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Abstract

Background: Removing duplicates might be considered as a well-resolved problem in next-generation sequencing

(NGS) data processing domain. However, as NGS technology gains more recognition in clinical application,

researchers start to pay more attention to its sequencing errors, and prefer to remove these errors while performing

deduplication operations. Recently, a new technology called unique molecular identifier (UMI) has been developed

to better identify sequencing reads derived from different DNA fragments. Most existing duplicate removing tools

cannot handle the UMI-integrated data. Some modern tools can work with UMIs, but are usually slow and use too

much memory. Furthermore, existing tools rarely report rich statistical results, which are very important for quality

control and downstream analysis. These unmet requirements drove us to develop an ultra-fast, simple, little-

weighted but powerful tool for duplicate removing and sequence error suppressing, with features of handling UMIs

and reporting informative results.

Results: This paper presents an efficient tool gencore for duplicate removing and sequence error suppressing of

NGS data. This tool clusters the mapped sequencing reads and merges reads in each cluster to generate one single

consensus read. While the consensus read is generated, the random errors introduced by library construction and

sequencing can be removed. This error-suppressing feature makes gencore very suitable for the application of

detecting ultra-low frequency mutations from deep sequencing data. When unique molecular identifier (UMI)

technology is applied, gencore can use them to identify the reads derived from same original DNA fragment.

Gencore reports statistical results in both HTML and JSON formats. The HTML format report contains many

interactive figures plotting statistical coverage and duplication information. The JSON format report contains all the

statistical results, and is interpretable for downstream programs.

Conclusions: Comparing to the conventional tools like Picard and SAMtools, gencore greatly reduces the output

data’s mapping mismatches, which are mostly caused by errors. Comparing to some new tools like UMI-Reducer

and UMI-tools, gencore runs much faster, uses less memory, generates better consensus reads and provides simpler

interfaces. To our best knowledge, gencore is the only duplicate removing tool that generates both informative

HTML and JSON reports. This tool is available at: https://github.com/OpenGene/gencore
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Introduction
High-depth next-generation sequencing (NGS) has been

widely used for precision cancer diagnosis and treatment

[1]. From such deep sequencing data, somatic mutations

can be detected to guide personalized targeted therapy or

immunotherapy. Recently, circulating tumor DNA

(ctDNA) sequencing has been recognized as a promising

biomarker for cancer treatment and monitoring. Since the

tumor-derived DNA is usually a small part of the total

blood cell-free DNA, the mutant allele frequency (MAF)

of a variant detected from ctDNA sequencing data can be

very low (as low as 0.1%). To detect such low-frequency

variants, we usually increase the sequencing depth (can be

higher than 10,000x). However, the processes of making

NGS library and sequencing are not error-free. Particu-

larly, the library amplification using PCR technology can

lead to particular sequences becoming overrepresented

[2], and consequently cause some false positive mutations

in the result of NGS data analysis.

As a result of library amplification, NGS data can have

many duplicates. Especially for the high-depth data gen-

erated by sequencing low-input DNA, the duplication

level can be much higher. Traditionally, we just mark

the duplicated reads and remove them before down-

stream analysis. For low-depth paired-end NGS data, the

read pairs of same start and end mapping positions can

be treated as duplicated reads derived from a same ori-

ginal DNA fragment [3]. Then, the reads clustered to-

gether can be merged to be a single read. Due to the

nature that errors usually happen randomly, the incon-

sistent mismatches in the clustered read group can be

removed to generate a consensus read.

However, for ultra-deep sequencing, it’s possible that

two read pairs with same positions are derived from differ-

ent original DNA fragments. This possibility can be higher

when the DNA fragments are shorter. For example, cell-

free DNA usually has a peak length of ~ 167 bp, which is

much shorter than the peak length of normally fragmen-

ted genomic DNA. To better identify sequencing reads de-

rived from different DNA fragments, a technology called

unique molecular identifier (UMI) has been developed. It

has been adopted by various sequencing methods such as

Duplex-Seq [4] and iDES [5]. With UMI technology, each

DNA fragment is ligated with unique random barcodes

before any DNA amplification process. The UMIs can be

then used for accurate clustering of sequencing reads.

UMIs may be applied to almost any sequencing method

where confident identification of PCR duplicates by align-

ment coordinates alone is not possible and/or an accurate

quantification is required, including DNA-seq karyotyping

[6] and antibody repertoire sequencing [7].

