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Gender Bias in Sentiment Analysis1
 

Purpose: To test if there are biases in lexical sentiment analysis accuracy between reviews 

authored by males and females. 

Design: This paper uses datasets of TripAdvisor reviews of hotels and restaurants in the UK 

written by UK residents to contrast the accuracy of lexical sentiment analysis for males and 

females. 

Findings: Male sentiment is harder to detect because it is less explicit. There was no 

evidence that this problem could be solved by gender-specific lexical sentiment analysis. 

Research limitations: Only one lexical sentiment analysis algorithm was used. 

Practical implications: Care should be taken when drawing conclusions about gender 

differences from automatic sentiment analysis results. When comparing opinions for 

product aspects that appeal differently to men and women, female sentiments are likely to 

be overrepresented, biasing the results. 

Originality/value: This is the first evidence that lexical sentiment analysis is less able to 

detect the opinions of one gender than another. 

Keywords: Sentiment analysis; opinion mining; social media; online customer relations 

management. 

Introduction 

Sentiment analysis is the computer-based estimation of the sentiment expressed in text, 

such as its overall polarity, the range of emotions expressed, or the strengths of any 

opinions. It is widely used within marketing and customer relations management through 

the online monitoring of customer opinions towards products and services expressed in 

social media or review sites (Pekar & Ou, 2008; Schweidel & Moe, 2014; Tirunillai & Tellis, 

2014). Because of this, social media monitoring has been a standard business technique for 

over half a decade (Hofer-Shall, 2010). It takes advantage of the public availability of 

opinionated texts and fast, accurate software for detecting opinions. It can also be used to 

assess the impact of business interventions in the social web (Homburg, Ehm, & Artz, 2015). 

Sentiment analysis is typically used as a black box solution by marketers who see the 

results of the algorithm used to classify sentiment but are not interested in its details. For 

example, they may find that 45% of comments about product A are positive in comparison 

to 25% for product B, concluding that product A is more favourably viewed. This may be 

misleading if there is bias in the data or the sentiment analysis algorithm. For example, if 

product B’s admirers are older and less likely to post to the social web then their opinions 

would be underrepresented. The importance of representativeness is recognised for survey-

based research (e.g., Gronholdt, Martensen, & Kristensen, 2000) and it is equally important 

for big data analyses. Moreover, no automatic sentiment analysis system is perfect and it is 

possible that the sentiment in posts about product A are harder to detect, introducing a 

hidden (to the marketer) source of bias. This bias may occur if the positive aspects of 

product A are difficult to describe explicitly or if its admirers are from a group that express 

sentiment less directly, the case that is considered here for gender. For example, a 

sentiment-based comparison of smartphones (Kim, Dwivedi, Zhang, & Jeong, 2016) might 

give gender biased results if the system is better at identifying sentiment from one gender 
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than from another, and a system that detects sentiment to help select good ideas (Lee & 

Suh, 2016) might have a bias towards the opinions of one gender. 

On Twitter, some emotion-related terms, such as love and haha, are 

disproportionately used by one gender. The same is true for some other words and linguistic 

features, such as exclamation marks (Burger, Henderson, Kim, & Zarrella, 2011; Volkova & 

Yarowsky, 2014). More generally, there are gender differences in the extent to which 

sentiment is expressed in the social web (Bagić Babac & Podobnik, 2016; Rangel & Rosso, 

2016; Thelwall, Wilkinson, & Uppal, 2010; Volkova & Yoram, 2015), perhaps echoing 

common stylistic differences (e.g., Koppel, Argamon, & Shimoni, 2002; Thelwall, 2016). It is 

not clear whether the differences are at the sentiment level or the linguistic levels, however, 

because the differences could be stylistic or substantive. Thus, sentiment analysis 

algorithms may perform differently for males than for females. If true, then sentiment 

analysis is currently providing misleading information to businesses about products and 

services that are viewed differently by males and females. There is therefore an urgent need 

to test for the existence of gender biases in the accuracy of sentiment analysis algorithms. 

This paper assesses the influence of gender on the accuracy of sentiment analysis 

using case studies of TripAdvisor hotel and restaurant reviews, chosen as product types that 

are similarly important for both males and females, without obvious gender differences. 

