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GEMINI: GRAPH ESTIMATION WITH MATRIX VARIATE
NORMAL INSTANCES

BY SHUHENG ZHOU1

University of Michigan

Undirected graphs can be used to describe matrix variate distributions.
In this paper, we develop new methods for estimating the graphical structures
and underlying parameters, namely, the row and column covariance and in-
verse covariance matrices from the matrix variate data. Under sparsity condi-
tions, we show that one is able to recover the graphs and covariance matrices
with a single random matrix from the matrix variate normal distribution. Our
method extends, with suitable adaptation, to the general setting where repli-
cates are available. We establish consistency and obtain the rates of conver-
gence in the operator and the Frobenius norm. We show that having replicates
will allow one to estimate more complicated graphical structures and achieve
faster rates of convergence. We provide simulation evidence showing that we
can recover graphical structures as well as estimating the precision matrices,
as predicted by theory.

1. Introduction. The matrix variate normal model has a long history in psy-
chology and social sciences, and is becoming increasingly popular in biology and
genetics, econometric theory, image and signal processing and machine learning
in recent years. In this paper, we present a theoretical framework to show that
one can estimate the covariance and inverse covariance matrices well using only
one matrix from the matrix-variate normal distribution. The motivation for this
problem comes from many applications in statistics and machine learning. For ex-
ample, in microarray studies, a single f × m data matrix X represents expression
levels for m genes on f microarrays; one needs to find out simultaneously the cor-
relations and partial correlations between genes, as well as between microarrays.
Another example concerns observations from a spatiotemporal stochastic process
which can be described with a matrix normal distribution with a separable covari-
ance matrix S ⊗ T , where typically, S is called spatial covariance, T is called the
temporal covariance and ⊗ is the Kronecker product. When the stochastic process
is spatial–temporal, some structures can be assumed for one or both of the matri-
ces in the Kronecker product. However, typically one has only one observational
matrix.

Received August 2013; revised November 2013.
1Supported in part by NSF Grant DMS-13-16731.
MSC2010 subject classifications. Primary 62F12; secondary 62F30.
Key words and phrases. Graphical model selection, covariance estimation, inverse covariance es-

timation, graphical Lasso, matrix variate normal distribution.

532

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/13-AOS1187
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


GEMINI 533

We call the random matrix X which contains f rows and m columns a sin-
gle data matrix, or one instance from the matrix variate normal distribution. We
say that an f × m random matrix X follows a matrix normal distribution with a
separable covariance matrix � = A ⊗ B , which we write

Xf ×m ∼ Nf,m(M,Am×m ⊗ Bf ×f ).(1)

This is equivalent to say vec{X} follows a multivariate normal distribution with
mean vec{M} and covariance � = A ⊗ B . Here, vec{X} is formed by stacking the
columns of X into a vector in Rmf . Intuitively, A describes the covariance between
columns of X while B describes the covariance between rows of X. See [4, 10]
for characterization and examples. Note that we can only estimate A and B up to
a scaled factor, as Aη ⊗ 1

η
B = A ⊗ B for any η > 0, and hence this will be our

goal of the paper, and precisely what we mean, when we say we are interested in
estimating covariances A and B .

Undirected graphical models are often used to describe high dimensional dis-
tributions. We will use such descriptions in the present work to encode structural
assumptions on the inverse of the row and column covariance matrices. A com-
mon structural assumption is that the inverse covariance matrices, also known
as the precision matrices, are sparse, which means that the number of nonzero
entries (sparsity levels) in one or both of them are bounded. Under sparsity as-
sumptions, a popular approach to obtain a sparse estimate for the precision matrix
is given by the �1-norm regularized maximum-likelihood function, also known
as the GLasso [2, 9, 18, 26]. All these methods and their analysis assume that
one is given independent samples and the estimation of A or B alone is their pri-
mary goal, as they all assume that X has either independent rows or independent
columns. A direct application of the GLasso estimator to estimate A ⊗ B with no
regard for its separable structure will lead to computational misery, as the cost will
become prohibitive for f,m in the order of 100. Various work [5, 14, 23] focused
on algorithms and convergence properties on estimating � using a large number
of samples X(1), . . . ,X(n). A mean-restricted matrix-variate normal model was
considered in [1], where they proposed placing additive penalties on estimated
inverse covariance matrices in order to obtain regularized row and column covari-
ance/precision matrices. Other recent work with an iterative approach for solving
the graphical model selection problem in the context of matrix variate normal dis-
tribution include [11, 13, 19, 24, 28]. None of these works was able to show con-
vergence in the operator norm which works in case n = 1 and f,m → ∞ as in our
work.

1.1. Our approach and contributions. In this work, we take a penalized ap-
proach and show from a theoretical point of view, the advantages of estimating
covariance matrices A, B and the graphs corresponding to their inverses simulta-
neously albeit via separable optimization functions. The key observation and start-
ing point of our work is: although A and B are not identifiable given the separable
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representation as in (1), their correlation matrices ρ(A) and ρ(B), and the graph-
ical structures corresponding to their inverses are identifiable, and can indeed be
efficiently estimated for a given matrix X ∼ Nf,m(0,A ⊗ B). Moreover, ρ(A)−1

and ρ(B)−1 encode the same structural information as A−1 and B−1 do, in the
sense that they share an identical set of nonzero edges. Therefore, we propose es-
timating the overall � = A ⊗ B and its inverse by (i) first estimating correlation
matrices ρ(A) and ρ(B) (and their inverses) using a pair of �1-norm penalized
estimators for an instance X ∼ Nf,m(0,A⊗B), (ii) and then combining these two
estimators with the estimated variances to form an estimator for �.

Toward this end, we develop Gemini (Graph estimation with matrix variate
normal instances), a new method for estimating graphical structures, and the under-
lying parameters A and B . We will answer the following question: how sparse does
A−1 or B−1 need to be in order for us to obtain statistical convergence rates for
estimating A and B (up to a scaled factor) simultaneously with one data matrix X?
Our estimators extend, with suitable adaptation, to the general setting where n

replicates of X are available. Our method is computational efficient. The dominat-
ing cost involves in estimating ρ(A)−1 and ρ(B)−1: the total cost is in the order
of O(f 3 + m3) for sparse graphs or O(f 4 + m4) for general graphs.

In summary, we make the following theoretical contributions: (i) consistency
and rates of convergence in the operator and the Frobenius norm of the covariance
matrices and their inverses, (ii) large deviation results for the sample correlation
estimators which we propose for estimating both the row and column correla-
tion and covariance matrices given a single matrix or multiple replicates of the
matrix-normal data, (iii) conditions that guarantee simultaneous estimation of the
graphs for both rows and columns. We note that with all other parameters hold
invariant, the rates of convergence in all metrics in (i) and (ii) in estimating A,
B (and their inverses) will be proportional to n−1/2. To the best of our knowl-
edge, these are the first such results on the matrix-variate normal distributions in
the high dimensional setting for finite and small sample instances, by which we
mean n < log max(m,f ). We provide simulation evidence and a real data example
showing that we can recover graphical structures as well as estimate the precision
matrices effectively.

There is no known closed-form solution for the maximum of the likelihood
function for the matrix-variate normal distribution. There has been a line of work
in the literature which suggested using iterative algorithms, namely, the Flip-Flop
methods to estimate the covariance matrix with the Kronecker structure; see, for
example, [5, 14, 23] and references therein. In the present work, building upon the
baseline Gemini estimators, we also propose a three-step penalized variant of the
Flip-Flop algorithms in Section 5. We show that under an additional condition, this
approach yields certain improvements upon the baseline Gemini estimators.

The rest of the paper is organized as follows. In Section 2, we will define our
model and the method. Section 3 presents the main theoretical results in this paper
on estimating A ⊗ B , as well as discussions on our method and results; moreover,
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we review the related work to place our work in context. Section 4 provides large
deviation inequalities for the sample correlation coefficients in approximating the
underlying parameters of ρ(A) and ρ(B); more general bounds of this nature are
derived in Section 13 in the supplementary material [29]. Convergence rates in the
Frobenius norm for estimating the inverse correlation matrices are also derived. We
propose a Noniterative Penalized Flip-Flop algorithm and study its convergence
properties in Sections 5 and 6. Section 7 shows our numerical results. We conclude
in Section 8. We place all technical proofs in the supplementary material [29].

1.2. Notation. For a matrix A = (aij )1≤i,j≤m, let ‖A‖max = maxi,j |aij | de-
note the entry-wise max norm; let ‖A‖1 = maxj

∑m
i=1 |aij | denote the matrix �1

norm. The Frobenius norm is given by ‖A‖2
F = ∑

i

∑
j a2

ij . Let |A| denote the de-
terminant and tr(A) be the trace of A. Let ϕmax(A) and ϕmin(A) be the largest and
smallest eigenvalues, and κ(A) be the condition number for matrix A. The opera-
tor or �2 norm ‖A‖2

2 is given by ϕmax(AAT ). Let r(A) = ‖A‖2
F /‖A‖2

2 denote the
stable rank for matrix A. We write | · |1 for the �1 norm of a matrix vectorized,
that is, |A|1 = ‖vec{A}‖1 = ∑

i

∑
j |aij |. Let |A|1,off = ∑

i �=j |Aij |, and |A|0,off be
the number of nonzero nondiagonal entries in the matrix. We use A−T to denote
(A−1)T . We write diag(A) for a diagonal matrix with the same diagonal as A.
For a symmetric matrix A, let ϒ(A) = (υij ) where υij = I(aij �= 0), where I(·)
is the indicator function. Let I be the identity matrix. We let C be a constant
which may change from line to line. For two numbers a, b, a ∧ b := min(a, b),
and a ∨ b := max(a, b). We write a � b if ca ≤ b ≤ Ca for some positive absolute
constants c,C which are independent of n,f,m or sparsity parameters.

