
20 IEEE Technology and Society Magazine, Fall 20030278-0079/03/$17.00©2003IEEE

Gender and Race in 
Predicting Achievement in 

Computer Science
Sandra Katz, John Aronis, David Allbritton,

Christine Wilson, and Mary Lou Soffa 

©
P

H
O

TO
D

IS
C

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 



In the study described here, 65
prospective computer or infor-
mation science majors worked
through a tutorial on the basics
of Perl. Eighteen students were
African American. All actions

were recorded and time-stamped,
allowing us to investigate the rela-
tionship among six factors that we
believed would predict perfor-
mance in an introductory computer
science (CS) course (as measured
by course grade) and how much
students would learn from the tuto-
rial (as measured by the difference
between pre-test and post-test per-
formance). These factors are:
preparation (SAT score, number of
previous CS courses taken, and pre-
test score), time spent on the tutor-
ial as a whole and on individual
chapters, amount and type of
experimentation, programming
accuracy and/or proficiency,
approach to materials that involve
mathematical formalisms, and
approach to learning highly unfa-
miliar material (pattern-matching
procedures). Gender and race dif-
ferences with respect to these fac-
tors were also investigated. 

Predictors of grade and gain
score included SAT score, pre-test
score (negatively correlated with
gain), time (negatively correlated
with gain and grade), and various
measures of programming accura-
cy and/or proficiency — for exam-
ple, the total number of program
runs that contained errors (nega-
tively correlated with grade and
gain). Several measures of experi-
mentation predicted gain score.
Experimentation also predicted
grade, but only as applied to the
least familiar tutorial material. With
respect to gender comparisons,
experimentation was practiced
throughout the tutorial by both sex-
es. However, male and female stu-
dents differed with respect to the
types of tutorial topics and tasks
they experimented with and the
degree of experimentation — for
example, male students were more
likely to invent their own practice
exercises. With respect to race
comparisons, African-American
students, on average, had lower
SAT scores, pre-test to post-test
gain scores, and scores on various
measures of programming accura-
cy/proficiency than did white and
Asian students. This suggests the
need for better pre-college prepara-
tion in the math, verbal, and pro-
gramming skills that African-
American (and all) students need in
order to succeed in undergraduate
CS programs.

WOMEN AND MINORITIES
UNDERREPRESENTED IN CS

According to the National Sci-
ence Foundation’s 2000 report enti-
tled, Women, Minorities, and Per-
sons with Disabilities in Science
and Engineering, the number and
percentage of bachelor’s degrees in
computer science (CS) awarded to
women have decreased in the last
decade [14]. African-Americans
and other minorities (Hispanics and
American Indians) have consistent-
ly been underrepresented in com-
puter science. Since a bachelor’s
degree in CS or information sci-

ence (IS) is required for many chal-
lenging jobs in information tech-
nology (IT) — in particular, those
that involve software design and/or
development — women and
minorities have, in turn, been
underrepresented in these jobs and
in the IT workforce in general. 

Since satisfactory performance
is a requirement for retention in
undergraduate CS or IS programs,
many studies have been conducted
to identify factors that predict
achievement. A complex array of
experiential, affective, personality,
and cognitive factors have been
shown to predict achievement in
college courses that involve pro-
gramming — for example, simply
owning a computer [16], using a
computer in pre-college computing
classes [9], prior programming
experience [10], confidence, intrin-
sic motivation, and having clear
career goals [2], [6], [12], [17], and
various aptitudes, such as math
ability, spatial reasoning ability,
verbal reasoning ability, and
Piagetian formal operations [1],
[3], [6], [18]. 