Some tools, like SAMtools [8] and Sambamba [9], are

commonly used to remove duplicates, but cannot process

data with UMIs. Samtools is not efficient since it has to sort

the data twice for marking duplicate alignments. Sam-

bamba runs faster, but opens a lot of files (much more than

1024), and may introduce problems when multiple in-

stances are run concurrently. The conventional tool Picard

markDuplicates (http://broadinstitute.github.io/picard) is

able to handle UMIs, but cannot process bam data with un-

mapped reads. UMI-Reducer [10] and UMI-tools [11] are

two new tools designed for processing UMI-integrated

NGS data. However, UMI-Reducer is only suitable for

RNA data, and UMI-tools cannot deal with data without

UMI-integrated. Furthermore, these tools are usually rela-

tive slow and use too much memory, which make them

cost ineffective for cloud-based deployment. These unmet

requirements drove us to develop a new tool called gencore,

which is fast and memory efficient, with functions to elim-

inate errors and remove duplicates by generating consensus

reads for NGS data with or without UMIs. Table 1 shows a

brief comparison of features of different deduplication or

consensus read generating tools.

In Table 1, the input for these five tools is a sorted bam.

SAMtools cannot handle UMIs, whereas UMI-tools is

only applicable for UMI-integrated data. Only UMI-tools

and gencore needn’t any extra BAM preporcessing before

performing the deduplication. Gencore reports metrix in

JSON and HTML formats whereas UMI-tools doesn’t.

Implementation
gencore requires an input of position sorted BAM file

and a reference genome FASTA file. If the FASTQ data

has UMIs, it can be preprocessed using fastp [12] to

move the UMIs from read sequences to read identifiers.

The main workflow of gencore is described in Fig. 1. Be-

sides the input BAM/SAM file, this tool accepts a refer-

ence genome input to assist consensus reads generation.

If the data is from targeted sequencing, a BED file can

also be provided to describe the capturing regions. In

this case, the coverage statistics in BED regions will also

be reported in the HTML/JSON reports.

Simply put, gencore clusters read pairs by their mapping

positions and UMIs (if applicable), and then generates a

consensus read for each cluster. The main algorithm of

gencore can be briefly introduced as following steps:

(1) Position clustering: all mapped read pairs are

grouped by mapping position first. The reads with

same mapping chromosome, start position and end

position will be grouped together. A multi-level

map [chr]:[left_pos]:[right_pos]:[read_pairs], is used

to store the clusters being processed, while [left_-

pos] and is [right_pos] the read pair’s leftmost and

rightmost mapping position in the chromosome

respectively. [read_pairs] is a group of read pairs

that share the same mapping positions. To reduce

the memory usage, gencore implements a
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processing-while-reading strategy, which means

processing one group immediately when its all

possible reads are collected. For example, when

gencore finds that the mapping position of current

inputting read is greater than [right_pos] of one

group, it will perform following step 2 to step 7 for

this group and release the group immediately.

(2) UMI clustering: for each group of same mapping

positions, read pairs are then clustered by their

UMIs with one base difference tolerance. If the data

has no UMIs, this step is skipped. Due to the

principle of Illumina paired-end sequencing, if the

data has dual UMIs from forward and reverse reads,

the read pairs with reciprocal UMIs will be

clustered together. For instance, two read pairs with

UMI ATGC_GCAA and GCAA_ATGC will be con-

sidered as derived from different strands of same

original DNA fragment, and will be clustered

together.

(3) Cluster filtering: each cluster will be filtered by

comparing its supporting reads number with the

threshold (default = 1, which means no threshold).

If it passes, gencore will start to generate a

consensus read for this cluster. For ultra-deep

sequencing (i.e. ctDNA sequencing with 10,000× or

higher depth), it’s recommended to increase the

threshold to 2 to discard part of reads that without

any PCR duplicates.

(4) Pair scoring: a default score number (default = 6)

will be initially assigned to every base in the read.

Table 1 Features comparison of different deduplication or consensus read generating tools

SAMtools Picard gencore Picard UMI-tools gencore

Non-UMI mode UMI mode

No need to sort by read name + + + +

No need to fix mate information + + + +

No need to add UMI tag + + + + +

No need to sort by position again + + + +

JSON/Text Metrics + + + + +

HTML Report + +

Fig. 1 The brief workflow of gencore
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For each read pair in a cluster, the overlapped

region of the paired reads is computed. For each

base in the overlapped region, its score is adjusted

according to its consistence with its paired base,

with the consideration of their quality scores. The

default scoring schema is presented in the project

repository, and can be configured through options.

(5) Cluster scoring: in this step, the total scores are

computed by summarizing the scores computed in

previous step. For each position in the mapping

region, gencore queries the base presented in the

cluster’s different reads, and summarizes them to

compute the score of different bases (A/T/C/G).

(6) Consensus read generating: for each position in a

cluster, its base diversity is computed according to

the scores of different bases computed in last step. If

gencore finds one dominant base, this base will also

be presented in the consensus read. Otherwise if

exists one or more reads are concordant with

reference genome with high quality, or all reads at

this positions are with low quality, the corresponding

base in the reference genome will be used. The using

of reference genome is one of the major differences

between gencore and other tools. Since a base is more

likely an error when it’s not concordant with

reference, gencore assigns lower weight to them when

computing the consensus reads.