2. The model and the method. In the matrix variate normal setting, we aim
to estimate the row and column covariance (correlation) matrices, from which we
can obtain an estimate for �. The problem of covariance estimation in the con-
text of matrix variate normal distribution is intimately connected to the problem
of graphical model selection, where the graphs corresponding to the column and
the row vectors are determined by the sparsity patterns (or the zeros) of B−1 and
A−1, respectively. Graph estimation in this work means precisely the estimation
of the zeros, as well as the nonzero entries in A−1 and B−1. We formulate such
correspondence precisely in Section 2.1. We define our estimators in Sections 2.2
and 2.3.

2.1. Problem definition: The matrix normal graphical model. We show in Fig-
ure 1 the data matrix X and its column vectors: x1, x2, . . . , xk, . . . , xm, and row
vectors y1, y2, . . . , yf .

This notation is followed throughout the rest of the paper. First recall the fol-
lowing definition concerning the classical Gaussian graphical model for a random
vector.



536 S. ZHOU

FIG. 1. Column and row vectors of matrix X, where X ∼ Nf,m(0,A ⊗ B). Let A = (aij ) and

B = (bij ). The normalized column vectors x1/
√

a11, . . . , xm/
√

amm, where aii > 0, follow a multi-

variate normal distribution Nf (0,B) while normalized row vectors y1/
√

b11, . . . , yf /
√

bff , where

bjj > 0, follow Nm(0,A).

DEFINITION 2.1. Let V = (V1, . . . , Vf )T be a random Gaussian vector,
which we represent by an undirected graph G = (V,F ). The vertex set V :=
{1, . . . , f } has one vertex for each component of the vector V . The edge set F

consists of pairs (j, k) that are joined by an edge. If Vj is independent of Vk given
the other variables, then (j, k) /∈ F .

Now let V = {1, . . . , f } be an index set which enumerates rows of X ac-
cording to a fixed order. For all i = 1, . . . ,m, we assign to each variable of
a column vector xi exactly one element of the set V by a rule of correspon-
dence g :xi → V such that g(xi

j ) = j, j = 1, . . . , f . The graphs Gi(V,F ) con-

structed for each random column vector xi, i = 1, . . . ,m according to Defini-
tion 2.1 will share an identical edge set F , because the normalized column
vectors x1/

√
a11, . . . , x

m/
√

amm follow the same multivariate normal distribu-
tion Nf (0,B). Hence, graphs G1, . . . ,Gm are isomorphic and we write Gi �
Gj,∀i, j . Due to the isomorphism, we use G(V,F ) to represent the family of
graphs G1, . . . ,Gm. Hence, a pair (�, k) which is absent in F encodes condi-
tional independence between the �th row and the kth row give all other rows.
Similarly, let 
 = {1, . . . ,m} be the index set which enumerates columns of X

according to a fixed order. We use H(
,E) to represent the family of graphs
H1, . . . ,Hf , where Hi is constructed for row vector yi , and Hi � Hj,∀i, j .
Now H(
,E) is a graph with adjacency matrix ϒ(H) = ϒ(A−1) as edges in
E encode nonzeros in A−1. And G(V,F ) is a graph with adjacency matrix
ϒ(G) = ϒ(B−1). The Kronecker product, H ⊗ G, is defined as the graph with
adjacency matrix ϒ(H) ⊗ ϒ(G) [22], where clearly missing edges correspond
to zeros in the inverse covariance A−1 ⊗ B−1, and H ⊗ G represents the graph
of the p-variate Gaussian random vector vec{X}, where p = mf . In the present
work, we aim to estimate ϒ(H) and ϒ(G) separately. Estimating their Kronecker
product directly following the classical p-variate Gaussian graphical modeling
approach will be costly in terms of both computation and the sample require-
ments.
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2.2. The Gemini estimators. We start with the one-matrix case. We note that
between A and B , the dimension of one matrix is the same as the number of sam-
ples available for estimating parameters in the other matrix in case n = 1. There-
fore, m and f are allowed to grow so long as they grow with respect to each other.
The first hurdle we need to deal with, besides the simultaneous row and column
correlations, is the fact that between the two covariance matrices A and B (as
well as their inverses), the one with the higher dimension, which contains more
canonical parameters, is always left with a smaller number of correlated samples
in order to achieve its inference tasks. The remedy comes from the following ob-
servation. Although ambient dimension f,m cannot be both bounded by the other
unless f = m, the sparsity over nondiagonal entries of each precision matrix can
be assumed to be bounded by the ambient dimension of the other.

Under such sparsity assumptions, we first provide a pair of separable regular-
ized estimators for the correlation matrices ρ(A) = (aij /

√
aiiajj ) and ρ(B) =

(bij /
√

biibjj ),

Âρ = arg min
Aρ�0

{
tr

(

̂(A)A−1

ρ

) + log |Aρ | + λB

∣∣A−1
ρ

∣∣
1,off

}
,(2a)

B̂ρ = arg min
Bρ�0

{
tr

(

̂(B)B−1

ρ

) + log |Bρ | + λA

∣∣B−1
ρ

∣∣
1,off

}
,(2b)

where the input are a pair of sample correlation matrices 
̂(A) and 
̂(B)


̂ij (A) := 〈xi, xj 〉
‖xi‖2‖xj‖2

and 
̂ij (B) := 〈yi, yj 〉
‖yi‖2‖yj‖2

,(3)

and the �1 penalties are imposed on the off-diagonal entries of the inverse cor-
relation estimates. Note that the population parameters A and B can be written
as

A ⊗ B := (
W1ρ(A)W1

) ⊗ (
W2ρ(B)W2

)
/
(
tr(A) tr(B)

)
,

where W1/
√

tr(B) = diag(
√

a11, . . . ,
√

amm) and W2/
√

tr(A) = diag(
√

b11, . . . ,√
bff ). In order to get an estimate for A⊗B , we multiply each of the two regular-

ized estimators Âρ and B̂ρ by an estimated weight matrix Ŵ1 or Ŵ2, respectively,

Ŵ1 = diag
(∥∥x1∥∥

2,
∥∥x2∥∥

2, . . . ,
∥∥xm

∥∥
2

) = diag
(
XT X

)1/2
,

Ŵ2 = diag
(∥∥y1∥∥

2,
∥∥y2∥∥

2, . . . ,
∥∥yf

∥∥
2

) = diag
(
XXT )1/2

.

Up to a multiplicative factor tr(B) and tr(A), Ŵ 2
1 and Ŵ 2

2 will provide an estimate
for diag(A) and diag(B), respectively; hence, to estimate A ⊗ B , we compute the
Kronecker product of our weighted estimators,

Â ⊗ B := (Ŵ1ÂρŴ1) ⊗ (Ŵ2B̂ρŴ2)/‖X‖2
F

while adjusting the unknown multiplicative factors tr(B) tr(A) by ‖X‖2
F .



538 S. ZHOU

Clearly, the sample correlation estimators (3) are obtained from the gram matri-
ces XT X and XXT of the column and row vectors as follows:


̂(A) = Ŵ−1
1

(
XT X

)
Ŵ−1

1 and 
̂(B) = Ŵ−1
2

(
XXT )

Ŵ−1
2 where(4)

EXT X =
f∑

i=1

Eyi ⊗ yi = tr(B)A, EXXT =
m∑

i=1

Exi ⊗ xi = tr(A)B,(5)

and the multiplicative factors tr(B) and tr(A) become irrelevant due to cancel-
lation. By setting the gradient equations of objective functions (2a) and (2b)
to zero, we see that the pair of estimators satisfy diag(Âρ) = diag(
̂(A)) and
diag(B̂ρ) = diag(
̂(B)) as desired. Moreover, the penalty parameters λB and λA

are chosen to dominate the maximum of entry-wise errors for estimating ρ(A) and
ρ(B) with 
̂(A) and 
̂(B) as characterized in Theorem 4.4 (cf. Remark 4.2 and
the comments which follow immediately).

2.3. Gemini for replicates of X. We now adapt the Gemini estimators as
defined in Section 2.2 to the general setting where we have multiple replicates
of X. Suppose that we have n independently and identically distributed matrices
X(1), . . . ,X(n) ∼ Nf,m(0,A ⊗ B). For each t , we denote by

X(t) = [
x(t)1 x(t)2 · · · x(t)m

] = [
y(t)1 y(t)2 · · · y(t)f

]T(6)

the matrix Xf ×m(t) with x(t)1, . . . , x(t)m ∈ Rf being its columns vectors and
y1(t), . . . , yf (t) being its row vectors.

First, we update our sample correlation matrices, which we will plug in (2a)
and (2b) to obtain the penalized correlation estimators Âρ and B̂ρ .


