
Gen-Oja: A Simple and Efficient Algorithm for

Streaming Generalized Eigenvector Computation

Kush Bhatia∗

University of California, Berkeley
kushbhatia@berkeley.edu

Aldo Pacchiano∗

University of California, Berkeley
pacchiano@berkeley.edu

Nicolas Flammarion
University of California, Berkeley
flammarion@berkeley.edu

Peter L. Bartlett
University of California, Berkeley

peter@berkeley.edu

Michael I. Jordan
University of California, Berkeley

jordan@cs.berkeley.edu

Abstract

In this paper, we study the problems of principal Generalized Eigenvector compu-
tation and Canonical Correlation Analysis in the stochastic setting. We propose
a simple and efficient algorithm, Gen-Oja, for these problems. We prove the
global convergence of our algorithm, borrowing ideas from the theory of fast-
mixing Markov chains and two-time-scale stochastic approximation, showing that
it achieves the optimal rate of convergence. In the process, we develop tools
for understanding stochastic processes with Markovian noise which might be of
independent interest.

1 Introduction

Cannonical Correlation Analysis (CCA) and the Generalized Eigenvalue Problem are two fundamental
problems in machine learning and statistics, widely used for feature extraction in applications
including regression [18], clustering [9] and classification [19].

Originally introduced by Hotelling in [16], CCA is a statistical tool for the analysis of multi-view
data that can be viewed as a “correlation-aware" version of Principal Component Analysis (PCA).
Given two multidimensional random variables, the objective in CCA is to obtain a pair of linear
transformations that maximize the correlation between the transformed variables.

Given access to samples {(xi, yi)ni=1} of zero mean random variables X,Y ∈ R
d with an unknown

joint distribution PXY , CCA can be used to discover features expressing similarity or dissimilarity
between X and Y . Formally, CCA aims to find a pair of vectors u, v ∈ R

d such that projections of X
onto v and Y onto u are maximally correlated. In the population setting, the corresponding objective
is given by:

max v⊤E[XY ⊤]u s.t. v⊤E[XX⊤]v = 1 and u⊤E[Y Y ⊤]u = 1. (1)
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In the context of covariance matrices, the objective of the generalized eigenvalue problem is to obtain
the direction u or v ∈ R

d maximizing discrepancy between X and Y and can be formulated as,

argmax
v 6=0

v⊤E[XX⊤]v

v⊤E[Y Y ⊤]v
and argmax

u 6=0

u⊤E[Y Y ⊤]u

u⊤E[XX⊤]u
. (2)

More generally, given symmetric matrices A,B, with B positive definite, the objective of the
principal generalized eigenvector problem is to obtain a unit norm vector w such that Aw = λBw
for λ maximal.

CCA and the generalized eigenvalue problem are intimately related. In fact, the CCA problem can be
cast as a special case of the generalized eigenvalue problem by solving for u and v in the following
objective:

(
0 E[XY ⊤]

E[Y X⊤] 0

)

︸ ︷︷ ︸

A

(
v
u

)

= λ

(
E[XX⊤] 0

0 E[Y Y ⊤]

)

︸ ︷︷ ︸

B

(
v
u

)

. (3)

The optimization problems underlying both CCA and the generalized eigenvector problem are non-
convex in general. While they admit closed-form solutions, even in the offline setting a direct
computation requires O(d3) flops which is infeasible for large-scale datasets. Recently, there has
been work on solving these problems by leveraging fast linear system solvers [14, 2] while requiring
complete knowledge of the matrices A and B.

In the stochastic setting, the difficulty increases because the objective is to maximize a ratio of
expectations, in contrast to the standard setting of stochastic optimization [26], where the objective is
the maximization of an expectation. There has been recent interest in understanding and developing
efficient algorithms with provable convergence guarantees for such non-convex problems. [17] and
[27] recently analyzed the convergence rate of Oja’s algorithm [25], one of the most commonly used
algorithm for streaming PCA.

In contrast, for the stochastic generalized eigenvalue problem and CCA problem, the focus has
been to translate algorithms from the offline setting to the online one. For example, [12] proposes a
streaming algorithm for the stochastic CCA problem which utilizes a streaming SVRG method to
solve an online least-squares problem. Despite being streaming in nature, this algorithm requires a
non-trivial initialization and, in contrast to the spirit of streaming algorithms, updates its eigenvector
estimate only after every few samples. This raises the following challenging question:

Is it possible to obtain an efficient and provably convergent counterpart to Oja’s Algorithm for
computing the principal generalized eigenvector in the stochastic setting?