Gender comparisons of achieve-
ment in courses that involve pro-
gramming have repeatedly found
that female students perform as
well or better than male students,
both at the pre-college and under-
graduate level [8], [13], [16], [17].
Largely in response to this finding,
researchers have investigated the
socio-cultural forces that may con-
tribute to the withdrawal of women
from CS programs. Significant fac-
tors include women’s sense of “not
fitting into” male-dominated CS
classes — especially when male
students appear to enjoy program-
ming for its own sake rather than as
a tool for achieving other practical
goals, as women commonly view
programming [13], a lack of female
role models, the presence of which
has been shown to promote reten-
tion [5], and, worse yet, an
“inclement academic climate” in
some CS programs, where female
students face doubted qualifica-

IEEE Technology and Society Magazine, Fall 2003 21

This research was supported by
a grant from the National Science
Foundation (grant number EIA
0089963). The data presented and
views expressed are not necessar-
ily endorsed by this agency. 

Sandra Katz and Christine
Wilson are with the Learning
Research and Development Cen-
ter, University of Pittsburgh, 3939
O’Hara St., Pittsburgh, PA
15260; email: katz+@pitt.edu,
clwilson@pitt.edu. John Aronis
and Mary Lou Soffa are with the
Computer Science Dept., Univer-
sity of Pittsburgh, 6211 Sennett
Square, Pittsburgh, PA 15260;
email: aronis@cs.pitt.edu; sof-
fa@cs.pitt.edu. David Allbritton
is with the Dept. of Psychology,
DePaul University, 2219 N. Ken-
more Ave., Chicago, IL 60614;
email: dallbrit@depaul.edu. 

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 



tions (“you got in because you are a
girl”), patronizing behavior, even
sexual harassment [4]. 

Perhaps because so few minori-
ty students enroll in CS bachelor’s
degree programs, there has been no

research done, to our knowledge,
on the experiences of minorities in
these programs, or on racial/ethnic
achievement comparisons. Howev-
er, the National Science Founda-
tion’s 2000 report, Women, Minori-
ties, and Persons with Disabilities
in Science and Engineering [14],
revealed an increasing interest in
computer science among African-
Americans and American Indians
in the past decade: “the number of
associate’s degrees in computer sci-
ence increased for blacks and
American Indians and decreased
for all other racial/ethnic groups in
1996” [14, p. 18]. Furthermore, the
percentage of bachelor’s degrees in
CS awarded to African-Americans
in 1996 (11%) was higher than the
percentage in most other science
fields and in engineering. These
findings highlight the need to sus-
tain minority interest and persis-
tence in undergraduate CS pro-
grams and to find out why those
who drop out do so.

The research discussed in this
article investigates a piece of the
“achievement and retention puzzle”
that has received very little attention
to date: how learning strategies and
behaviors affect performance in

undergraduate computer science
courses. Since programming is one
of the first skills that computer sci-
ence students learn, and a stumbling
block for many, we focus on stu-
dents’ strategies for learning how to

program. Research
by Recker and Pirol-
li [15] suggests that
learning strategies
can have a strong
impact on program-
ming skill. In partic-
ular, students who
approached learning
materials in a reflec-
tive manner — e.g.,
by self-explaining
example programs
— outperformed less
reflective students on
laboratory program-
ming tasks. Learn-

ing-to-program behaviors may also
affect retention. Even students who
perform well in CS courses — as
women, as a whole, have been
shown to do — may nonetheless
withdraw because inefficient learn-
ing strategies make the process less
enjoyable.

We hypothesized that experi-
mentation is another learning strat-
egy that facilitates achievement in
computer science. We have
observed that strong students are
typically eager to “try things out”
on the computer, while weaker stu-
dents tend to take a more passive
approach (e.g., reading textbooks
and lecture notes). To get a first-
hand look at the role that experi-
mentation and other strategies play
in learning a new programming
language, we developed a laborato-
ry study in which students work
through a tutorial on the basics of
Perl. By logging all student actions,
we were able to investigate correla-
tions between six learning factors
and two dependent variables repre-
sentative of achievement: course
performance (as measured by final
grade), and how much students
learned from the tutorial (as mea-
sured by gain score from pre-test to

post-test). These factors are: prepa-
ration (SAT score, number of previ-
ous CS courses taken, and pre-test
score), time spent on the tutorial as
a whole and on individual chapters,
amount and type of experimenta-
tion, programming accuracy and/or
proficiency, approach to program-
ming tasks that involve mathemati-
cal formalisms, and approach to
learning new material (pattern
matching). Gender and race differ-
ences with respect to these factors
were also investigated.