̂ij (A) :=
∑n

t=1〈x(t)i, x(t)j 〉√∑n
t=1 ‖x(t)i‖2

2

√∑n
t=1 ‖x(t)j‖2

2

,(7a)


̂ij (B) :=
∑n

t=1〈y(t)i, y(t)j 〉√∑n
t=1 ‖y(t)i‖2

2

√∑n
t=1 ‖y(t)j‖2

2
.(7b)

Next, we update the weight matrices Ŵ1 and Ŵ2 as follows:

Ŵ1 = diag

(√√√√1

n

n∑
t=1

∥∥x(t)i
∥∥2

2, i = 1, . . . ,m

)
,(8a)

Ŵ2 = diag

(√√√√1

n

n∑
t=1

∥∥y(t)j
∥∥2

2, j = 1, . . . , f

)
.(8b)

We can then construct an estimator for A ⊗ B as before,

Â ⊗ B := (Ŵ1ÂρŴ1) ⊗ (Ŵ2B̂ρŴ2)
/(

1

n

n∑
t=1

∥∥X(t)
∥∥2
F

)
.(9)
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We will show in Theorem 4.1 large deviation bounds for estimating the correla-
tion coefficients in ρ(A) and ρ(B) with entries in sample correlation 
̂(A) and

̂(B) constructed above, which are crucial in proving the convergence rates for

estimating A ⊗ B and its inverse with Â ⊗ B and Â ⊗ B
−1

.

3. Theoretical results. In this section, we present in Theorem 3.1 and Theo-
rem 3.2 the convergence rates for estimating the row and column covariance ma-
trices and their inverses with respect to the operator norm and the Frobenius norm,
respectively. Our analysis is nonasymptotic in nature; however, we first formulate
our results from an asymptotic point of view for simplicity. To do so, we consider
an array of matrix variate normal data

X(1), . . . ,X(n) i.i.d. ∼ Nf,m(0,A0 ⊗ B0), n = 1,2, . . . ,(10)

where f,m may change with n. Let |A−1
0 |0,off and |B−1

0 |0,off be the number of
nonzero nondiagonal entries in the inverse covariance matrices A−1

0 and B−1
0 , re-

spectively. Recall, for matrix A, r(A) = ‖A‖2
F /‖A‖2

2 and κ(A) denote its stable
rank and condition number, respectively.

We make the following assumptions.

(A1) The dimensions f and m are allowed to grow with respect to each other,
and ∣∣A−1

0

∣∣
0,off = o

(
nf/ log(m ∨ f )

)
(f,m → ∞) and∣∣B−1

0

∣∣
0,off = o

(
nm/ log(m ∨ f )

)
(f,m → ∞).

(A2) The eigenvalues ϕi(A0), ϕj (B0),∀i, j of the positive definite covariance
matrices A0 and B0 are bounded away from 0 and +∞.

Moreover, we assume that the stable ranks r(A0) and r(B0) satisfy r(A0),

r(B0) ≥ 4 log(m ∨ f )/n, which holds trivially if n ≥ 4 log(m ∨ f ); otherwise,
it is sufficient to require that (m ∨ f ) = o(exp(

f

κ2(B0)
∧ m

κ2(A0)
)).

We now state the main results of this paper, which are new to the best of our
knowledge. These bounds are stated in terms of the relative errors.

THEOREM 3.1. Consider data generating random matrices in (10). Suppose
that (A1) and (A2) hold, and the penalty parameters are chosen to be

λA = λA0 � ‖A0‖F

tr(A0)

log1/2(m ∨ f )√
n

� log1/2(m ∨ f )√
mn

→ 0 and

λB = λB0 � ‖B0‖F

tr(B0)

log1/2(m ∨ f )√
n

� log1/2(m ∨ f )√
f n

→ 0.
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Then with probability at least 1 − 3
(m∨f )2 , for Â ⊗ B as defined in (9),

‖Â ⊗ B − A0 ⊗ B0‖2 ≤ ‖A0‖2‖B0‖2δ and∥∥Â ⊗ B
−1 − A−1

0 ⊗ B−1
0

∥∥
2 ≤ ∥∥A−1

0

∥∥
2

∥∥B−1
0

∥∥
2δ

′

where δ, δ′ = O
(
λA0

√∣∣B−1
0

∣∣
0,off ∨ 1 + λB0

√∣∣A−1
0

∣∣
0,off ∨ 1

) = o(1).

THEOREM 3.2. Consider data generating random matrices as in (10). Let λA0

and λB0 be chosen as in Theorem 3.1. Let Â ⊗ B be as defined in (9). Under (A1)
and (A2),

‖Â ⊗ B − A0 ⊗ B0‖F ≤ δ‖A0‖F ‖B0‖F
(11)

where δ = O
(
λA0

√∣∣B−1
0

∣∣
0,off ∨ f /

√
f + λB0

√∣∣A−1
0

∣∣
0,off ∨ m/

√
m

) = o(1).

In particular, suppose (i) 1 ≤ n ≤ log(m ∨ f ) or (ii) |A−1
0 |0,off = O(m) and

|B−1
0 |0,off = O(f ). Then δ = O(λA0 + λB0). The same conclusions hold for the

inverse estimate, with δ being bounded in the same order as in (11).

The two summands in δ and δ′ in Theorems 3.1 and 3.2 correspond to the rates
of convergence in the operator and the Frobenius norm for estimating the row and
column covariance matrices A0,B0, up to a scale factor, respectively. These rates
are derived in Sections 4.2 and 10. We prove Theorems 3.1 and 3.2 in Section 11
in the supplementary material [29], where we examine the rate of (11) in case n ≥
4 log(m∨f ) in Remark 11.3, and show the absolute error bounds in Theorems 11.1
and 11.2. There we also make the connection between the one-matrix and the
multiple-matrix cases in order to understand the rates for n > 1.

3.1. Discussion. To put our discussions on the rates of convergence for covari-
ance estimation in context, we first present an example from the classical multivari-
ate analysis. Consider the case where we are given a single sample from the matrix
variate normal distribution with B0 = I , and the dimensions f,m increase to in-
finity, while the aspect ratio f/m → const > 1. The classical multivariate analysis
focuses on estimating A0 using data matrix X; the simplest way to estimate A0 is
to compute the sample covariance

Ãf = 1

f
XT X = 1

f

f∑
i=1

xi ⊗ xi where x1, . . . , xm i.i.d. ∼Nm(0,A0).

The problem here is to determine the minimal number of independent rows we
need so that the sample covariance matrix Ãf approximates A “well” in the op-
erator norm. This concerns the classical “Bai–Yin law” in random matrix the-
ory regarding the Wishart random matrix Ãf , which says that the spectrum of
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Ãf is almost surely contained in the interval [a2/f + o(1), b2/f + o(1)] where
a = (

√
f − √

m)+ and b = √
f + √

m in case A0 = I . For general covariance
matrix A0, the following holds with high probability (cf. [21]):

‖Ãf − A0‖2 ≤ (
2
√

m/f + (m/f ) + o(1)
)‖A0‖2.(12)

While such results provide a satisfactory answer to the covariance estimation prob-
lem in the regime f ≥ m for general multivariate normal distributions, it remains
challenging to answer the following questions: (a) how to estimate the covariance
matrix which has the larger dimension of the two? That is, how can we approxi-
mate A0 well in the operator norm when f < m? (b) how to estimate both A0 and
B0 given both correlated rows and columns?

Our answer to the first question is to use the penalized methods. The operator
norm bound in Theorem 3.1 illustrates the point that the combination of sparsity
and spectral assumptions as in (A1), (A2) and �1-regularization ensures conver-
gence on estimation of the covariance and precision matrices, even though their
ambient dimensions may greatly exceed the given sample sizes. In particular, the
ambient dimensions which appear in the numerator in (12) are replaced with the
sparsity parameters (cf. Theorem 3.1):

δ, δ′ = O
(
log1/2(m ∨ f )

(√∣∣A−1
0

∣∣
0,off ∨ 1/

√
f +

√∣∣B−1
0

∣∣
0,off ∨ 1/

√
m

)) = o(1),

which holds for n = 1 with high probability under (A1) and (A2), as (A1) implies
that, up to a logarithmic factor, the number of nonzero off-diagonal entries in A−1

0
or B−1

0 must be bounded by the dimension of the other matrix. We will relax such
sparsity conditions in Section 3.2.

To answer the second question, first recall that in the current setting, (4) sug-
gests that Ãf = XT X/f and B̃m = XXT /m are good starting points for us to
construct estimators for A0,B0, ρ(A0), and ρ(B0) despite the presence of depen-
dence along the other dimension. The relationships between the row and column
correlations of X are known to complicate the solution to the related problem of
testing the hypothesis that microarrays are independent of each other given pos-
sibly correlated genes [6]. Taking these complex relationships into consideration,
we construct covariance and correlation estimators based on Ãf and B̃m, as well as
the pair of functions in (29); we will develop concentration bounds which illustrate
their interactions throughout the rest of the paper.

3.2. Relaxing the sparsity assumptions. While the rates in Theorem 3.2 are
essentially tight, we can tighten those in Theorem 3.1 under an alternative set of
sparsity conditions. In particular, relaxation of (A1) is feasible when we consider
a restricted uniformity class of inverse covariance matrices whose matrix �1 norm
is bounded by a parameter M : for 0 ≤ q < 1,

Uq

(
d0(m),M

)
=

{
 = (θij )1≤i,j≤m : max

i

m∑
j=1

|θij |q ≤ d0(m),‖‖1 ≤ M, � 0

}
.
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It is to be understood that d0(m),M are positive numbers bounded away from 0
which are allowed to grow with m,f,n. We focus on the case when q = 0 and con-
sider positive definite matrices with row/column sparsity constraints, upon which
we obtain a more refined result on the �2 error bounds in Theorem 3.3. First, we
replace (A1) with (A1′), where 0 = ρ(A0)

−1 and �0 = ρ(B0)
−1 denote the in-

verse correlation matrices.