In this paper, we propose a simple, globally convergent, two-line algorithm, Gen-Oja, for the
stochastic principal generalized eigenvector problem and, as a consequence, we obtain a natural
extension of Oja’s algorithm for the streaming CCA problem. Gen-Oja is an iterative algorithm
which works by updating two coupled sequences at every time step. In contrast with existing methods
[17], at each time step the algorithm can be seen as performing a step of Oja’s method, with a noise
term which is neither zero mean nor conditionally independent, but instead is Markovian in nature.
The analysis of the algorithm borrows tools from the theory of fast mixing of Markov chains [11]
as well as two-time-scale stochastic approximation [6, 7, 8] to obtain an optimal (up to dimension

dependence) fast convergence rate of Õ(1/n).

Notation: We denote by λi(M) and σi(M) the ith largest eigenvalue and singular value of a square
matrix M . For any positive semi-definite matrix N , we denote inner product in the N -norm by 〈·, ·〉N
and the corresponding norm by ‖ · ‖N . We let κN = λmax(N)

λmin(N) denote the condition number of N .

We denote the eigenvalues of the matrix B−1A by λ1 > λ2 ≥ . . . ≥ λd with (ui)
d
i=1 and (ũi)

d
i=1

denoting the corresponding right and left eigenvectors of B−1A whose existence is guaranteed by
Lemma G.3 in Appendix G.3. We use ∆λ to denote the eigengap λ1 − λ2.

2 Problem Statement

In this section, we focus on the problem of estimating principal generalized eigenvectors in a
stochastic setting. The generalized eigenvector, vi, corresponding to a system of matrices (A,B),
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where A ∈ R
d×d is a symmetric matrix and B ∈ R

d×d is a symmetric positive definite matrix,
satisfies

Avi = λiBvi. (4)

The principal generalized eigenvector v1 corresponds to the vector with the largest value2 of λi, or,
equivalently, v1 is the principal eigenvector of the non-symmetric matrix B−1A. The vector v1 also
corresponds to the maximizer of the generalized Rayleigh quotient given by

v1 = argmax
v∈Rd

v⊤Av

v⊤Bv
. (5)

In the stochastic setting, we only have access to a sequence of matrices A1, . . . , An ∈ R
d×d and

B1, . . . , Bn ∈ R
d×d assumed to be drawn i.i.d. from an unknown underlying distribution, such that

E[Ai] = A and E[Bi] = B and the objective is to estimate v1 given access to O(d) memory.

In order to quantify the error between a vector and its estimate, we define the following generalization
of the sine with respect to the B-norm as,

sin2B(v, w) = 1−
( v⊤Bw

‖v‖B‖w‖B

)2

. (6)

3 Related Work

PCA. There is a vast literature dedicated to the development of computationally efficient algorithms
for the PCA problem in the offline setting (see [23, 13] and references therein). In the stochastic
setting, sharp convergence results were obtained recently by [17] and [27] for the principal eigenvector
computation problem using Oja’s algorithm and later extended to the streaming k-PCA setting by [1].
They are able to obtain a O(1/n) convergence rate when the eigengap of the matrix is positive and a
O(1/

√
n) rate is attained in the gap free setting.

Offline CCA and generalized eigenvector. Computationally efficient optimization algorithms
with finite convergence guarantees for CCA and the generalized eigenvector problem based on
Empirical Risk Minimization (ERM) on a fixed dataset have recently been proposed in [14, 31, 2].
These approaches work by reducing the CCA and generalized eigenvector problem to that of solving

a PCA problem on a modified matrix M (e.g., for CCA, M = B
−1
2 AB

−1
2 ). This reformulation is

then solved by using an approximate version of the Power Method that relies on a linear system
solver to obtain the approximate power method step. [14, 2] propose an algorithm for the generalized
eigenvector computation problem and instantiate their results for the CCA problem. [20, 21, 31]
focus on the CCA problem by optimizing a different objective:

min
1

2
Ê|φ⊤xi − ψ⊤yi|2 + λx‖φ‖22 + λy‖ψ‖22 s.t. ‖φ‖

Ê[xx⊤] = ‖ψ‖Ê[yy⊤] = 1,

where Ê denotes the empirical expectation. The proposed methods utilize the knowledge of complete
data in order to solve the ERM problem, and hence is unclear how to extend them to the stochastic
setting.