METHODS

Materials
Five topics are covered in the

Perl programming tutorial, with
one brief chapter per topic:
input/output basics, arithmetic
expressions, conditional execution,
while loops, and pattern matching
(regular expressions). Each chapter
consists of explanatory text, sample
programs, and recommended prac-
tice exercises. 

Participants
Sixty-five students (47 males, 18

females) who claimed to have no
prior experience with Perl partici-
pated in the study. Fifty-six students
(43 males, 13 females) were
prospective CS majors at the Uni-
versity of Pittsburgh, enrolled in an
introductory CS course. Nine stu-
dents (4 males, 5 females) were
prospective information science
(IS) majors, recruited from one sec-
tion of an introductory IS course at
the same university. Forty-three stu-
dents were white (30 males, 13
females). Eighteen were African-
American (14 males, 4 females).
No other minority groups are repre-
sented in this study. Two students
(males) were Asian and two were
Asian-American (1 male, 1 female).
For the purposes of this study, we
will refer to these four students as
Asians. Given that whites and
Asians are well-represented in com-
puter and information science, we
classify these groups as the “major-

22 IEEE Technology and Society Magazine, Fall 2003

We hypothesized that
experimentation as a learning
strategy facilitates achievement
in computer science.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 



ity” and African-American students
as the “minority” groups in this
study. Students were paid a nominal
amount for their participation. 

Procedure
We first administered a pre-test

to measure students’ ability to pro-
gram in Perl. Students then went
through a step-by-step lesson on
how to use the programming inter-
face. This lesson was done as a
group. Students then worked
through the tutorial individually, at
their own pace, so that we could
track the time that they spent on the
tutorial as a whole and on each
chapter. Since our aim was to
observe how students would work
naturally, we provided minimal
guidance on what students should
(or should not) do. The introduc-
tion briefly advised students to
enter and run each example, but the
remainder of the tutorial did not
reinforce this advice. Finally, stu-
dents took a post-test, which was
identical to the pre-test. 

Data analysis 
We coded the following features

of each run in students’ log files:

� Identification: Which tutorial
example or practice exercise is
the executed program associated
with? 

� Correctness: A program is con-
sidered “correct” if it is free of
compilation and logical errors.
Compilation errors were logged
automatically. Logical errors
were identified by a human coder.

� Novelty status: Is the program a
direct replica of an example pro-
vided in the tutorial, or does it
attempt to modify the example’s
functionality? Similarly, if the pro-
gram is associated with a practice
exercise, did the student do what
was asked for, or attempt to modi-
fy the specified functionality? We
code the former as a “verbatim
run” and the latter as a “modified
run.” A human coder tagged the
novelty status of each program run. 

The transcripts were coded by
one researcher. To test the reliabili-
ty of the coding scheme, a second
researcher coded a randomly
selected sample of four transcripts.
Agreement on correctness and nov-
elty status was 94% (kappa = .89).
(Agreement on program identifica-
tion was not measured, because this
feature is self-evident.) 

The two dependent variables for
achievement in this study are pre-
test to post-test gain score and
course grade. Representative mea-
sures for the six factors we consid-
ered as possible predictors of
achievement are shown in Table I.
Additional measures include aggre-
gations and sub-categories of those
shown in this table — for example,
number of runs of correctly modi-
fied examples and practice exercis-
es, number of runs of practice exer-
cises involving pattern matching
(example runs excluded), respec-
tively. The behavioral factors are
explained further below.