(A1′) Suppose that 0 ∈ U0(d0(m),M) and �0 ∈ U0(d0(f ),K), where d0(m),
d0(f ), M and K are positive and bounded away from 0. The dimensions f and
m are allowed to grow with respect to each other while the number of nonzero
elements in each row or column of 0 and �0 must be bounded by d0(m) and
d0(f ), respectively: as f,m → ∞

d0(m)‖0‖2
1 = o

( √
nf

log1/2(m ∨ f )

)
and d0(f )‖�0‖2

1 = o

( √
nm

log1/2(m ∨ f )

)
.

We present Theorem 3.3 using the CLIME estimators [3], which are obtained by
first solving the following optimization functions:

̃ = arg min
∈Rm×m

||1 subject to
∥∥
̂(A0) − I

∥∥
max ≤ λM,(13)

�̃ = arg min
�∈Rf ×f

|�|1 subject t o
∥∥
̂(B0)� − I

∥∥
max ≤ λK(14)

for λM and λK to be specified in Theorem 3.3; then a symmetrization step selects
each entry for the estimators ̂CL = (θ̂ij ) and �̂CL = (φ̂ij ), as follows:

̂CL = (θ̂ij ) s.t. θ̂ij = θ̃ij I
(|θ̃ij | ≤ |θ̃j i |) + θ̃j iI

(|θ̃ij | > |θ̃j i |),(15)

�̂CL = (φ̂ij ) s.t. φ̂ij = φ̃ij I
(|φ̃ij | ≤ |φ̃j i |) + φ̃j iI

(|φ̃ij | > |φ̃j i |).(16)

THEOREM 3.3. Consider data generating random matrices as in (10). Sup-
pose that (A1′) and (A2) hold. Let λA0 , λB0 be as in Theorem 3.1, and

λM � ‖0‖1λB0 and λK � ‖�0‖1λA0

for λM , λK as in (13) and (14). Let ̂CL and �̂CL be as in (15) and (16).
Then with P(X0) ≥ 1 − 3

(m∨f )2 , ̂CL and �̂CL are positive definite; and for

Â ⊗ B as defined in (9), where Âρ := ̂−1
CL and B̂ρ := �̂−1

CL,

‖Â ⊗ B − A0 ⊗ B0‖2 ≤ ‖A0‖2‖B0‖2δ and∥∥Â ⊗ B
−1 − A−1

0 ⊗ B−1
0

∥∥
2 ≤ ∥∥B−1

0

∥∥
2

∥∥A−1
0

∥∥
2δ

′,

where δ, δ′ = O
(
λA0d0(f )‖�0‖2

1 + λB0d0(m)‖0‖2
1
) = o(1).

Proof of Theorem 3.3 appears in Section 16.
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REMARKS. Suppose that f,m are sufficiently large, and f < m. We fo-
cus our discussions on 0. Denote the maximum node degree by deg(0) :=
maxi

∑
j I(θij �= 0). We note that (A1′) imposes the bounded node degree con-

straint in that: deg(0) = o(
√

nf / log1/2(m ∨ f )), while in (A1) a hub node
alone can have up to o(nf/ log(m ∨ f )) adjacent nodes. Suppose that (A2) holds,
and n < log(m ∨ f ). In this case, (A1′) relaxes (A1) in the sense that it allows
deg(0) = �(1), and hence |A−1

0 |0,off = �(m), while (A1) does not. Thus, the
graphs considered in (A1) can be those which contain a single or multiple disjoint
components with some singleton nodes, while those in (A1′) are allowed to be
fully connected graphs.

Theorem 3.3 improves upon Theorem 3.1 when M,K are slowly growing with
respect to m,f,n, while d0(m) and d0(f ) are of lower order relative to the to-
tal number edges in each graph. However, this improvement requires that we re-
place (2a) and (2b) with the CLIME or graphical Dantzig-type estimators [3, 25],
for which we are able to obtain faster rates of convergence in the operator norm
under (A1′) and (A2) in estimating each covariance/correlation matrix. The re-
placement is due to the lack of convergence bounds on the �2 errors which are
tighter than those presented in Theorem 4.5, for the graphical Lasso estimators; as
a consequence, the two summands in δ and δ′ in Theorem 3.1 were obtained using
the rates of convergence in the Frobenius norm, rather than the operator norm as
we do in Theorem 3.3, for estimating the general (but sparse) inverse correlation
matrices. To the best of our knowledge, comparable convergence bounds on the
operator norm for the graphical Lasso-type estimators are available only under an
irrepresentability condition as developed in [17]. We can indeed invoke their re-
sults in the present setting to relax the sparsity constraint on in (A1), and to prove
faster rates of convergence in the operator norm in view of Theorem 4.1.

3.3. Related work. Algorithmic and theoretical properties of the graphical
Lasso or Lasso-type estimators have been well studied in the Gaussian graphi-
cal model setting; see, for example, [2, 7, 9, 12, 15–18, 26, 30]. Under sparsity
and neighborhood stability conditions, the work by [15] showed that the graph
with p nodes can be estimated efficiently using the nodewise penalized regres-
sion approach using a very small sample size n in comparison to the maximum
node degree and the ambient dimension p. The work of [3, 25, 31], using vari-
ants of the approach in [15], showed convergence rates in the operator and the
Frobenius norm in estimating the precision matrix in case p > n, where inde-
pendent samples are always assumed. It will be interesting to consider replacing
the �1 penalties with the SCAD-type penalties or using the adaptive Lasso-type
penalties as in [7, 12]. These approaches will reduce certain bias in the penalized
estimators; see, for example, discussions in [8, 32]. The recent work of [1] focuses
on missing value imputation, rather than estimation of the graphs or the underly-
ing parameters. When f,m diverge as n → ∞, the rates in [24] are significantly
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slower than the corresponding ones in the present work. Following essentially the
same methods as in [1], the same convergence rate as in (11) on estimating the
covariance � = A0 ⊗ B0 in the Frobenius norm is obtained in [13, 19], in case
|A−1

0 |0,off = O(m), and |B−1
0 |0,off = O(f ); however, this rate is obtained with the

additional requirement that the number of replicates of X must be at least on the or-
der of n ≥ �((

f
m

∨ m
f

) log max(f,m,n)). These results exclude the case for n = 1
or for n < log(m ∨ f ), which is the main focus of the present paper.

4. Estimation of the correlation coefficients. In this section, we elaborate
on two key technical results, namely, the concentration bounds for sample corre-
lation estimates and the convergence bounds for the penalized inverse correlation
estimates.

4.1. Concentration bounds for sample correlations. We now show the con-
centration bounds for estimating the parameters in ρ(A0) and ρ(B0). Theorem 4.1
covers the small sample settings, where the number of replications n are upper
bounded by log(m∨f ), where m∨f := max(m,f ). We believe these are the first
of such results to the best of our knowledge. For completeness, we also state the
bounds when n > log(m ∨ f ) is large.

Let K be the ψ2 norm of ξ for ξ ∼ N (0,1) defined as

K := ‖ξ‖ψ2 = sup
p≥1

p−1/2(
E|ξ |p)1/p; thus, K is the smallest K2,(17)

which satisfies
(
E|ξ |p)1/p ≤ K2

√
p ∀p ≥ 1; see [21].(18)

THEOREM 4.1. Consider data generating random matrices as in (10). Let C

be some absolute constant to be defined in (57),

τ0 = 2CK2log1/2(m ∨ f )/
√

n where K is defined as in (17),
(19)

αn := ‖A0‖F τ0/tr(A0) and βn := ‖B0‖F τ0/tr(B0).

Let m ∨ f ≥ 2. Then with probability at least 1 − 3
(m∨f )2 , for αn,βn < 1/3, and


̂(A0) and 
̂(B0) as in (7a) and (7b),

∀i �= j
∣∣
̂ij (B0) − ρij (B0)

∣∣ ≤ αn

1 − αn

+ ∣∣ρij (B0)
∣∣ αn

1 − αn

≤ 3αn,

∀i �= j
∣∣
̂ij (A0) − ρij (A0)

∣∣ ≤ βn

1 − βn

+ ∣∣ρij (A0)
∣∣ βn

1 − βn

≤ 3βn

and ∣∣∣∣∣1

n

n∑
t=1

∥∥X(t)
∥∥2
F − tr(A0) tr(B0)

∣∣∣∣∣ ≤ tr(A0) tr(B0)(αn ∧ βn).(20)
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REMARK 4.2. Note that under (A1) and (A2), we have αn,βn → 0 as m,
f → ∞, where

αn � CA

log1/2(m ∨ f )√
mn

and βn � CB

log1/2(m ∨ f )√
f n

(21) where CA :=
√

m‖A0‖F

tr(A0)
=

√
m

√
tr(A0A0)

tr(A0)

and CB :=
√

f ‖B0‖F

tr(B0)
=

√
f

√
tr(B0B0)

tr(B0)

are treated to be constants throughout this paper under the bounded spectrum as-
sumptions in (A2). Their magnitudes reflect how eigenvalues of each component
covariance matrix vary across its entire spectrum, and how much they affect the
estimation of the other matrix.

The penalty parameters in Theorem 3.1 and 3.2, are chosen to dominate the
dominate the maximum of entry-wise errors for estimating ρ(A) and ρ(B) with

̂(A) and 
̂(B) as characterized in Theorem 4.1:

λA0 � CAlog1/2(m ∨ f )/
√

mn and λB0 � CB log1/2(m ∨ f )/
√

f n.

