at location n, the Gumbel-max trick can be represented

by the following equation:

Q = argmax
i

(log πi +Gi) (4)

where, Q is a categorical variable with class probabilities

π1, π2, . . . , πn and {Gi}i≤n is an i.i.d. sequence of standard

Gumbel random variables which is given by:

G = − log(− log(U)), U ∼ Uniform[0, 1] (5)

Fig. 3. Illustration of our stochastic feature fusion strategy that employs the
Gumbel-Softmax sampling trick.

The use of argmax makes the Gumbel-max trick non-

differentiable. However, it can be replaced by Softmax with

a temperature factor τ , thus making it a fully-differentiable

resampling method [28]. Softmax with temperature parameter

τ can be represented as:

fτ (x)i =
exp(xi/τ)

Σn
j=1

exp(xj/τ)
(6)

where τ determines how closely the Gumbel-Softmax distribu-

tion matches the categorical distribution. With low temperatures,

e.g., τ = 0.1 to τ = 0.5, the expected value of a Gumbel-

Softmax random variable approaches the expected value of a

categorical random variable [28]. The Gumbel-Softmax resam-

pling function can therefore be written as

Qτ
i = fτ (log πi +Gi) =

exp((log πi +Gi)/τ)

Σn
j=1

exp((log πj +Gj)/τ)
(7)

with i = 1, . . . , n.

We set τ = 1 and obtain feature volume approximate one-hot

categorical encodings for each modality eRGB and eIR. Then a

Hadamard product is taken between the encodings and the fea-

ture volumes and the resultants are subsequently concatenated

and passed on to the bounding box regressor and classification

head. We illustrate our selective fusion process developed for

multi-modal object detector in Figure 3, while the selective

fusion function gsf is given as follows

gsf(sRGB, sIR) = [eRGB ⊙ sRGB; eIR ⊙ sIR]. (8)

IV. EXPERIMENTS

A. Datasets

Three datasets are utilized in the training and evaluation of

GEM, including the FLIR Thermal, SUNRGB-D [29] and a

new L515-Indoor dataset that we recorded for this research.

The FLIR Thermal dataset provides 8862 training and 1366 test

samples of thermal and RGB images recorded in the streets and

highways in Santa Barbara, California, USA. Only the thermal

images in the dataset are annotated with four classes, i.e., People,

Bicycle, Car and Dog. The given RGB images in the dataset are

neither annotated nor aligned with their thermal counterparts,

while the camera matrices are also not provided. Thus, to utilize

this dataset in a multi-modal setting, the given RGB images

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2021 at 09:15:59 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Class distributions of the datasets (a) L515-Indoor (b) FLIR-Thermal
(c) SUNRGB-D. The number of annotations in (c) are presented in the logarith-
mic scale.

must be annotated or aligned with their corresponding thermal

images. One way to address this problem is to create artificial

RGB images from input thermal images through GANs or

similar neural networks as performed in [19]. However, we opted

to employ the concept of homography by manually selecting

matching features in multiple RGB and thermal images. The

selected feature points are then employed to estimate a transfor-

mation matrix between the two camera modalities. RGB images

are subsequently transformed with the estimated homography

matrix such that they approximately align with their thermal

equivalents. The Dog class constitutes only 0.29% of all the

annotations in the aligned FLIR-Thermal dataset, thus it is not

included in our experiments.

The SUNRGB-D dataset contains 10,335 RGB-D images

taken by Kinect v1, Kinect v2, Intel RealSense, and Asus

Xtion cameras. The annotations provided consist of 146,617 2D

polygons and 64,595 3D bounding boxes, while 2D bounding

boxes are obtained by projecting the coordinates of 3D bounding

boxes onto the image plane. Although the dataset contains labels

for approximately 800 objects, we evaluate our method on the

selected 19 objects similar to [29]. We first divide the dataset into

three subsets such that the training set consists of 4255 images,

the validation set has 5050 images, while the test set contains

1059 images.