Experimentation
Students could experiment with

two types of materials: tutorial-pro-
vided examples and/or recom-
mended practice exercises. Since
we did not require students to run
examples, we consider verbatim
runs of examples “experimental,”
because the student is trying inputs
of his or her own choosing to see
what the program will output. This
is the simplest form of experimen-
tation. Trying out the recommend-
ed practice exercises is considered
a higher form of experimentation
than modifying examples because
the student must generate code.
Some students “broke out of the
tutorial box” altogether and
designed their own exercises. We
consider this the highest form of
experimentation, whether or not the
attempted program was completed
successfully. 

In future analyses, we will
determine whether various groups
of students (based on gender and
race/ethnicity) differed with

respect to the types of modifica-
tions they made, the number of
changes they attempted per pro-
gram run, etc., and whether these
factors predicted achievement.

Programming accuracy
and/or proficiency

The measures included in this
category (e.g., number of correct
runs, ratio of correct runs to total
runs) are ambiguous — hence, the
slashed rubric. These measures
might indicate how much the stu-
dent had to struggle to get pro-
grams to work (coding proficien-
cy). Alternatively or concurrently,
they might indicate how careful or
accurate the student is. Wherever
possible in the analyses that follow,
results for these measures are inter-
preted in light of other findings,
such as time. 

Ease with formalism
Because computer science is a

formal discipline, especially at
more advanced stages of study, we
were interested in determining
whether students’ accuracy and
degree of experimentation with
mathematical materials would pre-
dict achievement and differences
among groups. Three tutorial tasks
(one exercise and two examples)
involved mathematical functions
— quadratic equations, geometric
series, and harmonic series.

Approach to new material
The last tutorial chapter dealt

with material that students most
likely had not seen before: pattern
matching, using regular expres-
sions. (Students were expected to
have been exposed to all other tuto-
rial topics, although in a different
language than Perl, because a basic
programming course was a prereq-
uisite for the course they were tak-
ing.) Hence, the pattern-matching
chapter gave us an opportunity to
see if “successful” students would
differ from “unsuccessful” students
in their approach to learning highly
novel material. 

IEEE Technology and Society Magazine, Fall 2003 23
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 



RESULTS
The small number of female and

African-American participants (18
per group) limited the exposure of
statistically significant differences
among groups, hence raising the
need for further research along
these lines. All reported findings

are significant at the .05 level or
less, except where otherwise noted. 

Predictors of Gain Score
Pre-test score correlated nega-

tively with gain (r = -0.46), where-
as post-test score correlated posi-
tively with gain (r = 0.76). Thus,

students who were initially the least
proficient programmers, at least in
Perl, benefited the most from the
tutorial. Aptitude, according to all
three SAT scores, also predicted
gain scores (math, r = 0.33; verbal,
r = 0.38; total, r = 0.25). Various
measures of time correlated nega-

24 IEEE Technology and Society Magazine, Fall 2003

Preparation • Number of previous programming courses taken
• SAT score (math, verbal, and total)
• Pre-test score

Time • Total time spent on the tutorial (5 chapters)
• Time spent overall on each tutorial chapter
• Time spent only on writing code in each chapter (excludes

reading time, breaks between chapters, etc.)

Experimentation— Experimenting with Tutorial-provided Examples

type and degree (shown • Number of syntactically correct, verbatim runs of examples
in increasing order) • Number of attempted modifications of sample programs, whether

or not the program ultimately compiled and was free of
logical errors

• Number of runs of correctly modified examples, using
various inputs1

Experimenting with Recommended Practice Exercises

• Number of runs attempting recommended exercises, whether
or not they compiled and were free of logical errors

• Number of correct, verbatim runs of practice exercise programs
• Number of attempted modifications of practice programs,

whether or not the program ultimately compiled and was
free of logical errors

• Number of runs of correctly modified practice programs, using
various inputs

Free-form Experimentation

• Number of runs attempting student-designed practice exercises—
programs not tied to any tutorial example or exercise—whether
or not they compiled and were free of logical errors

Programming accuracy • Number of correct runs—that is, runs free of syntactic and
and/or proficiency logical errors

• Number of runs with errors
• Percent of correct runs (correct runs/total runs)

Approach to examples and Experimentation with mathematical examples and exercises,
exercises involving coding accuracy and/or proficiency, according to the measures of
mathematical functions experimentation and accuracy/proficiency listed above.
(ease with formalism)

Approach to new material Same as for mathematical examples and exercises.
(pattern matching)

1Our logs do not reveal the inputs that students used to test programs. We assume that if a student ran the same,
functioning program more than once, they used different inputs for each trial.