The notation λA0 and λB0 thus reflect their dependencies on the eigenspectrum of
A0 and B0, which in turn affects the rate of convergence in the Frobenius norm
in estimating ρ(B0) and ρ(A0) with the penalized estimators. The following large
deviation bounds in Lemma 4.3 are the key results in proving Theorem 4.1. We
write it explicitly to denote by X0 the event that all large deviation inequalities as
stated in Lemma 4.3 hold.

LEMMA 4.3. Suppose that (A2) holds. Denote by X0 the event that the fol-
lowing inequalities hold simultaneously for αn,βn as defined in (19)

∀i, j

∣∣∣∣∣1

n

n∑
t=1

〈
y(t)i, y(t)j

〉/(
tr(A0)

√
biibjj

) − ρij (B0)

∣∣∣∣∣ ≤ αn,

∀i, j

∣∣∣∣∣1

n

n∑
t=1

〈
x(t)i, x(t)j

〉/(
tr(B0)

√
aiiajj

) − ρij (A0)

∣∣∣∣∣ ≤ βn.

Suppose m ∨ f ≥ 2. Then P(X0) ≥ 1 − 3
(m∨f )2 .

The proofs for Theorem 4.1 and Lemma 4.3 appear in Section 13. We restate
the first two inequalities Theorem 4.1 in case n = 1 in Theorem 4.4. Let CA,CB

be as in Remark 4.2.
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THEOREM 4.4. Suppose m ∨ f ≥ 2 and (A2) holds. Let 
̂(A0) and 
̂(B0) be
as in (3). Then with probability at least 1 − 3

(m∨f )2 , for all i �= j

∣∣
̂ij (B0) − ρij (B0)
∣∣ ≤ 2CK2CA

(
1 + ∣∣ρij (B0)

∣∣) log1/2(m ∨ f )√
m

(
1 + o(1)

)
,

∣∣
̂ij (A0) − ρij (A0)
∣∣ ≤ 2CK2CB

(
1 + ∣∣ρij (A0)

∣∣) log1/2(m ∨ f )√
f

(
1 + o(1)

)
.

REMARKS. We next compare the concentration bounds for the matrix normal
distribution as in Theorems 4.4 and 4.1 with those for the multivariate Gaussian.
First suppose that f ≤ m and B0 is an f × f identity matrix. That is, we are
given independent rows in X. Then the rate of convergence for estimating ρij (A0)

with (3) is bounded in [30, 31] (cf. Lemma 13 and equation (43) in [31]) as follows:
With probability at least 1 − 1/(f ∨ m)2,∥∥
̂(A0) − ρ(A0)

∥∥
max < 3C3

√
log(m ∨ f )/f(22)

for f large enough, so long as m < ef/4C2
3 for some constant C3 > 4

√
5/3. Now

suppose that B0 follows an AR(1) model with parameter ρ, then the RHS of (22)
is necessarily replaced with a slower rate of

β � CB log1/2(m ∨ f )/
√

f .(23)

We note that this rate as well as the rate of βn � CB log1/2(m ∨ f )/
√

nf are at the
same order as the classical rate of (22) as the effective sample size for estimating
A0 is nf (cf. Remark 11.3). However, both β and βn are affected by the measure
of CB , which will increases as the parameter ρ increases; we illustrate this behav-
ior in our numerical results in Section 7.3. We are able to remove the dependency
on CB in (23) in Section 6 under additional sparsity conditions.

4.2. Bounds on estimating the inverse correlation matrices. In this section,
we show explicit nonasymptotic convergence rates in the Frobenius norm for esti-
mating ρ(A0), ρ(B0) and their inverses in Theorem 4.5. In Section 14, we present
in Corollary 14.1 a bound on the off-diagonal vectorized �1 norm on the error
matrices for estimating 0 = ρ(A0)

−1 and �0 = ρ(B0)
−1, which may be of inde-

pendent interests.
We say that event T (A0) holds for sample correlation matrix 
̂(A0) for some

parameter δn,f → 0, if for all j , 
̂jj (A0) = ρjj (A0) = 1 and

max
j,k,j �=k

∣∣
̂jk(A0) − ρjk(A0)
∣∣ ≤ δn,f ,(24)

and the event T (B0) holds for sample correlation matrix 
̂(B0) for some parameter
δn,m → 0, if for all j , 
̂jj (B0) = ρjj (B0) = 1 and

max
j,k,j �=k

∣∣
̂jk(B0) − ρjk(B0)
∣∣ ≤ δn,m.(25)
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THEOREM 4.5. Suppose that (A2) holds. Let Âρ and B̂ρ be the unique mini-
mizers defined by (2a) and (2b) with sample correlation matrices 
̂(A0) and 
̂(B0)

as their input. Suppose that event T (A0) holds for 
̂(A0) for some δn,f and event
T (B0) holds for 
̂(B0) for some δn,m, such that

δn,f

√∣∣A−1
0

∣∣
0,off ∨ 1 = o(1) and δn,m

√∣∣B−1
0

∣∣
0,off ∨ 1 = o(1),

(26)
set for some 0 < ε, ε < 1, λB = δn,f /ε and λA = δn,m/ε.

Then on event T (A0) ∩ T (B0), we have for 9 < C < 18∥∥Âρ − ρ(A0)
∥∥

2 ≤ ∥∥Âρ − ρ(A0)
∥∥
F ≤ Cκ

(
ρ(A0)

)2
λB

√∣∣A−1
0

∣∣
0,off ∨ 1,∥∥B̂ρ − ρ(B0)

∥∥
2 ≤ ∥∥B̂ρ − ρ(B0)

∥∥
F ≤ Cκ

(
ρ(B0)

)2
λA

√∣∣B−1
0

∣∣
0,off ∨ 1

and

∥∥Â−1
ρ − ρ(A0)

−1∥∥
2 ≤ ∥∥Â−1

ρ − ρ(A0)
−1∥∥

F <
CλB

√
|A−1

0 |0,off ∨ 1

2ϕ2
min(ρ(A0))

,(27)

∥∥B̂−1
ρ − ρ(B0)

−1∥∥
2 ≤ ∥∥B̂−1

ρ − ρ(B0)
−1∥∥

F ≤ CλA

√
|B−1

0 |0,off ∨ 1

2ϕ2
min(ρ(B0))

.(28)

Variants of Theorem 4.5 was shown in [18] in the context of Gaussian graphical
models; our proof follows similar arguments, and hence is omitted. Lemma 4.6
justifies the choices of the penalty parameters λA0 and λB0 .

LEMMA 4.6. Let αn,βn < 1/3 be as defined in Theorem 4.1. Let

δn,f = 2βn

1 − βn

= O

(
CB

log1/2(m ∨ f )√
nf

)
and

δn,m = 2αn

1 − αn

= O

(
CA

log1/2(m ∨ f )√
nm

)
.

Then, event T (A0) ∩ T (B0) holds on X0 for the sample correlation matrices as
defined in (7a) and (7b), respectively.

By Theorem 4.1, we have P(T (A0) ∩ T (B0)) ≥ 1 − 3
(m∨f )2 .

5. Variations on a theme. It is curious whether or not one can improve upon
the Gemini sample covariance/correlation estimators using the Flip-Flop methods.
Essentially the Flip-Flop methods [5, 14, 23] couple the estimation for A0 and B0
by feeding the current estimate for either of the two into the likelihood function
(or the penalized variants to be defined) in order to optimize it with respect to the
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other. Upon initialization of A in (29) with an identity matrix, they obtain the MLE
for A0 and B0 by solving the following two equations alternately and iteratively:

B̃(A) = 1

nm

n∑
t=1

X(t)A−1X(t)T , Ã(B) = 1

nf

n∑
t=1

X(t)T B−1X(t)(29)

such that the corresponding output B̃ , or Ã becomes the input as B , or A to the
RHS of equations in (29); this process repeats until certain convergence criteria
are reached. The baseline Gemini method, where we simultaneously optimize a
pair of convex functions (2a) and (2b), can be seen as a single-step approximation
of a penalized version of (29), where we simply set both B and A on the RHS of
equations in (29) to be the identity matrix.

We now introduce a natural variation of the Gemini estimators as given by the
Noniterative Penalized Flip-Flop (NiPFF) algorithm, where we construct more so-
phisticated covariance and correlation estimators based on the pair of functions
in (29).

Noniterative Penalized Flip-Flop algorithm:

1. Assume f ≤ m. Initialize Ainit = I . Compute 
̂(B0) based on (7b) as before,
and compute B̂ρ using GLasso (2b) with the penalty parameter λA0 to be chosen
(cf. Lemma 6.1). Let B1 = Ŵ2B̂ρŴ2/m.

2. Now compute the sample covariance Ã(B1) using (29) and the sample correla-
tion matrix 
̂(A0) with


̂(A0) = W̃−1
1 Ã(B1)W̃

−1
1 where W̃1 = diag

(
Ã(B1)

)1/2
.(30)

Obtain an estimate Âρ(B1) using GLasso (2a) with 
̂(A0) in (30) as its input,
where λB = λB1 is to be specified (cf. Remark 6.3).

Let A1 = Â∗ = W̃1Âρ(B1)W̃1.
3. Compute sample covariance matrix B̃(A1) using (29), and the sample correla-

tion matrix 
̂(B0) with


̂(B0) = W̃−1
2 B̃(A1)W̃

−1
2 where W̃2 := diag

(
B̃(A1)

)1/2
.(31)

Obtain an estimate B̂ρ(A1) using (2b), with 
̂(B0) in (31) as its input, where
λA = λA1 is to be specified (cf. Theorem 6.4 and Remark 17.8).