The L515-Indoor dataset provides 482 training and 207 vali-

dation RGB and IR images recorded with Intel RealSense L515

camera with various ambient light conditions in an indoor scene.

It contains annotations of 1819 2D bounding boxes of 6 object

categories in total. The IR images are aligned with their RGB

counterparts through a homography matrix which is computed

in a similar fashion as explained for the FLIR-Thermal dataset.

The population distributions of the datasets are illustrated in

Figure 4.

B. Pre-Processing Sensor Outputs

For the FLIR-Thermal and L515-Indoor datasets, aligned

RGB and thermal/IR images are fed into our feature extractor

backbones without any pre-processing. However, techniques

that exploit datasets with depth images including [29] often

apply HHA encoding [30] on the depth sensor modality for early

feature extraction prior to being fed into the neural networks.

HHA is a geocentric embedding for depth images that encodes

horizontal disparity, height above ground, and angle with gravity

for each pixel. In a multi-threading setup on a 12-Core Intel

CoreTM i7-9750H CPU, HHA encoding of a batch of 32 images

takes approximately 119 seconds, which is far from its applica-

tion in real-time object detection or segmentation tasks.

To address this problem, assuming that we are working with

RGB and depth modalities, we create a new hybrid image that

introduces scene texture in a depth image. As the red light is

scattered the least by air molecules, we blend the depth images

and the red image channels through a blend weight α. Thus, we

name our hybrid depth image as “r-blended” depth image.

imgr-blended = α imgdepth + (1− α) imgred (9)

The value of α is set to 0.9 for depth images while the weight

value for the red channels becomes 0.1. This is to make sure

that when the neural network is trained with “r-blended depth”

image, it should focus on learning the depth features while

information from the red channel only complements the raw

depth map. The idea to blend the red channel is also supported by

the fact that CMOS cameras are often more sensitive to green and

red light. We first train our multi-modal object detector on RGB

and HHA encoded depth images. Later, we fine-tune the trained

model by replacing HHA encoded images with r-blended depth

images and achieve comparable results in terms of detection

accuracy, while the fine-tuned model can indeed be used for

real-time multi-modal object detection.

C. Training

GEM is trained with scalar fusion and mask fusion methods,

i.e., gsa, gsc, gma and gmc for deterministic weighted fusion driven

by Equations (2) and (3), while it is also trained with gsf for

stochastic feature fusion. The backbone feature extractors for

both sensor streams and the transformer block are pre-trained

on MSCOCO dataset on RGB images as in [10]. For the FLIR

thermal dataset, each model is trained on a cluster with 2 GPUs

for 100 epochs while the models for the SUNRGB-D dataset

are trained with 4 GPUs for 300 epochs. Similarly, the models

for L515-Indoor are trained on a cluster with 2 GPUs for 300

epochs with a batch size of 1. The batch size for the FLIR-

Thermal and SUNRGBD datasets is set to 2, while the learning

rate for the feature extractor backbones, fusion networks, and

transformer block is set to 8× 10−6 for all datasets. We employ

ResNet-50 as the feature extractor, while we also train gsc on

MobileNet v2 [31] for the FLIR thermal dataset. To guide the

fusion process and mimic harsh lighting conditions for the RGB

sensor, we also employ Random Shadows and Highlights (RSH)

data augmentation as proposed in [7]. RSH develops immu-

nity against lighting perturbations in the convolutional neural

networks, which is desirable for real world applications. We

additionally implement SSD512 object detector with VGG16

backbones in a multi-modal setting in two configurations, i.e., a

simple averaging fusion as the baseline method (SSD-BL) and

a weighted averaging fusion scheme (SSD-WA) similar to gsa.

The anchor/default boxes are configured for both SSD-BL and

SSD-WA in a fashion similar to that for the MS-COCO dataset.