TABLE I
REPRESENTATIVE MEASURES OF POSSIBLE PREDICTORS OF ACHIEVEMENT

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 



tively with gain (e.g., total time
spent on the tutorial, r = -0.28).

Accuracy, as measured by the total
number of runs with errors, correlated
negatively with gain (r = -0.29).
When coupled with the negative
correlation between pre-test score
and gain, these findings suggest
that accuracy was indicative of care
rather than coding proficiency. It
seems as though less skilled coders
(in Perl), who were careful and
strove for accuracy, learned more
than less careful students. 

Students who experimented
more, and to a higher degree, also
got more out of the tutorial. Mea-
sures of experimentation that pre-
dicted gain include: the total num-
ber of runs of modified examples,
whether or not correct (r = 0.28);
the number of runs of correctly
modified examples (r = 0.27); and
the number of runs of “free form”
experiments (r = 0.25). 

Predictors of
Course Grade

The nine IS students were
excluded from the analysis of
grade, since comparisons across the
two disciplines would not have
been meaningful. Gain score did
not correlate with grade, which
suggests that the overlap between
the tutorial content and the CS
course was relatively small. As
with gain score, predictors of
course grade included pre-test
score (r = 0.28), post-test score (r =
0.37), aptitude (SAT total, r =
0.40), and various measures of time
(negatively correlated; e.g., total
time, r = -0.30).

The same measure of accuracy
that predicted gain score also pre-
dicted grade — the number of runs
with errors (r = -0.38). This finding
was supported by several other cor-
relations between accuracy mea-
sures and grade — for example, the
percent of correct compilations,
overall (r = 0.46), and the percent
of correct modified runs of exam-
ples and exercises (r = 0.31). As
with gain score, these correlations

between accuracy and grade are
difficult to interpret and warrant
further investigation: Does accura-
cy indicate an acquired level of pro-
ficiency with coding that is reflect-
ed in final course grade, or do
students earn high grades in this
course partly because they are care-
ful and accurate?

Experimentation also predicted
grade, but only with respect to
learning the least familiar material
(as opposed to the tutorial as a
whole). For example, the number
of correct runs of pattern-matching
examples and exercises correlated
positively with grade (r = 0.30).

Interactions Among
Predictor Variables

Time, experimentation, and
accuracy. Getting programs to run
takes time, at least for students who
have low accuracy rates. The total
time that students spent on the tuto-
rial correlated positively with the
total number of runs (r = 0.59) and
the number of runs with errors (r =
0.57). But experimentation also
takes time. The number of correct
runs (using multiple inputs) also
correlated positively with time (r =
0.39). Experimentation is time-
intensive, in part, because it
increases the odds of making
errors, and error-fixing takes time.
For example, the number of cor-
rectly modified runs of practice
exercises correlated positively with
the number of runs with errors (r =
0.27), suggesting that correctly
modified programs followed sever-
al unsuccessful trials. 

These findings suggest that time
is a complex measure. On the one
hand, time predicts achievement
(negatively correlated with gain
score and grade). On the other
hand, experimentation takes time,
but also predicts achievement.
Hence, in order to intervene appro-
priately, instructors should consider
what students who take relatively
long are doing: Are they spending a
lot of time fixing errors? Or are
they writing and modifying pro-

grams, and running them on vari-
ous test cases? 

Aptitude, time, and experimen-
tation. Time also appears to be
related to aptitude. Students with
higher math SAT scores finished
sooner, overall, than other students
(r = -0.36) and spent less time on
coding tasks (r = -0.43). This is not
surprising, given that several exam-
ples and exercises dealt with math-
ematical functions.