Stochastic CCA and generalized eigenvector. There has been a dearth of work for solving these
problems in the stochastic setting owing to the difficulties mentioned in Section 1. Recently, [12]
extend the algorithm of [31] from the offline to the streaming setting by utilizing a streaming version
of the SVRG algorithm for the least squares system solver. Their algorithm, based on the shift and
invert method, suffers from two drawbacks: a) contrary to the spirit of streaming algorithms, this
method does not update its estimate at each iteration – it requires to use logarithmic samples for
solving an online least squares problem, and, b) their algorithm critically relies on obtaining an
estimate of λ1 to a small accuracy for which it requires to burn a few samples in the process. In
comparison, Gen-Oja takes a single stochastic gradient step for the inner least squares problem and
updates its estimate of the eigenvector after each sample. Perhaps the closest to our approach is [4],
who propose an online method by solving a convex relaxation of the CCA objective with an inexact
stochastic mirror descent algorithm. Unfortunately, the computational complexity of their method is
O(d2) which renders it infeasible for large-scale problems.
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Algorithm 1: Gen-Oja for Streaming Av = λBv

Input: Time steps T , step size αt (Least Squares), βt (Oja)
Initialize: (w0, v0)← sample uniformly from the unit sphere in R

d, v̄0 = v0
for t = 1, . . . , T do

Draw sample (At, Bt)
wt ← wt−1 − αt(Btwt−1 −Atvt−1)
v′t ← vt−1 + βtwt

vt ← v′t
‖vt‖2

Output: Estimate of Principal Generalized Eigenvector: vT

4 Gen-Oja

In this section, we describe our proposed approach for the stochastic generalized eigenvector problem
(see Section 2). Our algorithm Gen-Oja, described in Algorithm 1, is a natural extension of the
popular Oja’s algorithm used for solving the streaming PCA problem. The algorithm proceeds by
iteratively updating two coupled sequences (wt, vt) at the same time: wt is updated using one step of

stochastic gradient descent with constant step-size to minimize w⊤Bw − 2w⊤Avt and vt is updated
using a step of Oja’s algorithm. Gen-Oja has its roots in the theory of two-time-scale stochastic
approximation, by viewing the sequence wt as a fast mixing Markov chain and vt as a slowly evolving
one. In the sequel, we describe the evolution of the Markov chains (wt)t≥0, (vt)t≥0, in the process
outlining the intuition underlying Gen-Oja and understanding the key challenges which arise in the
convergence analysis.

Oja’s algorithm. Gen-Oja is closely related to the Oja’s algorithm [25] for the streaming PCA
problem. Consider a special case of the problem, when each Bt = I . In the offline setting, this
reduces the generalized eigenvector problem to that of computing the principal eigenvector of A.
With the setting of step-size αt = 1, Gen-Oja recovers the Oja’s algorithm given by

vt =
vt−1 + βtAtvt−1

‖vt−1 + βtAtvt−1.‖
This algorithm is exactly a projected stochastic gradient ascent on the Rayleigh quotient v⊤Av (with
a step size βt). Alternatively, it can be interpreted as a randomized power method on the matrix
(I + βtA)[15].

Two-time-scale approximation. The theory of two-time-scale approximation forms the underlying
basis for Gen-Oja. It considers coupled iterative systems where one component changes much faster
than the other [7, 8]. More precisely, its objective is to understand classical systems of the type:

xt = xt−1 + αt
[
h (xt−1, yt−1) + ξ1t

]
(7)

yt = yt−1 + βt
[
g (xt−1, yt−1) + ξ2t

]
, (8)

where g and h are the update functions and (ξ1t , ξ
2
t ) correspond to the noise vectors at step t and

typically assumed to be martingale difference sequences.

In the above model, whenever the two step sizes αt and βt satisfy βt/αt → 0, the sequence yt moves
on a slower timescale than xt. For any fixed value of y the dynamical system given by xt,

xt = xt−1 + αt[h (xt−1, y) + ξ1t ], (9)

converges to to a solution x∗(y). In the coupled system, since the state variables xt move at a much
faster time scale, they can be seen as being close to x∗(yt), and thus, we can alternatively consider:

yt = yt−1 + βt
[
g (x∗(yt−1), yt−1) + ξ2t

]
. (10)

If the process given by yt above were to converge to y∗, under certain conditions, we can argue that
the coupled process (xt, yt) converges to (x∗(y∗), y∗). Intuitively, because xt and yt are evolving at
different time-scales, xt views the process yt as quasi-constant while yt views xt as a process rapidly
converging to x∗(yt).