(7) Buffered reads outputting: when one consensus read is

generated, it will be buffered in a position-sorted queue

to be written to output. To minimize the memory used

by this queue, gencore implements a writing-while-

processing strategy. With this strategy, gencoremaintains

a pointer that always points to the unprocessed read

with least mapping position, and periodically outputs the

reads in queue with mapping position less than it.

After the processing is done, gencore will generate a sum-

mary of the data before and after processing. Some metrics

like coverage, duplication histogram, mapping rate, duplica-

tion rate, passing filter rate and mismatch rate are reported in

HTML/JSON format reports. The HTML report contains no

image figures but some interactive figures, which are built

based on Plotly.js. Comparing to conventional HTML reports

with static images, this single-page standalone JavaScript-

based HTML report is much more interactive and easier to

transfer. Figure 2 shows a demonstration of the coverage sta-

tistics in both genome scale and capturing regions in the

HTML reports.

In this interactive HTML report, a region is selected in

a), and then enlarged in b). While a) and b) are coverage

in genome scale, c) is the coverage only in the capturing

regions. The BAM file of this report was generated by

targeted sequencing using a panel with hundreds of

genes. So the coverage in genome scale is very sparse,

whereas the coverage in capturing regions is high and

dense.

Application

Since gencore can be used to reduce sequencing errors, it is

very useful for the application of detecting low-frequency

somatic mutations from cancer sequencing data, particu-

larly in liquid biopsy technology [13]. When the samples

are from blood, urine or malignant effusion, the MAF of

variants can be even much lower than 1%. The detection of

such low-frequency variants can be seriously affected by the

errors, which are usually introduced by library preparation

and sequencing. Gencore can significantly reduce the se-

quencing errors of deep sequencing data, and consequently

reduce the false positive calling rate.

To evaluate how gencore can help the variant detection,

we conducted two evaluation experiments using 8 DNA

samples, obtained from the National Center for Clinical

Laboratories (NCCL) in China. The dataset #1 (1801,

1802, 1803 and 180N) was generated by sequencing

plasma cell-free DNA samples, and each data contains

~55G bases. Sample 1801, 1802 and 1803 were DNA ex-

tracted from blood of one lung adenocarcinoma patient at

different time, whereas sample 180 N was DNA from a

healthy control. The dataset #2 (1811, 1812, 1813 and 181

N) was generated by sequencing tissue DNA samples, and

each data contains ~10G bases. Sample 1811 and 1812

were DNA of tumor tissues collected from two breast can-

cer patients, whereas sample 1813 was DNA of a biopsy

tissue collected from a lung adenocarcinoma patient, and

sample 181 N was DNA from a healthy control. These

DNA samples are publicly provided by NCCL as reference

materials for conducting inter-lab quality assessments.

The golden standard mutations of all samples were also

provided by NCCL. Among all the mutations, the lowest

frequency was about 0.15%.

In our experiment, all samples sequencing libraries

were prepared using IDT xGen Dual Index Adapters,

captured with a 451-gene cancer panel, and then se-

quenced using an Illumina NovaSeq 6000 sequencer.

UMI adapters were used for 1801, 1802, 1803 and 180 N

samples. The detailed file sizes and commands of experi-

ments are provided in Additional file 1.

The FASTQ files were preprocessed by fastp, and then

mapped to reference genome hg19 using BWA [14].

After the mapped bam file was sorted using Samtools,

the sorted bam files were then processed by different

tools. VarScan2 [15] was used to call SNVs from the

processed bam files, and ANNOVAR [16] was then used

to annotate the VCF files. The missense variants de-

tected in the coding sequences were then filtered with

conditions (dataset #1: supporting reads ≥5; dataset #2:

supporting reads ≥8 and variant allele frequency ≥ 2%).
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The variant calling results were evaluated by comparing

to the golden standard results provided by NCCL, and

the speed and memory performance were also com-

pared. The comparison result is shown in Fig. 3.

From Fig. 3, we can learn that gencore runs much fas-

ter than all other tools. For the comparison of memory

peak, gencore uses much less memory than Picard and

UMI_tools. Due to gencore consumes extra memory to

load reference genome and performs more processing,

gencore uses more memory than Samtools. But, as

shown on Fig. 3a, its memory peak is still less than 8GB.

This result shows that gencore is littleweight and fast,

and is much more cost-effective to be deployed on the

cloud. From Fig. 3b, the average depth of output after

processing with gencore is a little lower than other tools

in UMI mode. That’s due to gencore treats read pairs

with mutual UMIs (i.e. ATC_TGA and TGA_ATC) as

read pairs derived from same original DNA fragment.