Verbal SAT score correlated
positively with time spent on self-
designed experiments (r = 0.27).
Verbal SAT score also correlated
with the number of correct verba-
tim runs of pattern-matching exer-
cises (r = 0.31). So, it appears that
students with higher verbal aptitude
experimented more with the most
linguistically-oriented material in
the tutorial. This finding suggests
that students’ tendency to experi-
ment is related to their comfort lev-
el with, and/or interest in the mate-
rial presented to them. Further
research is needed to identify the
factors that govern when, how, and
how much students experiment.

Degree of experimentation. Stu-
dents who experiment tend to do so
in various ways. In particular, free-
form experimenters also had higher
numbers of runs of correctly modi-
fied examples and practice exercis-
es (r = 0.42). 

Aptitude, background, accuracy,
and experimentation. We saw that
aptitude correlated positively with
gain score and course grade. How-
ever, there could be a hidden vari-
able contributing to this effect —
namely, programming background.
Total SAT score correlated posi-
tively with the number of previous
courses taken that involved pro-
gramming (r = 0.38). 

As one would expect, the number
of prior programming courses that
students took predicted how well
they would do on the tutorial pre-
test (r = 0.38) and post-test (r =

IEEE Technology and Society Magazine, Fall 2003 25
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 



0.31). Background also predicted
programming accuracy and/or profi-
ciency. For example, the number of
prior programming courses predict-
ed the percent of correctly modified
examples and exercises (r = 0.26).

Gender Comparisons
Male students had more prior

programming experience than
female students (t(59) = 2.32).
Both men and women showed evi-
dence of experimenting, though on
different types of material. Men
spent more time working on self-
designed practice exercises (t(46) =
1.97, p = 0.06). Whereas men had
more correct runs of modified
examples (t(62) = 2.94), women
had more correct runs of modified
practice programs (t(63) = 2.18).
Whereas men had more correct
runs of modified pattern-matching
examples (t(61) = 2.49), women
had more correct runs of modified
examples and exercises involving
mathematical functions (t(63) =
2.04). Thus, both male and female
students experimented on the most
challenging tutorial material,
though on different types of chal-
lenging material.

These findings are partially con-
sistent with prior research that
reveals gender differences in soft-
ware use and development. For
example, Kafai and her colleagues
found significant gender differ-
ences in elementary students’

design of video games [8]. Our
observation that male students
experimented to a higher degree
than did female students (by invent-
ing their own exercises) concurs
with Margolis and Fisher’s [13]

finding that male
undergraduate CS
majors claimed that
they “played” with
computers and pro-
gramming more and
at an earlier age than
did female students.
However, our obser-
vation that women
experimented more
than men in some
ways also suggests
that women may
“play” more than they
think they do — at
least when learning a

new programming lan-
guage in a laboratory setting, as in
the current study. Do male and
female students benefit differently
from different forms of experimen-
tation, or would both sexes benefit
most from a diverse repertoire of
“programming play” techniques?
This is an interesting question for
further research. 

Race Comparisons
White and Asian students had

higher SAT scores (t(59) = 3.8 for
SAT math; t(59) = 3.5 for SAT ver-
bal; t(62) = 2.0 for SAT total) and
gain scores than African-American
students (t(62) = 2.2). White and
Asian students also scored higher
on various measures of
accuracy/proficiency — for exam-
ple, the percent of correct compila-
tions (t(62) = 2.0) and the number
of correct runs of modified practice
exercises (t(62) = 2.2). Correspond-
ingly, African-American students
took longer, on average, to work
through the tutorial as a whole
(t(62) = 4.1) and through individual
chapters, most likely because they
were trying to fix errors. 

African-American students
scored higher than White and Asian

students on one experimentation
measure: the number of runs of cor-
rectly modified practice exercises
(t(62) = 2.2). As we have seen,
experimentation correlated posi-
tively with gain score and, to a less-
er extent, with course grade. Hence,
experimentation appears to be one
learning behavior that should be
encouraged with all students who
are having difficulty learning to
program, regardless of race.