2Note that we consider here the largest signed value of λi
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Gen-Oja can be seen as a particular instance of the coupled iterative system given by Equations
(7) and (8) where the sequence vt evolves with a step-size βt ≈ 1

t , much slower than the sequence

wt, which has a step-size of αt ≈ 1
log(t) . Proceeding as above, the sequence vt views wt as having

converged to B−1Avt + ξt, where ξt is a noise term, and the update step for vt in Gen-Oja can be
viewed as a step of Oja’s algorithm, albeit with Markovian noise.

While previous works on the stochastic CCA problem required to use logarithmic independent
samples to solve the inner least-squares problem in order to perform an approximate power method
(or Oja) step, the theory of two-time-scale stochastic approximation suggests that it is possible to
obtain a similar effect by evolving the sequences wt and vt at two different time scales.

Understanding the Markov Process {wt}. In order to understand the process described by the
sequence wt, we consider the homogeneous Markov chain (wvt ) defined by

wvt = wvt−1 − α(Btwvt−1 −Atv), (11)

for a constant vector v and we denote its t-step kernel by πtv [22]. This Markov process is an iterative
linear model and has been extensively studied by [28, 10, 5]. It is known that for any step-size
α ≤ 2/R2, the Markov chain (wvt )t≥0 admits a unique stationary distribution, denoted by νv. In
addition,

W 2
2 (π

t
v(w0, ·), νv) ≤ (1− 2µα(1− αR2

B/2))
t

∫

Rd

‖w0 − w‖22dνv(w), (12)

where W 2
2 (λ, ν) denotes the Wasserstein distance of order 2 between probability measures λ and ν

(see, e.g., [30] for more properties of W2). Equation (12) implies that the iterative linear process
described by (11) mixes exponentially fast to the stationary distribution. This forms a crucial
ingredient in our convergence analysis where we use the fast mixing to obtain a bound on the
expected norm of the Markovian noise (see Lemma 6.1).

Moreover, one can compute the mean w̄v of the process wt under the stationary distribution by taking
expectation under νv on both sides in equation (11). Doing so, we obtain, w̄v = B−1Av. Thus, in
our setting, since the vt process evolves slowly, we can expect that wt ≈ B−1Avt, allowing Gen-Oja
to mimic Oja’s algorithm.

5 Main Theorem

In this section, we present our main convergence guarantee for Gen-Oja when applied to the streaming
generalized eigenvector problem. We begin by listing the key assumptions required by our analysis:

(A1) The matrices (Ai)i≥0 satisfy E[Ai] = A for a symmetric matrix A ∈ R
d×d.

(A2) The matrices (Bi)i≥0 are such that each Bi < 0 is symmetric and satisfies E[Bi] = B for a

symmetric matrix B ∈ R
d×d with B < µI for µ > 0.

(A3) There exists R ≥ 0 such that max{‖Ai‖, ‖Bi‖} ≤ R almost surely.

Under the assumptions stated above, we obtain the following convergence theorem for Gen-Oja with
respect to the sin2B distance, as described in Section 2.

Theorem 5.1 (Main Result). Fix any δ > 0 and ǫ1 > 0. Suppose that the step sizes are set to
αt =

c
log(d2β+t) and βt =

γ
∆λ(d2β+t)

for γ > 1/2 , c > 1 and

β = max




20γ2λ21

∆2
λd

2 log
(

1+δ/100
1+ǫ1

) ,
200

(
R
µ + R3

µ2 + R5

µ3

)

log
(

1 + R2

µ + R4

µ2

)

δ∆2
λ



 .