Let B̂∗ = W̃2B̂ρ(A1)W̃2.

6. Analysis for the penalized Flip-Flop algorithm. We illustrate the in-
teractions between the row-wise and column-wise correlations and covariances
via the large deviation bounds to be described in this section. To make our dis-
cussion concrete, suppose we aim to estimate A∗ = (a∗,ij ) = mA0/ tr(A0) and
B∗ = (b∗,ij ) = B0 tr(A0)/m instead of A0 and B0. Note that A∗ has been normal-
ized to have tr(A∗) = m for identifiability. Let

λf,n = 2CK2 log1/2(m ∨ f )√
f n

and λm,n = 2CK2 log1/2(m ∨ f )√
mn

,(32)
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where C is as in (19) and K as in (17). In analyzing the Flip-Flop algorithm, we
make the following additional assumption.

(A3) The inverse correlation matrices have bounded |ρ(A0)
−1|1 and

|ρ(B0)
−1|1: ∣∣ρ(A0)

−1∣∣
1 � m and

∣∣ρ(B0)
−1∣∣

1 � f.

First, we bound the entry-wise errors for the sample covariance and correlation
matrices as defined in step 2. We note that the conclusions of Lemma 6.1 and
Theorem 6.2 continue to hold even if ε is chosen outside of the interval (0,2/3],
so long it is bounded away from 0 and 1.

LEMMA 6.1. Suppose (m ∨ f ) = o(exp(m ∧ f )). Suppose that (A1), (A2)
and (A3) hold. Let B̂ρ and B1 be obtained as in step 1, where we choose

λA0 = 2α

ε(1 − α)
≥ 3α

1 − α
for α = CAλm,n where CA = ‖A0‖F

√
m/tr(A0)

and 0 < ε < 2/3. Then on event A1, for Ã(B1) as defined in (29)∣∣(Ã(B1) − A∗
)
ij

∣∣ ≤ √
a∗,iia∗,jjλf,n

(
1 + o(1)

) + |a∗,ij |μ̃,(33)

where μ̃ = λA0

∣∣B̂−1
ρ

∣∣
1,off/f + α

1 − α

∣∣B̂−1
ρ

∣∣
1/f ≤ μ(34)

for μ = λA0

∣∣ρ(B0)
−1∣∣

1,off/f + α

(1 − α)

∣∣ρ(B0)
−1∣∣

1/f + o(λA0).(35)

Moreover, we have for some constant d ≤ 8, P(A1) ≥ 1 − d
(m∨f )2 .

THEOREM 6.2. Suppose all conditions in Lemma 6.1 hold. Let 
̂(A0) be as
defined in (30). Then on event A1, for η̃ := λf,n(1 + o(1)) + μ̃, where μ̃ is as
defined in (34), ∀i �= j∣∣
̂ij (A0) − ρij (A0)

∣∣
(36)

≤ (
1 + o(1)

)
λf,n

(
1 + ∣∣ρij (A0)

∣∣) + 2|ρij (A0)|μ̃
1 − η̃

≤ 2η

1 − η
where η = λf,n

(
1 + o(1)

) + μ for μ as in (35).(37)

REMARK 6.3. On event A1, the random quantities μ̃ and η̃ are upper bounded
by μ (35) and η (37), respectively, which can be rewritten as follows.

Define Cf := |ρ(B0)
−1|1/f + 2

ε
|ρ(B0)

−1|1,off/f so that

μ = α

(1 − α)

(
Cf + o(1)

)
and η =

(
λf,n + α

(1 − α)
Cf

)(
1 + o(1)

)
,
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which suggests that we set the penalty in step 2 in the order of η,

λB1 � 2η/(1 − η) � λf,n + Cf α/(1 − α)Cf � λf,n + λm,n.

Clearly Cf � 1 under (A3). Indeed, throughout this paper, we assume

λB1 = 2η̃

ε1(1 − η̃)
where 0 < ε1 < 1.(38)

We compute the rates of convergence in the operator and the Frobenius norm
for estimating A∗ with Â∗ in step 2 in Corollary 17.2 in Section 17.1. The rates
we obtain in Corollary 17.2 correspond to exactly those in Corollary 10.1 for the
baseline Gemini estimator, with slightly better leading constants.

Next, we bound the entry-wise errors for the sample correlation matrix as de-
fined in step 3 in Theorem 6.4. The corresponding result for sample covariance is
stated in Lemma 17.5.

THEOREM 6.4. Suppose m ∨ f = o(exp(m ∧ f )). Suppose that (A1), (A2),
and (A3) hold. Let 
̂(B0) be as defined in (31). Let ζ = λm,n(1 + o(1))+ ξ , where
ξ is as defined in (41). Then on event A1 ∩ E2, ∀i �= j ,∣∣
̂ij (B0) − ρij (B0)

∣∣
(39)

≤ λm,n(1 + o(1))

1 − ζ
+ ∣∣ρij (B0)

∣∣ζ + ξ

1 − ζ

≤ (
λm,n

(
1 + ∣∣ρij (B0)

∣∣) + 2
∣∣ρij (B0)

∣∣ξ )(
1 + o(1)

)
(40)

for ξ = λB1

∣∣ρ(A0)
−1∣∣

1,off/m + η

1 − η

∣∣ρ(A0)
−1∣∣

1/m + o(λB1).(41)

Moreover, we have for some constant d ≤ 10, P(A1 ∩ E2) ≥ 1 − d
(m∨f )2 .

6.1. Discussion. Throughout this discussion, the O(·) notation hides a con-
stant no larger than 1 + o(1). We first compare the bound in (36) with that of
Theorem 4.1, where on event X0, for 
̂(A0) as defined in (7a),

∀i �= j
∣∣
̂ij (A0) − ρij (A0)

∣∣ = O
(
CBλf,n

(
1 + ∣∣ρij (A0)

∣∣)),(42)

where CB = ‖B0‖F

√
f /tr(B0). On the other hand, the influence of λA0 � 2α

1−α
on

the entry-wise error for estimating ρij (A0) in (36) is regulated through both Cf ,
which is a bounded constant under (A3) (see Remark 6.3), as well as the magnitude
of ρij (A0) itself; to see this, by (36), ∀i �= j ,∣∣
̂ij (A0) − ρij (A0)

∣∣ = O
(
λf,n

(
1 + ∣∣ρij (A0)

∣∣) + 2
∣∣ρij (A0)

∣∣Cf CAλm,n

)
.

This rate is in the same order as that in (42). However, when λm,n � λf,n, the
second term is of smaller order compared to the first term. In this case, the upper
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bound in (36) is dominated by the first term on the RHS, and one can perhaps
obtain a slightly better bound with Theorem 6.2, as the leading term no longer
depends on the constant CB as displayed in (42).

We next compare the bound in (39) with that of Theorem 4.1. Before we pro-
ceed, we first define the following parameter:

Cm = ∣∣ρ(A0)
−1∣∣

1/m + 2

ε1

∣∣ρ(A0)
−1∣∣

1,off/m so that

ξ ≤ η

1 − η

(
Cm + o(1)

)
and ζ ≤

(
λm,n + η

1 − η
Cm

)(
1 + o(1)

)
,

where 0 < ε1 < 1 is the same as in (38). Hence, we have on A1 ∩ E2, by (39),

∣∣
̂ij (B0) − ρij (B0)
∣∣ = O

(
λm,n

(
1 + ∣∣ρij (B0)

∣∣) + ∣∣ρij (B0)
∣∣Cm

2η

1 − η

)
,

where 2η/(1 − η) � λm,n +λf,n. Clearly, the influence of λB1 � 2η
1−η

on the entry-
wise error for estimating ρij (B0) is regulated through the quantity Cm which is a
constant under (A3), as well as the magnitude of ρij (B0).

We note that when m � f , these rates are in the same order of O(λm,n(1 +
|ρij (B0)|)) as those in Theorem 4.1 on event X0. Moreover, for pairs of (i, j)

where i �= j , such that |ρij (B0)| is small, one can perhaps obtain a slightly better
bound with Theorem 6.4, as the first (leading) term which involves λm,n no longer
depends on the constant CA ≥ 1 as needed in (21). In summary, for the following
two cases, we expect that the sample correlation estimate 
̂(B0) which we obtain
in step 3 improves upon the initial estimate in step 1:

1. For all i �= j , ρij (B0) is bounded in magnitudes; for example, when
|ρij (B0)| = O(

√
f/m), then ζ ′ � λm,n. In particular, for ρ(B0) = I ,

∀i �= j
∣∣
̂ij (B0) − ρij (B0)

∣∣ ≤ 2λm,n

(
1 + o(1)

)
.

Hence, the error in estimating A0 is propagated into the estimate of ρij (B0) only
when ρij (B0) �= 0.

2. When m and f are close to each other in that the ratio m/f → const > 1,
and simultaneously, Cm, Cf , and |ρij (B0)| are small for all i �= j ; then 2ζ ′ =
2(λm,n + maxi �=j |ρij (B0)|ξ) � λm,n + λf,n provides a tight upper bound for the
RHS of (40).