There are two main sentiment analysis strategies (Liu, 2012; Pang & Lee, 2008). Machine 

learning techniques typically split reviews into collections of words or phrases and then train 

an algorithm to detect patterns of association with sentiment (e.g., Turney, 2002). In 

contrast, lexical algorithms exploit a list of sentiment bearing terms and apply a set of rules 

to deduce the sentiment of a text primarily from occurrences of these words (Taboada, 

Brooke, Tofiloski, Voll, & Stede, 2011). This paper uses the lexical approach as the harder 

test case because its limit to a set lexicon makes it less likely to be influenced by gender-

specific terms. There are many lexical sentiment analysis algorithms with different lexicons 

and combinations of linguistic rules. Some also use part of speech tagging for sentiment 

word sense disambiguation (Baccianella, Esuli, & Sebastiani, 2010) and to treat some parts 

of speech, such as adjectives, differently (Taboada, Brooke, Tofiloski, Voll, & Stede, 2011). 

The algorithm used here is SentiStrength (Thelwall, Buckley, Paltoglou, Cai, & Kappas, 2010), 

which is a widely used lexical algorithm and incorporates a machine learning element that 

can be used to adjust it to specific tasks, such as for gender-specific sentiment analysis (see 

below). 

This article also assesses whether it is possible to improve lexical sentiment analysis 

accuracy by incorporating gender information. This is a similar rationale to that of a gender-

aware word sense disambiguation program for blog posts (Mihalcea & Garimella, 2016). A 

previous study has indirectly incorporated author gender into subjectivity and sentiment 

polarity detection for Twitter in English, Spanish and Russian. Removing terms, such as 

weakness, that tend to have different polarities for males and females, was shown to 

improve machine learning accuracy for sentiment analyses of 2,000 tweets for each 

language (Volkova, Wilson, & Yarowsky, 2013). Since the Twitter corpora were unrestricted 

by topic, it is possible that some words were used by males for one topic but by females for 

another (e.g., dogfighting) so that the improved performance could be due to differing 

topics rather than methods of expressing sentiment. 
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Sentiment strength detection with SentiStrength 

The sentiment strength detection task is to detect both the overall sentiment polarity of a 

text and its strength, or to annotate it with a numerical rating. As mentioned above, a basic 

machine learning approach first converts texts into collections of constituent words and 

short phrases, known as features. Human sentiment classifications of these texts are then 

used to train a machine learning algorithm to understand which features associate with 

sentiment. For example, an algorithm might learn from the human classified examples that 

the bigram “we love” is a good indicator of strong positive sentiment. In contrast, a lexical 

sentiment analysis algorithm incorporates a lexicon of sentiment words with their typical 

sentiment strengths and polarities. When fed a new text, the program uses the presence of 

sentiment words in its lexicon to estimate the likely sentiment, with the aid of additional 

linguistic information and rules (Thelwall, Buckley, & Paltoglou, 2012). 

The lexical software SentiStrength has a lexicon of 2,846 sentiment words and word 

stems with human-annotated sentiment strengths and polarities on a scale of --5 (very 

strong negativity) to 5 (very strong positivity). The number 0 is not used and 1 and -1 

indicate the absence of positive and negative sentiment, respectively. The sentiment 

strength scores for the terms in the lexicon were initially assigned by a human coder but 

subsequently optimised using machine learning (see the methods section for relevant 

details) with training sets from various social web sites (e.g., Twitter, YouTube, BBC News 

discussions) and, finally, TripAdvisor (ignoring reviewer gender) to optimise the lexicon for 

detecting the strength of sentiment in TripAdvisor reviews (Appendix, Figure 4). 

SentiStrength allocates each sentence the highest score of any positive word and the 

highest score of any negative word (i.e., a positive sentiment score in the range 1 to 5, and a 

negative sentiment score in the range -1 to -5) and then adds the results to give an overall 

sentiment strength and polarity output in the range -4 to 4. Before adding the positive and 

negative scores, it applies linguistic rules (Thelwall, Buckley, & Paltoglou, 2012). For 

instance, the negation rule reverses the polarity of a term when preceded by a negator, 

such as not, don’t and wouldn’t. Similarly, preceding booster words (e.g., very, just) either 

strengthen or weaken the strength of the subsequent word. For example, the phrase, 

“Really wonderful food but boring show” scores +3 for wonderful, which is boosted to +4 by 

really. It also scores -2 for boring, giving a combined score of +2 on the -4 to +4 scale. 

Research questions 

The research questions are posed in general but will be assessed using two specific test 

cases: hotel reviews and restaurant reviews. The focus is on narrow topics, such as these, on 

the assumption that gender differences will be more substantial for broad topics due to 

gender differences in preferences for different aspects of the topics.  

1. Are there author gender differences in the accuracy of lexical sentiment strength 

detection on narrow topics? 