Suppose that the number of samples n satisfy

d2β + n

log
1

min(1,2γλ1/∆λ) (d2β + n)
≥
(

cd

δ1 min(1, λ1)

) 1
min(1,2γλ1/∆λ)

(d3β + 1) exp

(
cλ21
d2

)

Then, the output vn of Algorithm 1 satisfies,

sin2B(u1, vn) ≤
(2 + ǫ1)cd‖

∑d
i=1 ũiũ

⊤
i ‖2 log

(
1
δ

)

δ2‖ũ1‖22

(

cγ2 log3(d2β + n)

∆2
λ(d

2β + n+ 1)
+

cd

∆λ

(
d2β + log3(d2β)

d2β + n+ 1

)2γ
)

,
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with probability at least 1 − δ with c depending polynomially on parameters of the problem
λ1, κB , R, µ. The parameter δ1 is set as δ1 = ǫ1

2(2+ǫ1)
.

The above result shows that with probability at least 1 − δ, Gen-Oja converges in the B-norm to
the right eigenvector, u1, corresponding to the maximum eigenvalue of the matrix B−1A. Further,

Gen-Oja exhibits an Õ(1/n) rate of convergence, which is known to be optimal for stochastic
approximation algorithms even with convex objectives [24].

Comparison with Streaming PCA. In the setting where B = I , and A � 0 is a covariance matrix,
the principal generalized eigenvector problem reduces to performing PCA on the A. When compared
with the results obtained for streaming PCA by [17], our corresponding results differ by a factor of
dimension d and problem dependent parameters λ1,∆λ. We believe that such a dependence is not
inherent to Gen-Oja but a consequence of our analysis. We leave this task of obtaining a dimension
free bound for Gen-Oja as future work.

Gap-independent step size: While the step size for the sequence vn in Gen-Oja depends on eigen-
gap, which is a priori unknown, one can leverage recent results as in [29] to get around this issue by
using a streaming average step size.

6 Proof Sketch

In this section, we detail out the two key ideas underlying the analysis of Gen-Oja to obtain the
convergence rate mentioned in Theorem 5.1: a) controlling the non i.i.d. Markovian noise term which
is introduced because of the coupled Markov chains in Gen-Oja and b) proving that a noisy power
method with such Markovian noise converges to the correct solution.

Controlling Markovian perturbations. In order to better understand the sequence vt, we rewrite
the update as,

v′t = vt−1 + βtwt = vt−1 + βt(B
−1Avt−1 + ξt), (13)

where ξt = wt − B−1Avt−1 is the prediction error which is a Markovian noise. Note that the
noise term is neither mean zero nor a martingale difference sequence. Instead, the noise term ξt is
dependent on all previous iterates, which makes the analysis of the process more involved. This
framework with Markovian noise has been extensively studied by [6, 3].

From the update in Equation (13), we observe that Gen-Oja is performing an Oja update but with
a controlled Markovian noise. However, we would like to highlight that classical techniques in the
study of stochastic approximation with Markovian noise (as the Poisson Equation [6, 22]) were not
enough to provide adequate control on the noise to show convergence.

In order to overcome this difficulty, we leverage the fast mixing of the chain wvt for understanding the
Markovian noise. While it holds that E[‖ξt‖2] = O(1) (see Appendix C), a key part of our analysis
is the following lemma, the proof of which can be found in Appendix B).

Lemma 6.1. . For any choice of k > 4λ1(B)
µα log( 1

βt+k
), and assuming that ‖ws‖ ≤Ws for t ≤ s ≤

t+ k we have that
‖E[ǫt+k|Ft]‖2 = O(βtk

2αtWt+k)

Lemma 6.1 uses the fast mixing of wt to show that ‖E[ξt]|Ft−r‖2 = Õ(βt) where r = O(log t), i.e.,
the magnitude of the expected noise is small conditioned on log(t) steps in the past.

Analysis of Oja’s algorithm. The usual proofs of convergence for stochastic approximation define
a Lyapunov function and show that it decreases sufficiently at each iteration. Oftentimes control on
the per step rate of decrease can then be translated into a global convergence result. Unfortunately in
the context of PCA, due to the non-convexity of the Raleigh quotient, the quality of the estimate vt
cannot be related to the previous vt−1. Indeed vt may become orthogonal to the leading eigenvector.
Instead [17] circumvent this issue by leveraging the randomness of the initialization and adopt an
operator view of the problem. We take inspiration from this approach in our analysis of Gen-Oja. Let

Gi = wiv
⊤
i−1 and Ht =

∏t
i=1(I + βiGi), Gen-Oja’s update can be equivalently written as

vt =
Htv0
‖Htv0‖22

,
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pushing, for the analysis only, the normalization step at the end. This point of view enables us to
analyze the improvement of Ht over Ht−1 since allows one to interpret Oja’s update as one step
of power method on Ht starting on a random vector v0. We present here an easy adaptation of [17,
Lemma 3.1] that takes into account the special geometry of the generalized eigenvector problem and
the asymmetry of B−1A. The proof can be found in Appendix A.