The comparison of downstream variant calling results

also shows that gencore outperforms other tools. From

Fig. 3c, we can learn that gencore achieved higher speci-

ficity in both UMI and non-UMI modes.

For the cfDNA samples (1801, 1802 and 1803), we

applied a filter with condition (supporting reads≥5).

The results showed all tools successfully detected all

true positive variants for 1801 and 1802, but non-

UMI mode tools missed one true positive variant for

1803 due to its variant allele frequency was too low

(VAF = 0.15%). Moreover, we evaluated the detected

variants by comparing their VAFs to the golden re-

sults, and considered a variant as unacceptable if its

VAF exceeded 2 standard deviations. The results

showed all non-UMI mode tools resulted in two vari-

ants with unacceptable VAFs. For UMI mode, UMI_

tools detected one variant with unacceptable VAF,

while all variants detected by Picard and gencore were

acceptable.

For the tissue DNA samples (1811, 1812 and 1813),

we applied a filter with condition (supporting reads

≥8 and VAF ≥ 2%). The results showed that all tools

could detect true positive variants at 100% sensitivity.

But for sample 1811, both Picard and Samtools re-

ported one false positive variant, while gencore

achieved 100% specificity for all three samples.

Fig. 2 The coverage statistics figures in the HTML report
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These results suggest that UMI technique is important

for detecting variants with ultra-low VAFs, and gencore

is one of the best tools to process UMI-enabled data due

to its superior accuracy and performance.

Results and discussion
By analysing the output data using downstream tools,

gencore outperforms other tools in both non-UMI and

UMI modes. By carefully exploring the data generated

by these different tools, we found the major difference

was that gencore applied reference genome based correc-

tion, whereas Picard and UMI-tools didn’t. Utilization of

a reference genome is important for eliminating sequen-

cing noises. When an inconsistent position is found

when making a consensus read, the reference base

should be taken into account since the base different

from the reference may have higher probability to be a

sequencing error.

To explore how gencore eliminates the sequencing er-

rors, we manually compared some the alignment files be-

fore and after gencore processing. In the case of sample

1802, NM_005228.3(EGFR): c.2369C > T, p.T790M

variant was one true positive variant. Figure 4 shows the

alignment visualization illuminated by Integrated Genome

Viewer (IGV) for the files before and after processing. In

Fig. 4a, which is the original alignment file generated by

mapping by BWA [14], the double-line marked mismatch

T base is the true positive variant EGFR p.T790M. How-

ever, there are also some other mismatch bases, which are

false positive mismatches caused by sequencing errors. In

Fig. 4b, which is the alignment file after gencore process-

ing, we can find these false positive mismatches are gone,

while the true positive variant is kept. This result suggests

that gencore not only removes duplicates, but also elimi-

nates sequencing errors.

Conclusion
We introduced a tool gencore, which is useful for

performing deduplication and consensus read gener-

ation for deep next-generation sequencing data. We

conducted several experiments to evaluate the per-

formance of gencore, with comparisons to Picard,

Samtools and UMI-tools. The result shows that gen-

core is much faster and more memory efficient, while

Fig. 3 Comparison of speed, memory peak and processing results of different tools in both UMI and non-UMI modes. a memory peak and

execution time of different tools. Samtools and Picard (in UMI mode) need to prepare the data before performing deduplication, whereas gencore

and UMI_tools needn’t. b average depth of output BAM. For the cfDNA samples (1801, 1802 and 1803), the depths of UMI mode results are

much higher than non-UMI mode, indicating that over-deduplication may happen when performing deduplication without UMI for ultra-deep

sequencing data. c specificity of downstream variant calling results comparing to the golden standard results provided by NCCL
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providing similar or better results. This tool generates

interactive HTML reports and informative JSON re-

ports that can help manually checking and program-

matically downstream analysis. According to our

estimation, this tool has been used to process more

than 10,000 samples in the authors’ institution, and is

now suitable to be adopted by community users.

Availability and requirements

Project name: gencore.

Project home page: https://github.com/OpenGene/

gencore

Operating system(s): Linux or Mac OS X

Programming language: C++

Other requirements: htslib and zlib

License: MIT License.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12859-019-3280-9.

Additional file 1. Experiment Details

Abbreviations

ctDNA: Cell-free tumor DNA; EGFR: Epidermal growth factor receptor;

HTML: Hypertext markup language; IGV: Integrative genome viewer;

INDEL: Insertion and deletion; JSON: Javascript object notation;

MAF: Mutated allele frequency; NCCL: National Center for Clinical

Laboratories; NGS: Next generation sequencing; SNP: Single-nucleotide

polymorphism; SNV: Single-nucleotide variation; UMI: Unique molecular

identifier
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