These models are trained for 800 epochs in a single GPU setup

with a batch size 1 and a learning rate 1× 10−4 which decays

with a decaying factor 0.2 after the first 520,000 iterations.
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D. Evaluation

FLIR-Thermal: performance evaluation of the proposed net-

works on the FLIR-Thermal dataset is shown in Table II. We

show Average Precision (AP) values at Intersection over Union

(IoU) of 0.5 for each dominant class, while the mean Average

Precision (mAP) is also estimated with and without lighting

perturbations. These lighting corruptions are introduced by cre-

ating Random Shadows and Highlights (RSH) on the test RGB

images. The evaluation with lighting perturbation is performed

for 10 trials in all experiments, while the average of the obtained

mAP is shown in the table. The results are compared with

the single modality object detector, the multi-modal baseline

fusion networks, and the existing state-of-the-art methods on

this dataset. In the baselines, the features from the backbones

are fused in two configurations: averaged and concatenated,

without any weighing or re-sampling mechanism. Additionally,

we compare the performance of SSD-BL and SSD-WA on the

FLIR-Thermal dataset. It is clear from the evaluation results,

that our proposed methodologies, i.e., gsa, gsc, gma, gmc, and gsf,

outperform the previously reported results on this dataset. Our

methods also demonstrate robustness against lighting perturba-

tion, while a significant performance drop of single modality and

baseline methods can be seen when tested with RSH. The “avg-

baseline” obtained comparable results, but as it is only a blind

fusion, hence no sensor contribution or reliability measure can be

obtained with this methodology. Additionally, its performance

can significantly drop in the case of asymmetric sensor failure.

This can partially be observed in Table II where the baselines

are tested with RSH perturbations. Concerning the evaluation

of multi-modal SSD on the FLIR-Thermal dataset, SSD-WA

certainly improves the results compared to SSD-BL, specifically

in terms of robustness against lighting perturbations introduced

by RSH. The overall performance of SSD-based detectors turned

out to be inferior to that of our transformer-based multi-modal

object detection methods.

Among our proposed fusion methods, gsa obtained the best

overall performance on the FLIR-Thermal dataset. Scalar mul-

tiplication amplifies the information in the feature maps by re-

taining the learned structure. Nevertheless, mask multiplication

may amplify a certain spatial portion of the feature maps in

some channels, but it could also potentially distort the learned in-

formation depth-wise. Concatenation might be useful when the

feature spaces of the utilized sensor modalities differ, e.g., image

versus point cloud. However, in our case of image modalities,

the averaging features gsa performed better than concatenation

gsc. Similarly, switching off the features with selective fusion gsf

has affected the performance of the model adversely. We plan

to explore this method further in our future research, especially

in the cases when information from the sensor modalities of

dissimilar domains are fused, e.g., camera versus LiDAR/radar.

SUNRGB-D: The evaluation results on SUNRGB-D dataset

are shown in Table I. We not only present a comparison of

single vs. multi-modal settings on the selected 19 categories

of the SUNRGB-D dataset, but also between raw vs. pro-

cessed depth images. The table only shows the results for

eight categories due to limited space. Two single modality

TABLE I
PERFORMANCE EVALUATION ON SUNRGB-D DATASET

networks are trained, one with RGB images and the other with

HHA-encoded depth images. We also evaluate the performance

of “conc-baseline” and “avg-baseline” with RGB and HHA-

encoded depth modalities. Motivated by the performance of gsa

and gsc on the FLIR-Thermal dataset, we chose to evaluate

their performance on SUNRGB-D dataset exclusively. Since

HHA-encoding introduces a significant computational burden

inhibiting the possibility of real-time object detection, we first

train gsa and gsc with on RGB and HHA-encoded depth images,

later we fine-tune these models on raw-depth images as well as

on our “r-blended” hybrid depth images. It is evident in Table I

that both gsa and gsc obtain promising results on this dataset

with RGB and “r-blended” depth images. Further analysing the

results of Table II, we observe that the comparative performance

of the models on the Bicycle class is not stable. Looking at

the distribution of the datasets in Figure 4, we realize that

the Bicycle class only constitutes 8.23% of the dataset. This

indicates its comparative inconsistent performance on various

models. However, analysing the results in Table I, we realize

this performance instability might also be related to the object

size. The proposed networks are able to distinguish large sized

objects even if their contribution in the dataset is relatively small

e.g., Baththub and Bed classes. This problem can be traced back

to [10] which itself struggles to perform equally on detecting

small sized objects.