Suppose that m � f . Then the original estimator in (7b) could be much better
for pairs of (i, j) with a large |ρij (B0)|. As for such pairs, the second term is of
larger order than the first term in (40). A refined analysis on the GLasso given the
estimates in Theorem 6.4 is left as future work.
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7. Numerical results. We demonstrate the effectiveness of the Gemini
method as well as the Noniterative Penalized Flip-Flop method, which we refer
to as the FF method, with simulated data. We also show an example of apply-
ing Gemini to a real data set, the EEG data, obtained from UCI Machine learning
repository [20] in Section 7.4. For a penalty parameter λ ≥ 0, the GLasso estimator
is given by

glasso(
̂, λ) = arg min
�0

(
tr(
̂) − log || + λ||1,off

)
,

where 
̂ is a sample correlation matrix. We use the R-package glasso [9] to
compute the GLasso solution. For the two estimation methods, we have various
tuning parameters, namely λ, ν for the baseline Gemini estimators, and φ,υ for
the FF method. In our simulation study, we look at three different models from
which A and B will be chosen. Let � = A−1 = (ωij ) and � = B−1 = (πij ). Let
E denote edges in �, and F denote edges in �. We choose A from one of these
two models:

• AR(1) model. In this model, the covariance matrix is of the form A =
{ρ|i−j |}i,j . The graph corresponding to � is a chain.

• Star-Block model. In this model the covariance matrix is block-diagonal with
equal-sized blocks whose inverses correspond to star structured graphs, where
Aii = 1, for all i. We have 20 subgraphs, where in each subgraph, 8 nodes are
connected to a central hub node with no other connections. The rest of the nodes
in the graph are singletons. Covariance matrix for each block S in A is generated
as in [17]: Sij = ρ = 0.5 if (i, j) ∈ E and Sij = ρ2 otherwise.

For �, we use the random concentration matrix model in [30]. The graph is gen-
erated according to a type of Erdős–Rényi random graph model. Initially, we set
� = 0.25If ×f , where f = 80. Then we randomly select d edges and update � as
follows: for each new edge (i, j), a weight w > 0 is chosen uniformly at random
from [wmin,wmax] where wmax > wmin > 0; we subtract w from πij and πji , and
increase πii and πjj by w. This keeps � positive definite. For both models of A,
we have A∗ = A m

tr(A)
= A = ρ(A). Let �∗ = tr(A)

m
� and �∗ = m

tr(A)
�. Thus, we

have �∗ = � and �∗ = � for all combinations of A and B in this section.

7.1. Regularization paths and cross-validation. We illustrate the behaviors of
the Gemini estimators for each model combination of A,B with m = 400 and
f = 80 over the full regularization paths. To evaluate consistency, we use relative
errors in the operator and the Frobenius norm. For model selection consistency,
we use false positive and false negative rates and Matthews correlation coefficient
(MCC) as defined in Table 1. For each pair of covariance matrices, we do the
following. First, we generate A and B , where A is m × m and B is f × f . Let
A1/2 and B1/2 be the unique square root of matrix A and B , respectively. Let T

and T ′ be a set of values in (0,0.5]. Now, repeat the following steps 100 times:
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TABLE 1
Metrics for evaluating Ê(λ)

Metric Definition

False positives (FPs) # of incorrectly selected edges in Ê(λ): |Ê(λ) \ E|
False negatives (FNs) # of edges in E that are not selected in Ê(λ): |E \ Ê(λ)|
True positives (TPs) # of correctly selected edges: |Ê(λ) ∩ E|
True negatives (TNs) # of zeros in Ê(λ) that are also zero in E

False positive rate (FPR) FPR = FP/(FP + TN) = FP/
((m

2
) − |E|)

False negative rate (FNR) FNR = FN/(TP + FN) = FN/|E|
MCC TP × TN/

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

1. Sample random matrices X(1), . . . ,X(n) i.i.d. ∼ Nf,m(0,A ⊗ B):

X(t) = B1/2Z(t)A1/2 where Zij (t) ∼ N(0,1) ∀i, j,∀t = 1, . . . , n.

Compute the sample column correlation ĉorrcol as in (7a) and row correlation
ĉorrrow as in (7b).

2. For each λ ∈ T and ν ∈ T ′:
(a) Obtain the estimated inverse correlation matrices Â−1, and B̂−1 with

glasso(ĉorrcol, λ) and glasso(ĉorrrow, ν), respectively. Let �̂(λ) := Â−1∗ and
�̂(ν) := B̂−1∗ , where Â∗ and B̂∗ are as defined in (42).

(b) Let Ê(λ) denote the set of edges in the estimated �̂(λ). Now compute
FNR(λ), FPR(λ) and MCC(λ) as defined in Table 1. To obtain FNR(ν),
FPR(ν) and MCC(ν), we replace Ê(λ) with F̂ (ν), which denotes the set
of edges in �̂(ν), E with F , and m with f . Compute the relative errors
‖�̂(λ) − �‖/‖�‖ and ‖�̂(ν) − �‖/‖�‖, where ‖ · ‖ denotes the operator
or the Frobenius norm.

After 100 trials, we plot each of the following as λ changes over a range of
values in T : (FNR + FPR)(λ) and MCC(λ) for Ê(λ), where FNR, FPR and MCC
are averaged over the 100 trials, and the average relative errors in the operator and
the Frobenius norm. Similarly, we plot these as ν changes over a range of val-
ues in T ′. Figure 2 shows how these four metrics change as the �1 regularization
parameters λ and ν increase over full paths where covariance A comes from ei-
ther AR(1) or the Star-Block model, and � comes from the random graph model.
These plots show that the Gemini method is able to select the correct structures
as well as achieving low relative errors in the operator and the Frobenius norm
when λ and ν are chosen from a suitable range. In addition, as n increases, we see
performance gains over almost the entire paths for all metrics as expected. Other
model combinations of A,B which are not shown here confirm similar findings.

In Figure 2, we also illustrate choosing the penalty parameters λ and ν by
10-fold cross-validation. To do so, we run the following for 10 trials. In each
trial, we partition the rows of each X(t), t = 1, . . . , n into 10 folds. For each
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FIG. 2. m = 400, f = 80. B−1 follows random graph model with d = 80 and w ∈ [0.1,0.3]
throughout these plots. In the top two panels, covariance A follows the AR(1) model with ρ = 0.5; for
the bottom two panels, A follows the Star-Block model. The top and the third panel are for �̂(λ); the
second and the bottom panel are for �̂(ν). As λ or ν increases, FPs decrease and FNs increase. As
a result, FPR + FNR first decreases and then increases, and on the other hand, MCC first increases
as the estimated graphs becomes more accurate, and then decreases due to missing edges caused by
large penalization. The relative errors also first decrease and then increase before leveling off. This
is because decreased FPs first help reduce the estimation errors; however, as penalization increases,
the estimated graphs miss more and more edges until only diagonal entries remain in the inverse
covariance estimates. Solid and dashed horizontal lines in the second and third columns show the
performances of Gemini for cross-validated tuning parameters: in the top two panels, λCV = 0.16
and νCV = 0.08 for n = 1, and λ′

CV = 0.08 and ν′
CV = 0.04 for n = 3. For the bottom two panels,

λCV = 0.16 and νCV = 0.10 for n = 1, and λ′
CV = 0.06 and ν′

CV = 0.03 for n = 3. These tuning
parameters tend to stay near the λ or ν that minimizes the relative error in the Frobenius norm.
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fold, the validation set consists of the subset of rows of X(1), . . . ,X(n) sharing
the same indices and its complement set serves as the training data. Denote by
ĉorrT and ĉorrV the column-wise sample correlations based upon the training and
the validation data, which are computed in the same manner as in (7a). We define
scoreA(λ) = tr(̂λĉorrV )− log |̂λ|, where ̂λ = glasso(ĉorrT , λ). The final score
for a particular λ is the average over 10 trials (with 10 folds in each trial) and the
one with the lowest score is chosen to be λCV. Similarly, we use column partitions
to obtain νCV. We leave the theoretical analysis on cross-validation as future work.

7.2. ROC comparisons. In this section, we compare the performances of the
two methods, namely, the baseline Gemini and its three-step FF variant over the
full paths by examining their ROC curves. Each curve is an average over 50 trials.
We fix f = 80, m = 400, n = 1.

To simplify our notation, we summarize the penalty parameters which we use
for indexing the ROC curves as follows:

λ = λB0, ν = λA0, φ = λB1, υ = λA1 .

To illustrate the overall performances of the baseline Gemini method for estimat-
ing the graphs of � and �, we use pairs of metrics (FPR(λ),1 − FNR(λ)) and
(FPR(ν),1 − FNR(ν)), respectively, which we obtain as the average over 50 tri-
als of steps 1 and 2 as described in Section 7.1. To plot the ROC curves for the
FF method, we start with estimating � with the Gemini estimator. Due to com-
putational complexity, we specify the input parameters of the subsequent steps se-
quentially. These choices are not feasible in practical settings. We run through this
idealized example for the sake of comparing with the baseline Gemini estimators.
Repeat the following 50 times: Let T := {0.02,0.04, . . . ,0.72}.

1–2. Run steps 1, 2 as in Section 7.1, while only computing the metrics for
�̂(ν), where ν ∈ T .

3. To execute the second step of the FF algorithm, we use the follow-
ing three outputs from step 2 of the current procedure to act as B1 to com-
pute Ã(B1). We choose the output B1 such that its corresponding ν is chosen to
be ν1 = arg minν∈T (FNR + FPR)(ν), ν2 = arg minν∈T ‖�̂(ν) − �‖2/‖�‖2, and
ν3 = arg minν∈T ‖�̂(ν) − �‖F /‖�‖F . Denote these by B1

1 ,B2
1 and B3

1 . We now
run the second step of the FF method for each Bi

1, where i = 1,2,3, with penalty
parameter φ ∈ T changing over the full path while obtaining the inverse estimators
�̂i(φ) for � and computing FNRi (φ), and FPRi (φ) for each estimated edge set.
These contribute to 3 ROC curves for estimating the edges in E.