As Jennifer Light [11] has
argued, complex problems such as
social inequality can not be solved
by simple solutions. The so-called
“digital divide” — that is, inferior
access to computers and the Internet
by African-Americans and other
minorities — and the under-repre-
sentation of minorities in the IT
workforce are technological mani-
festations of social inequality. Light
claims that simply providing
minorities with more access to tech-
nology will not solve these prob-
lems. Our research supports Light’s
position. Most of the African-
American students who participated
in our study reported on a back-
ground survey that they had ample
access to computers currently and
during their pre-college years. So
their relatively poor performance on
the tutorial and in the course can not
be attributed to insufficient comput-
er access. The significantly lower
SAT scores of these students, cou-
pled with lower accuracy/proficien-
cy scores, suggest that they entered
the course underprepared — in
math skills, verbal skills, and basic
programming skills, all of which
predict achievement. Hence, better
preparation in these skills before
minority students enter baccalaure-
ate CS students appears to be criti-
cal for success. 

Race and Gender Comparisons
Comparisons among African-

American males, white and Asian
(white/Asian) males, and white and
Asian females were made using
independent t-tests. Because there
were too few African-American

26 IEEE Technology and Society Magazine, Fall 2003

Male and female students differed as
to the types of topics and tasks they
experimented with, and on the
degree of experimentation.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 



females (4), no tests of significance
were conducted comparing African-
American females to other groups. 

White/Asian males differed sig-
nificantly from White/Asian
females in the number of runs of
correctly modified examples, with
males scoring higher (t(43) = 2.5).
This is consistent with the finding
reported previously — that men
overall had more runs of correctly
modified examples than did women
(t(62) = 2.94). Hence, men appar-
ently tried out their modified exam-
ple programs on more test cases
than did women. 

White/Asian males differed sig-
nificantly from African-American
males in all 3 measures of SAT
(higher math, t(45) = 3.2; verbal,
t(45) = 4.6; and total score t(45) =
4.6, for white/Asian males), and in
several measures of time, with
African-American males spending
more time overall on the tutorial
(t(45) = 3.9) and on most tutorial
chapters. 

Comparing white/Asian females
with African-American males, we
note similar differences with
respect to aptitude and time as with
white/Asian males and African-
American males. White/Asian
females had higher SAT verbal
scores (t(23) = 3.7) and spent less
time than African-American males
on several measures — e.g., total
time spent on the tutorial (t(19.4) =
2.8), time spent working on the
examples and practice exercises
only (excludes reading time; t(18)
= 3.0), and time spent on several
chapters. White/Asian females also
scored higher than African-Ameri-
can males on several accuracy/pro-
ficiency measures. For example,
white/Asian females had fewer
runs with errors (t(15.6) = 2.4) and
a higher percentage of correct com-
pilations (t(24.6) = 2.1). Hence, it
appears as though the race differ-

ence with respect to accuracy/profi-
ciency reported previously — in
which white/Asian students, over-
all, outperformed African-Ameri-
can students — was mainly due to
the high accuracy/proficiency
scores of white/Asian women,
since white/Asian and African-
American men did not differ signif-
icantly on this factor.

EARLY IDENTIFICATION
A tutorial such as the one used in

this study could serve as an instru-
ment to identify students early on
who are likely to succeed (or not) in
introductory courses that focus on
programming concepts and skills.
This information could be used by
instructors to determine which stu-
dents are likely to need extra help.
In conjunction with prior research,
this study also suggests what types
of interventions are likely to be
effective: exercises that promote
coding accuracy and proficiency,
and encourage experimentation and
reflection on the results of experi-
ments [15]. In future studies, we
will develop and assess interven-
tions that have these features, and
attempt to specify more precisely
what types of experimentation pro-
mote achievement in undergraduate
programming courses.