2. Can the accuracy of lexical sentiment detection for narrow topics be increased by 

optimising separately for male and female authors? 

Methods 

The research design was to gather a large collection of product reviews with associated 

ratings and author genders and then to assess and subsequently optimise for accuracy a 

sentiment analysis program on an appropriate subsample for (a) males, (b), females and (c) 



4 

 

all users. The SentiStrength software is appropriate for this because this is designed to 

detect sentiment strength rather than just polarity. It is lexical (with its own dictionary: 

Thelwall, Buckley, & Paltoglou, 2012) with machine learning features and this combination is 

needed to be able to optimise separately by gender and then manually interpret the results 

(i.e., the gender differences in the dictionaries). 

TripAdvisor reviews was chosen as the data source because contains many hotel and 

restaurant reviews and allows data harvesting. Its reviews seem to be mostly high quality 

and relatively spam-free. The UK TripAdvisor website www.tripadvisor.co.uk contains only 

reviews in English about UK locations. The UK was chosen rather than the USA or any other 

English-speaking nation because there are international differences in versions of English 

and patterns of informal use and so, other factors being equal, it is preferable to analyse 

cultural issues from countries that an author is familiar with. In this case, the use of the UK 

will help with error analysis and interpreting any gender difference results at the level of 

individual words. 

TripAdvisor provides a sitemap with an apparently comprehensive list of all pages on 

its UK site https://www.tripadvisor.co.uk/sitemap/2/en_UK/sitemap_en_UK_index.xml. This 

sitemap was downloaded on 6 February 2017 and its URLs extracted to form a complete list. 

From this list the pages with user reviews were selected using the URL filter 

*ShowUserReviews*. Since there were many pages, they were additionally filtered to 

England (e.g., excluding Scotland, Wales, and Northern Ireland) with the URL filter 

*_England.html to obtain a slightly more homogeneous set. This resulted in 13,234,039 user 

review page URLs. This list was partitioned into 20 equal sized files using a random number 

generator and one file was selected as the development set (for use prior to the main 

experiments) and another as the evaluation set. All these filtering stages were conducted 

using the free software Webometric Analyst. 

The www.tripadvisor.co.uk website allows crawling with its robots.txt file (Thelwall & 

Stuart, 2006) and the free web crawler SocSciBot was used to download the two random 

sets of England review URLs during February and March 2017 at a rate of one URL per 

second, obeying robots.txt commands. 

Once the downloading was complete, code was added to the free software Mozdeh 

to extract all user reviews from each downloaded page. For each review, the text, the 

author username, their self-declared geographic location and overall rating was extracted. 

The nature of the attraction (e.g., hotel, restaurant) and hotel star ratings were also 

extracted from each page. Although TripAdvisor does not enforce a standard method of 

geographic location on its users, inspection of the data showed that most seemed to declare 

a country or major town. UK-based reviewers were therefore identified on the basis that 

they mentioned the UK, a constituent country, or one of the ten largest cities. This may 

generate a small percentage of false matches (e.g., from London, Ontario) but overall 

produces a large and mostly reliable dataset. A manual examination of 1000 matches of the 

queries found no obvious false matches. For example, of the 165 people giving London as 

their location (i.e., the least reliable case), all except 29 also included the UK, United 

Kingdom or England and these 29 gave no additional location information and so could not 

be checked further (other than one including UK in her username). It seems likely that all of 

these were from the UK London. Birmingham is another city with a large overseas 

equivalent (Alabama) but all people from Birmingham either stated the UK or had reviewed 

a location close to the UK Birmingham and so were almost certainly from the UK. Thus, the 

overall geographic location error rate may be below 0.1%. Duplicate reviews were also 

http://www.tripadvisor.co.uk/
https://www.tripadvisor.co.uk/sitemap/2/en_UK/sitemap_en_UK_index.xml
http://www.tripadvisor.co.uk/
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removed at this stage. This could occur if the author accidentally posted twice or if the 

review appeared on multiple pages. 

Although users can declare their gender in TripAdvisor, this information is not 

displayed with their reviews but only in their profile page. Profiles were not downloaded 

because this would have added substantially to the TripAdvisor crawl with a small benefit. 

Instead, US census 1990 information was used listing the genders of the most popular 

10,000 first names in the country. The 4772 names in this list that had a gender orientation 

of at least 90% and at least four letters were selected as reliably indicating either male or 

female. Usernames were gendered by comparing the first name to these two lists for 

matches. Usernames that were single terms were split into two if using camel case (e.g., 

SarahSingh) and the first segment taken as the given name. Genders were not assigned to 

the 70% of reviewers that did not get a match from this process. 