4. To execute the last step of the FF method, we use the following
three outputs from step 3 as A1 to compute B̃(A1). We choose the out-
put A1 such that its corresponding (i, φ) is chosen to be optimal with re-
spect to one of the following metrics: (i1, φ1) = arg minφ∈T ,i=1,2,3(FNRi +
FPRi )(φ), (i2, φ2) = arg minφ∈T ,i=1,2,3 ‖�̂i(φ) − �‖2/‖�‖2, and (i3, φ3) =
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arg minφ∈T ,i=1,2,3 ‖�̂i(φ) − �‖F /‖�‖F . The choices then become (νij , φj ), j =
1,2,3, which we simply denote by φ1, φ2, φ3. Thus, there are again three choices
for A1. We now run the third step of the FF method for each B̃(A1) with υ ∈ T

changing over the full path, while computing FNRj (υ) and FPRj (υ), where
j = 1, . . . ,3, for each estimated edge set. These contribute to 3 ROC curves for
estimating the edges of F .

The ROC curves are plotted in Figure 3 using pairs of metrics (FPR
i
(φ),1 −

FNR
i
(φ)) and (FPR

j
(υ),1 − FNR

j
(υ)), i, j = 1,2,3, which are averaged over

50 trials. Throughout the plots on the left column of Figure 3, we see clear perfor-
mance gains of the FF method over the baseline Gemini on estimating � = A−1,
when the initial penalty ν is chosen properly. For � = B−1 in the middle column,
we do not always see improvements when w is drawn from [0.6,0.8]. We do see
some improvements in case w is drawn from [0.1,0.3] and when the total corre-
lation ρ2

B is small. Overall, the performance gains for � are not as substantial as
those for �. These observations are consistent with our theory and discussion in
Section 6.1.

7.3. Summary on the ROC curves. We use the following metrics to compare
matrix B and A across different models or parameters:

1. Total correlation: ρ2
A = ∑

i<j ρ2
ij (A)/

(m
2

)
and ρ2

B = ∑
i<j ρ2

ij (B)/
(f

2

)
.

2. ‖B‖F / tr(B) and ‖A‖F / tr(A): these affect the entry-wise error bound in
sample correlation estimates for ρij (A) and ρij (B), for all i �= j , for the baseline
Gemini estimators.

3. The pairs of �1-metrics (|ρ(B)−1|1,off, |ρ(B)−1|1) and (|ρ(A)−1|1,off,

|ρ(A)−1|1).
The total correlation metric comes from [6]. We use it to characterize the average
squared magnitudes for correlation coefficients of ρ(A) or ρ(B). They are clearly
relevant for the FF method as the entry-wise error bound for estimating ρij (A) and
ρij (B), for all i �= j , depends on the magnitude of the entry itself (cf. Theorems 6.2
and 6.4).

We summarize our findings across the ROC curves in the right column in Fig-
ure 3. First, we focus on the case when A is fixed and B is changing. When �

follows the random graph model, we observe that for both the baseline Gemini es-
timators and their FF variants, the performances in terms of estimating edges for �

are better when the weights for � are chosen from [0.1,0.3] for both d = 90 and
d = 180. Here, the sparsity for � is not the decisive factor. This is consistent with
our theory, in view of Table 2, that ‖B‖F / tr(B) affects the entry-wise error bound
for the baseline Gemini correlation estimate 
̂(A) as shown in Theorem 4.4, and
the pair of metrics (|ρ(B)−1|1,off, |ρ(B)−1|1) affect that for the FF correspondent
in (30) as shown in Theorem 6.2. The performances in terms of edge recovery for
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FIG. 3. m = 400, f = 80, n = 1. Solid lines are for Gemini. Plots in the left column are for A and
the middle column are for B . The three dotted lines in each plot on the left column correspond to the
three optimization criteria ν1, ν2, ν3 as specified in step 3. For the middle column, they correspond
to (i1, φ1), (i2, φ2), (i3, φ3), as specified in step 4. In the right column: in top two plots, we choose
A from AR(1) model with ρ = 0.5 while changing the settings of B−1 as in Table 2; in bottom two
plots, we choose A from AR(1) model with ρ = 0.5 or 0.7 while changing the settings of B−1 with
d = 180. Dotted lines in plots for A on the right column are chosen according to the optimization
criterion ν1, and in plots for B , they are chosen according to the criterion φ1.

� take a different order. The sparse random graphs with d = 90 see better per-
formances than those with d = 180 for both the Gemini and the FF methods. For
graphs with the same sparsity, the one with the larger weight performs better. This
is consistent with our theory in Section 14.1.
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TABLE 2
Metrics for comparing the ROC curves

d = 90 d = 180 d = 90 d = 180
Metric w : [0.1,0.3] w : [0.1,0.3] w : [0.6,0.8] w : [0.6,0.8]

ρ2
B 0.053 0.06 0.094 0.12

‖B‖F / tr(B) 0.128 0.13 0.155 0.16
�1-metrics (55, 152) (71, 166) (99, 225) (102, 216)

Next, we choose two covariance matrices for both A and B: for B , we choose
the two cases with different edge weights with d = 180; and for A, we set the pa-
rameter ρ to 0.5 or 0.7. The metrics for the two choices of A are: for ρ = 0.5, we
have ρ2

A = 0.04, ‖A‖F / tr(A) = 0.065, and �1-metrics = (532,1198). The corre-
sponding numbers for ρ = 0.7 are: 0.07,0.085, and (1095,2262), respectively.

First, we note that the two cases of B show the same trend when A is fixed.
In the right bottom two plots in Figure 3, for the graphs of �, we find it easier
to estimate when their covariance matrices come with parameter ρ = 0.7, which
results in larger �1 metrics, and hence larger weights on the inverse chain graph;
for the graphs of �, we observe relatively larger performance gains when ρ = 0.5
for A, with the most significant occurring when w ∈ [0.1,0.3] for �, where both
ρ(A)−1 and ρ(B)−1 have smaller �1 metrics and the total correlation ρ2

B = 0.06
is also small. The least improvement we see occurs in case all three metrics are
large: ρ = 0.7, w ∈ [0.6,0.8], and ρ2

B = 0.12. These findings are consistent with
results in Theorem 6.2 and 6.4, where we explicitly show the influence of the pairs
of �1-metrics on the error bounds for the FF sample correlation estimates.

7.4. Application to EEG data. In this section, we present results of applying
Gemini on real data. We used the EEG (electroencephalography) data available
from the UCI Machine learning repository [20], which was collected as part of the
COGA (Collaborative Studies on Genetics of Alcoholism) project [27]. The data
set we used contains measurements from 64 electrodes (channels) placed on two
subjects’ (one alcoholic and one control) scalps, which were sampled at 256 Hz
(3.9-msec epoch) for 1 second. The data consists of 10 runs under three different
stimulus paradigm. For each paradigm, we construct an f ×m matrix, X, for each
subject’s each run, where f = 64 and m = 256. Each row in X represents a channel
and each column represents a measurement epoch. We normalize each row vector
such that its mean is 0 and variance is 1. The 10 runs are treated as 10 replicates,
and fed to Gemini to estimate both the dependence structures of channels and
measurements. We show the resulting graphs for control subject c02c0000337
under one stimulus paradigm in Figure 4. The estimated graph among channels
largely reflects the spatial organization of the brain, and the estimated graph among
measurement epochs suggests relatively short-order serial dependence.
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FIG. 4. Top: Estimated graph of channels with penalty λ = 0.40. Nodes are labeled with EEG
electrode identifiers. Circles, squares and diamonds represent electrodes placed on the left, right,
and middle of the head respectively. The graph structure indicates that nodes interact mostly with
nodes that are physically close to them. Bottom: Estimated graph among measurements with penalty
ν = 0.78. Nodes are labeled with epochs from 1 to 256. The graph is primarily a long chain showing
sequential dependences among epochs with a few extra edges between some neighbors.
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8. Conclusion. In this paper, we presented two methods for estimating graphs
in a matrix variate normal model. The baseline Gemini method is rather simple
and provides the same rates of convergence as the Noniterative Penalized Flip-
Flop method in the operator and the Frobenius norm. In Gemini, a unique pair of
optimal solutions for the correlation matrices and their inverses are obtained via
the graphical Lasso algorithm. Under sparsity constraints and upon multiplication
by proper weight matrices, the penalized estimators are strikingly effective in ap-
proximating the row and column covariance matrices. Under sparsity conditions
as detailed in (A1) and (A2), the NiPFF method shows some improvement over
the baseline algorithm in estimating A−1

0 , which is assumed to be the one with the
larger dimension, so long as ρ(B0)

−1 satisfies a certain additional sparsity condi-
tion, namely, its vector �1 metrics are bounded in the order of its dimensionality.
However, we show in both theoretical analysis and simulation results that the per-
formance gains for estimating B−1

0 using the NiPFF method at the third step are
rather limited; hence, we do not advocate iterating beyond the first three steps. Al-
though our primary interests are in estimating correlations and partial correlations
among and between both rows and columns when X follows a matrix variate nor-
mal distribution, our methods clearly can be extended to the general cases when
the data matrix X follows other type of matrix-variate distributions.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Gemini: Graph estimation with matrix vari-
ate normal instances” (DOI: 10.1214/13-AOS1187SUPP; .pdf). The technical
proofs are given in the supplementary material [29].
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