ACKNOWLEDGMENT
The authors appreciate the help-

ful comments of the anonymous
reviewers.

REFERENCES
[1] R. Cafolla, “Piagetian formal operations
and other cognitive correlates of achieve-
ment in computer programming,” J. Educa-
tional Technology Systems, vol. 16, no. 1, pp.
45-55, 1987.
[2] J.P. Charlton and P.E. Birkett, “Psycho-
logical characteristics of students taking pro-
gramming-oriented and applications-orient-
ed computing courses,” J. Educational
Computing Res., vol. 18, no. 2, pp. 163-182,
1998.
[3] C.A. Clement, D.M. Kurland, R. Mawby,

R., and R.D. Pea, “Analogical reasoning and
computer programming,” J. Educational
Computing Res., vol. 2, no. 4, pp. 473-86,
1986.
[4] K.A. Frenkel, “Women and computing,”
Commun. ACM, vol. 33, no. 11, pp. 34-45,
1990.
[5] L.S. Hornig, “Women in science and
engineering: Why so few?,” Technology Rev.,
vol. 87, no. 8, pp. 31-41, 1984.
[6] C.M. Jagacinski, W.K. LeBold, and G.
Salvendy, “Gender differences in persistence
in computer-related fields,” J. Educational
Computing Res., vol. 4, no. 2, pp. 185-202,
1988.
[7] Y.B. Kafai, Minds in Play: Computer
Game Designs as a Context for Children’s
Learning. Hillsdale, N.J.: Lawrence Erl-
baum, 1995.
[8] Y.B. Kafai, “Video game designs by chil-
dren: Consistency and variability of gender
differences,” in From Barbie to Mortal Kom-
bat: Gender and Computer Games, J. Cas-
sell and H. Jenkins, Eds. Boston, MA: M.I.T.
Press, 1998, pp. 90-114.
[9] D. Kagan, “Learning how to program or
use computers: A review of six applied stud-
ies,” Educational Technology, vol. 28, no. 3,
pp. 49-51, 1988.
[10] A.A. Koohang and D.M. Byrd, “A study
of selected variables and future study,”
Library and Information Science Res., vol. 9,
no. 1, pp. 214-288, 1987.
[11] J. Light, “Rethinking the digital divide,”
Harvard Educational Rev., vol. 71, no. 4, pp.
709-733, 2001.
[12] G.A. Marcoulides, “The relationship
between computer anxiety and computer
achievement,” J. Educational Computing
Res., vol. 4, no. 2, pp. 151-158, 1988.
[13] J. Margolis and A. Fisher, Unlocking the
Clubhouse: Women in Computing. M.I.T.
Press, 2001.
[14] National Science Foundation, Women,
Minorities, and Persons with Disabilities in
Science and Engineering: 2000. Arlington,
VA: NSF, NSF 00-327, 2000.
[15] M.M. Recker and P. Pirolli, “Student
strategies for learning from a computational
environment,” in Intelligent Tutoring Sys-
tems, C. Frasson, G. Gauthier, and G.I.
McCalla, Eds. Berlin, Germany: Springer-
Verlag, 1992, pp. 382-394.
[16] H.G. Taylor and L.C. Mounfield,
“Exploring the relationship between prior
computing experience and gender on success
in college computer science,” J. Educational
Computing Res., vol. 11, no. 4, pp. 291-306,
1994.
[17] S.E. Volet and I.M Styles, “Predictors of
study management and performance on a
first-year computer course: The significance
of students’ study goals and perceptions,” J.
Educational Computing Res., vol. 8, no. 4,
pp. 423-449, 1992.
[18] N.M. Webb, “Microcomputer learning
in small groups: Cognitive requirements and
group processes,” J. Educational Psycholo-
gy, vol. 76, pp. 1076-1088, 1984.

IEEE Technology and Society Magazine, Fall 2003 27
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 17,2010 at 21:43:44 UTC from IEEE Xplore.  Restrictions apply. 