Code was added to the free Windows version of SentiStrength to generate gender-

specific (using the methods above) and attraction-specific balanced subsets of the data (the 

Convert menu). TripAdvisor ratings are on a five-point decile scale (10, 20, 30, 40, 50) and 

these were converted to SentiStrength’s scale system (-4, -3, -2, -1, 0, 1, 2, 3, 4) as follows; 

(10 -> -4, 20 -> -2, 30 -> 0, 40 -> 2, 50 -> 4). This does not use four of the SentiStrength 

output values (-3, -1, 1, 3) and so SentiStrength gives slightly more fine-grained results than 

reviewers. 

The two largest genres were selected for analysis: hotels and restaurants. Hotels are 

given star ratings in TripAdvisor and homogeneous hotel subsets were built from the three 

most numerous ratings (2, 3 and 4 star). For each of the four sets, two random equal ratings 

samples were created, one for male reviewers and one for female reviewers. Here, an equal 

ratings random sample means that all five ratings (10, 20, 30, 40, 50) are equally 

represented. To achieve this, the number of reviews was calculated for each rating and all 

reviews selected for this. For the remaining four ratings, a random sample was drawn with 

the same sample size as the smallest set (all using the SentiStrength Convert menu). These 

data sets were then used to compare the accuracy of SentiStrength separately for male-

authored and female-authored reviews (Table 1). 

 

Table 1. Sample sizes of the data sets used. Datasets have equal numbers of ratings of 10, 

20, 30, 40, and 50. Each dataset has at most one review per TripAdvisor user (hence the 

Hotels – all category is not larger than the sum of the individual hotels category).   

Topic Male-authored reviews Female-authored reviews 

Hotels - 2.0 star 1695 1695 

Hotels - 3.0 star 6700 6700 

Hotels - 4.0 star 6215 6215 

Hotels - all 11900 11900 

Restaurant 21255 21255 

 

For the second research question, the hill climbing dictionary optimisation routine in the 

Java version of SentiStrength (Thelwall, Buckley, Paltoglou, Cai, & Kappas, 2010) was used to 

optimise the sentiment term weights for each single gender set. It selected each term in the 

sentiment dictionary at random and then assessed whether the accuracy of the 

classifications on the input set would be improved if the sentiment weight was increased or 

decreased, keeping changes that make an overall improvement and an individual 

improvement on at least two different texts. This process was repeated for all terms in the 
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dictionary until no changes had been made after a full round. This algorithm was used in 10-

fold cross-validation mode to estimate the performance change caused by the optimisation 

on each set individually. Since the optimisation algorithm includes an element of 

randomness for the order, 30 repetitions were used to generate 95% confidence intervals. 

After each training phase, the optimised algorithm was evaluated on both the hidden fold 

from the training gender and on the full set for the non-training gender. For example, for 

the female-authored restaurant reviews, the algorithm was trained 30x10=300 times, each 

using 90% of the female-authored restaurant reviews. It was also evaluated 300 times on 

the remaining 10% of the female-authored restaurant reviews and 100% of the male-

authored restaurant reviews (since they were not used for training). 

The performance of the algorithm was estimated using mean absolute deviation 

(MAD) scores. These give the average of the absolute differences between the user ratings 

and SentiStrength predictions. MAD is better than the traditional precision and recall 

formulae for scalar data. The primary analysis method is therefore to compare the MAD 

scores between the different versions of SentiStrength. 

Results 

The accuracy of the TripAdvisor variant of SentiStrength is statistically significantly lower for 

males than for females on all five datasets (Figure 1: higher bars for MM and FM than for 

MF and FF within each of the five sets). This gives strong evidence of gender bias, answering 

the first research question. In the largest case (Hotels 3.0) the difference in MAD is 0.09, or 

4.5% of the difference between two TripAdvisor ratings levels (e.g., 40 vs. 50), which is not 

substantial, however. 