L515-Indoor: Table III presents the evaluation results of

L515-Indoor dataset. We tested the performance RGB-only

and IR-only networks, as well as the gsa variant of GEM on

this dataset. Evidently, gsa outperformed both single modality

detectors providing an additional functionality of switching

between the dominant sensors in changing lighting conditions.

The performance of gsa with MobileNet v2 backbone is also

presented in the table. The qualitative results on all three datasets

are shown in Figures 5 and 6.

MobileNet v2: On a mobile platform having a 12-Core Intel

CoreTM i7-9750H CPU, and Nvidia GeForce RTX 2080 GPU,

with ResNet-50 backbones, it takes approx 106.0 ms for a

single forward pass on the proposed multi-modal object detector.
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TABLE II
PERFORMANCE EVALUATION ON FLIR-THERMAL DATASET

Fig. 5. Qualitative analysis of our multi-modal object detector, gsa in this case. Columns (a), (b) and (d) are the outputs of gsa in various asymmetric sensor failure
conditions imitated artificially, which are mentioned on the upper-right corner of each image in row I. The top blue/green bar represents the contribution of each
sensor modality in obtaining the final results (RGB: blue and Thermal/Infra: green). (c) and (e) are the outputs from single modal baselines. (f) is the ground-truth.
Rows I and II are from FLIR-Thermal dataset while III and IV are from L515-Indoor dataset. Row IV represents a true sensor failure case when IR camera gets
saturated due to sun-light even in indoors.

TABLE III
PERFORMANCE EVALUATION ON L515-INDOOR DATASET

However, with MobileNet v2 backbone feature extractors, the

time for a single forward pass reduces to 49.7 ms obtaining

approximately 20.1 fps. The drop in prediction accuracy of

the deep models with the decrease in the number of network

parameters for faster detection speed, is a well-known dilemma

(e.g., in our case 23 million parameters for ResNet-50 to 3.4

million parameters for MobileNet v2). A compromise on pre-

diction accuracy should only be made in non-critical cases where

human safety is not at stake. Otherwise, the use of lightweight

backbones should be avoided

Fig. 6. (a) Sample output of GEM (gsc) on the SUNRGB-D dataset with RGB
images and “r-blended” depth modality. In (b), the output of single modal object
detector trained only on RGB images is shown, while (c) is the ground truth.

V. CONCLUSION

In this paper, we propose GEM, a novel sensor-aware multi-

modal object detector, with immunity against adverse lighting

scenarios. Among the proposed sensor fusion configurations, the

scalar averaging variant of the deterministic weighted fusion

outscored the state-of-the-art and other fusion methods. The

mask multipliers may amplify a certain spatial portion of the fea-

ture maps, but could also potentially distort the learned features

depth-wise. Concatenation might be useful in cases where the
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feature spaces of the utilized sensor modalities differ. Regarding

RGB-D data, the proposed “r-blended” hybrid depth modality

has proven to be a promising and lightweight alternative to the

commonly employed HHA-encoded depth images. However,

instead of employing a fixed blend weightα, dynamic adaptation

driven by ambient light intensity could demonstrate a more

realistic use of the proposed hybrid image. GEM brings along the

shortcomings of [10] in multi-modal object detection setting as

well, e.g., it struggles to detect small objects and suffers from the

computational complexity of the attention layers. These issues

will be addressed in the future work.
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