Lemma 6.2. Let H ∈ R
d×d, (ui)

d
i=1 and (ũi)

d
i=1 be the corresponding right and left eigenvectors of

B−1A and w ∈ R
d chosen uniformly on the sphere, then with probability 1− δ (over the randomness

in the initial iterate)

sin2B(ui, Hw) ≤
C log(1/δ)

δ

Tr(HH⊤
∑

j 6=i ũj ũ
⊤
j )

ũ⊤i HH
⊤ũi

, (14)

for some universal constant C > 0.

This lemma has the virtue of highly simplifying the challenging proof of convergence of Oja’s

algorithm. Indeed we only have to prove that Ht will be close to
∏t
i=1(I + βiB

−1A) for t large
enough which can be interpreted as an analogue of the law of large numbers for the multiplication of
matrices. This will ensure that Tr(HtH

⊤
t

∑

j 6=i ũj ũ
⊤
j ) is relatively small compared to ũ⊤i HtH

⊤
t ũi

and be enough with Lemma 6.2 to prove Theorem 5.1. The proof follows the line of [17] with
two additional tedious difficulties: the Markovian noise is neither unbiased nor independent of the
previous iterates, and the matrix B−1A is no longer symmetric, which is precisely why we consider
the left eigenvector ũi in the right-hand side of Eq. (14). We highlight two key steps:

• First we show that ETr(HtH
⊤
t

∑

j 6=i ũj ũ
⊤
j ) grows as O(exp(2λ2

∑t
i=1 βi)), which im-

plies by Markov’s inequality the same bound on Tr(HtH
⊤
t

∑

j 6=i ũj ũ
⊤
j ) with constant

probability. See Lemmas E.2 for more details.

• Second we show that Var ũ⊤i HtH
⊤
t ũi grows as O(exp(4λ1

∑t
i=1 βi)) and Eũ⊤i HH

⊤ũi
grows as O(exp(2λ1

∑t
i=1 βi)) which implies by Chebshev’s inequality the same bound

for ũ⊤i HH
⊤ũi with constant probability. See Lemmas E.3 and E.5 for more details.

7 Application to Canonical Correlation Analysis

Consider two random vectors X ∈ R
d and Y ∈ R

d with joint distribution PXY . The objective of
canonical correlation analysis in the population setting is to find the canonical correlation vectors
φ, ψ ∈ R

d,d which maximize the correlation

max
φ,ψ

E[(φ⊤X)(ψ⊤Y )]
√

E[(φ⊤X)2]E[(ψ⊤Y )2]
.

This problem is equivalent to maximizing φ⊤E[XY ⊤]ψ under the constraint

E[(φ⊤X)2] = E[(ψ⊤Y )2] = 1 and admits a closed form solution: if we de-

fine T = E[XX⊤]−1/2
E[XY ⊤]E[Y Y ⊤]−1/2, then the solution is (φ∗, ψ∗) =

(E[XX⊤]−1/2a1E[Y Y
⊤]−1/2b1) where a1, b1 are the left and right principal singular vec-

tors of T . By the KKT conditions, there exist ν1, ν2 ∈ R such that this solution satisfies the
stationarity equation

E[XY ⊤]ψ = ν1E[XX
⊤]φ and E[Y X⊤]φ = ν2E[Y Y

⊤]ψ.

Using the constraint conditions we conclude that ν1 = ν2. This condition can be written (for
λ = ν1) in the matrix form of Eq. (3). As a consequence, finding the largest generalized eigenvector
for the matrices (A,B) will recover the canonical correlation vector (φ, ψ). Solving the associated
generalized streaming eigenvector problem, we obtain the following result for estimating the canonical
correlation vector whose proof easily follows from Theorem 5.1 (setting γ = 6).