Training on the same-gender data set only statistically improves accuracy for female-

authored Hotels-All reviews in comparison to training on the opposite gender (Figure 1: 

overlapping confidence intervals between MM and FM and between MF and FF within each 

of the five sets, except Hotels-All MF/FF). In the statistically significant case, the MAD 

increase is about 0.01, or 0.5% of the difference between two TripAdvisor ratings 

categories, which is minor. Given that statistically spurious results are more likely when 

multiple comparisons are performed and the same gender training is not always an 

improvement (irrespective of statistical significance) in the different tests, this gives a 

negative answer to the second research question: the results do not suggest that same 

gender training can improve lexical sentiment analysis accuracy, at least for SentiStrength 

and UK English TripAdvisor reviews of hotels and restaurants. 
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Figure 1. Mean absolute deviation (lower values indicate higher accuracy) for SentiStrength 

estimates of review sentiment on a scale of -4 to 4, compared to reviewer ratings for sample 

equalised collections of hotel and restaurant reviews, after sentiment term weight 

optimisation. In the legend, the first gender is the training set and the second letter is the 

evaluation set. Confidence intervals are wider for the same gender columns because the 

evaluation sets are smaller (10% rather than 100%). Non-overlapping confidence intervals 

indicate statistical significance at the 95% level and statistical significance is also possible for 

small overlaps. 

Reasons for gender differences 

There are different potential explanations for the higher accuracy for female-authored 

reviews. Male authored reviews might be more balanced, by attempting to be professional 

with both positive and negative points in all reviews. This would make the prediction of 

sentiment more difficult. Alternatively, males might use more sarcasm, figurative language 

or more obscure terminology than females, to inject either humour or a sense of 

professional competence into reviews. Since sentiment is difficult to detect in figurative 

language is difficult to detect, this would cause accuracy differences. 

To explore gender differences for individual ratings levels, male-authored reviews, 

were compared to female-authored reviews at each score level (Figures 2 and 3). For both 

genders and for both hotels and restaurants, SentiStrength substantially underestimated 

the number of negative reviews. Within these results, the female columns tend to be higher 

than the male columns for sentiment at either extreme (very positive or very negative) 

whereas the reverse tends to be true for milder sentiment. Given that SentiStrength detects 

linguistic expressions of sentiment, this is consistent with two different explanations: 

females using more explicit positive language than males, or avoiding negative terms in 

strongly positive reviews and positive terms in strongly negative reviews.  
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Figure 2. SentiStrength estimated sentiment of reviews (before machine learning) for the 

male and female authored reviews in the Hotels-All data set. The data sets are balanced so 

the correct scores for each gender would be identical column heights for all the male bars 

and all the female bars at each of the levels -4, -2, 0, 2, 4. 

 

 
Figure 3. As Figure 2 for the Restaurant data set. 

 

SentiStrength can fail to detect positive and negative expressions if they do not 

include any sentiment terms. This is the reason for the lower levels of extreme positive and 

negative sentiment. Examples of phrases in reviews of 50-rated hotels that implied strong 
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approval but that were not detected by the sentiment analysis algorithm include, “the main 

was out of this world”, “Will going back very soon”, “the view was unreal”, “staff were so 

informative”, “would go back time and time again”, “shocked by the variety”, “food and 

service were first class”, “so much more character”. Some reviews also had typos in the 

sentiment terms, preventing them from being detected. 

A word frequency analysis was used to identify the main differences between terms 

in male and female authored reviews with the highest and lowest ratings (50 and 10, 

corresponding to 4 and -4, respectively). For the highest rated hotel reviews, terms that 

occurred in a higher proportion of male-authored than female-authored 50-rated reviews 

were ranked using difference between proportions z values and the top 20 terms were 

manually examined for patterns. This was repeated for the lowest rated reviews, and again 

after switching gender roles and for the restaurant reviews (Table 2, 3).  

 

Table 2. Words that occurred disproportionately often in the 50-rated reviews of one 

gender in comparison to the other gender. The percentage of reviews containing the term 

for the majority and other gender is shown in brackets.   

Rank Hotels, female Restaurants, female Hotels, male Restaurants, male 

1 lovely (31%/17%) lovely (31%/16%) wife (9%/1%) wife (8%/1%) 

2 husband (7%/1%) husband (7%/1%) beer (6%/2%) beer (5%/2%) 

3 delicious (15%/6%) delicious (15%/8%) location (11%/7%) quality (10%/6%) 

4 amazing (14%/7%) definitely (17%/11%) building (4%/1%) excellent (25%/19%) 

5 beautiful (11%/6%) amazing (13%/8%) premier (3%/1%) good (35%/29%) 

6 we (59%/50%) beautiful (9%/5%) town (5%/3%) ale (3%/1%) 

7 loved (6%/3%) we (55%/47%) inn (4%/2%) girlfriend (1%/0%) 

8 our (34%/26%) boyfriend (1%/0%) peas (1%/0%) superb (6%/4%) 