Theorem 7.1. Assume that max{‖X‖, ‖Y ‖} ≤ R a.s., min{λmin(E[XX
⊤]), λmin(E[Y Y

⊤])} =
µ > 0 and σ1(T )− σ2(T ) = ∆ > 0. Fix any δ > 0, let ǫ1 ≥ 0, and suppose the step sizes are set to
αt =

1
2R2 log(d2β+t) and βt =

6
∆(d2β+t) and

β = max




720σ2

1

∆2d2 log
(

1+δ/100
1+ǫ1

) ,
200

(
R
µ + R3

µ2 + R5

µ3

)
1
δ log(1 +

R2

µ + R4

µ2 )

∆2
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Figure 1: Synthetic Generalized Eigenvalue problem. Left: Comparison with two-steps methods.
Middle: Robustness to step size αt. Right: Robustness to step size βt (Streaming averaged Gen-Oja
is dashed).

Suppose that the number of samples n satisfy

d2β + n

log
1

min(1,12λ1/∆λ) (d2β + n)
≥
(

cd

δ1 min(1, λ1)

) 1
min(1,12λ1/∆λ)

(d3β + 1) exp

(
cλ21
d2

)

Then the output (φt, ψt) of Algorithm 1 applied to (A,B) defined above satisfies,

sin2B((φ∗, ψ∗), (φt, ψt)) ≤
(2 + ǫ1)cd

2 log
(
1
δ

)

δ2‖ũ1‖22
log3(d2β + n)

∆2(d2β + n+ 1)
,

with probability at least 1− δ with c depending on parameters of the problem and independent of d
and ∆ where δ1 = ǫ1

2(2+ǫ1)
.

We can make the following observations:

• The convergence guarantee are comparable with the sample complexity obtained by the

ERM (t = Õ(d/(ε∆2) for sub-Gaussian variables and t = Õ(1/(ε∆2µ2) for bounded
variables)[12].

• The sample complexity in [12] is better in term of the dependence on d. They obtain the
same rates as the ERM. We are unable to explicitly compare our bounds with [4] since they
work in the gap free setting and their computational complexity is O(d2).

8 Simulations

Here we illustrate the practical utility of Gen-Oja on a synthetic, streaming generalized eigenvector
problem. We take d = 20 and T = 106. The streams (At, Bt) ∈ (Rd×d)2 are normally-distributed
with covariance matrix A and B with random eigenvectors and eigenvalues decaying as 1/i, for
i = 1, . . . , d. Here R2 denotes the radius of the streams with R2 = max{TrA,TrB}. All results
are averaged over ten repetitions.

Comparison with two-steps methods. In the left plot of Figure 1 we compare the behavior of
Gen-Oja to different two-steps algorithms. Since the method by [4] is of complexity O(d2), we
compare Gen-Oja to a method which alternates between one step of Oja’s algorithm and τ steps
of averaged stochastic gradient descent with constant step size 1/2R2. Gen-Oja is converging at
rate O(1/t) whereas the other methods are very slow. For τ = 10, the solution of the inner loop
is too inaccurate and the steps of Oja are inefficient. For τ = 10000, the output of the sgd steps is
very accurate but there are too few Oja iterations to make any progress. τ = 1000 seems an optimal
parameter choice but this method is slower than Gen-Oja by an order of magnitude.

Robustness to incorrect step-size α. In the middle plot of Figure 1 we compare the behavior
of Gen-Oja for step size α ∈ {α∗, α∗/8, α∗/16} where α∗ = 1/R2. We observe that Gen-Oja
converges at a rate O(1/t) independently of the choice of α.

Robustness to incorrect step-size βt. In the right plot of Figure 1 we compare the behavior of

Gen-Oja for step size βt ∈ {β∗/t, β∗/16t, β∗/
√
i, β∗/16

√
i} where β∗ corresponds to the minimal

error after one pass over the data. We observe that Gen-Oja is not robust to the choice of the constant

8



for step size βt ∝ 1/t. If the constant is too small, the rate of convergence is arbitrary slow. We

observe that considering the streaming average of [29] on Gen-Oja with a step size βt ∝ 1/
√
t

enables to recover the fast O(1/t) convergence while being robust to constant misspecification.

9 Conclusion

We have proposed and analyzed a simple online algorithm to solve the streaming generalized
eigenvector problem and applied it to CCA. This algorithm, inspired by two-time-scale stochastic
approximation achieves a fast O(1/t) convergence. Considering recovering the k-principal general-

ized eigenvector (for k > 1) and obtaining a slow convergence rate O(1/
√
t) in the gap free setting

are promising future directions. Finally, it would be worth considering removing the dimension
dependence in our convergence guarantee.
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