9 was (66%/58%) fab (3%/1%) quality (9%/6%) class (3%/2%) 

10 so (30%/23%) so (28%/22%) haddock (1%/0%) well (23%/19%) 

11 mum (2%/0%) loved (6%/3%) business (3%/1%) pint (1%/0%) 

12 had (41%/34%) gorgeous (3%/1%) centre (5%/3%) in (57%/53%) 

13 children (5%/2%) love (7%/4%) odd (1%/0%) top (5%/4%) 

14 

recommend 

(22%/16%) 

recommend 

(20%/16%) nearby (3%/1%) business (2%/1%) 

15 fabulous (5%/2%) fabulous (4%/2%) 

importantly 

(1%/0%) of (61%/57%) 

16 love (6%/3%) friend (11%/8%) cheapest (1%/0%) standard (4%/3%) 

17 fab (3%/1%) were (39%/34%) budget (1%/0%) great (36%/32%) 

18 boyfriend (1%/0%) yummy (1%/0%) point (3%/1%) establishment (2%/1%) 

19 would (28%/22%) would (25%/21%) one (21%/17%) real (4%/3%) 

20 gorgeous (3%/1%) our (28%/24%) car (5%/3%) that (25%/22%) 
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Table 3. Words that occurred disproportionately often in the 10-rated reviews of one 

gender in comparison to the other gender. The percentage of reviews containing the term 

for the majority and other gender is shown in brackets.    

Rank Hotels, female Restaurants, female Hotels, male Restaurants, male 

1 we (67%/49%) husband (8%/1%) wife (14%/1%) wife (10%/1%) 

2 even (27%/12%) we (67%/56%) avoid (9%/2%) girlfriend (2%/0%) 

3 were (65%/48%) lovely (9%/4%) required (4%/0%) avoid (8%/5%) 

4 daughter (5%/0%) were (59%/50%) hear (5%/1%) poor (17%/13%) 

5 most (9%/2%) our (42%/33%) sleeping (4%/0%) beer (4%/2%) 

6 member (12%/4%) us (33%/26%) four (8%/2%) pint (2%/1%) 

7 shocking (5%/0%) boyfriend (2%/0%) are (33%/20%) is (47%/42%) 

8 second (9%/2%) didn't (20%/14%) front (11%/4%) quality (8%/6%) 

9 returning (7%/1%) was (84%/78%) apart (4%/1%) place (28%/25%) 

10 wasn't (14%/6%) rude (13%/9%) road (4%/1%) world (2%/1%) 

11 on (64%/51%) disappointed (11%/7%) pretty (4%/1%) best (7%/5%) 

12 happened (4%/0%) came (21%/15%) stare (3%/0%) simply (3%/2%) 

13 decent (4%/0%) so (44%/37%) cleaning (3%/0%) ale (1%/0%) 

14 ruined (4%/0%) couldn't (10%/7%) piece (8%/2%) worst (10%/8%) 

15 had (65%/52%) birthday (6%/4%) order (21%/11%) mate (1%/0%) 

16 us (36%/24%) had (60%/54%) per (5%/1%) you (34%/31%) 

17 declined (4%/0%) wasn't (12%/9%) pint (5%/1%) establishment (4%/3%) 

18 sheet (4%/0%) children (6%/4%) future (5%/1%) probably (4%/3%) 

19 tried (11%/4%) asked (24%/19%) arrive (6%/2%) adjacent (1%/0%) 

20 dessert (7%/1%) when (40%/34%) milk (4%/1%) low (2%/1%) 

 

The key patterns found in Table 2 and 3 are summarised below. 

 In hotel reviews with the highest ratings, women used more simple explicitly positive 

words. These included lovely (31% of female reviews, 17% of male reviews), delicious 

(15% of female reviews, 6% of male reviews), amazing (14% of female reviews, 7% of 

male reviews), beautiful (11% of female reviews, 6% of male reviews), loved (6% of 

female reviews, 3% of male reviews), fabulous (5% of female reviews, 2% of male 

reviews). There were no common explicitly positive words that were used more 

often by males. The closest examples were quality (9% of male reviews, 6% of female 

reviews) and cheapest (0.9% of male reviews, 0.1% of female reviews). Male reviews 

instead tended to use more common factual words than female reviews, such as 

beer (6% of male reviews, 2% of female reviews), location (11% of male reviews, 7% 

of female reviews), and building (4% of male reviews, 1% of female reviews). 

 In hotel reviews with the lowest ratings, women used more simple explicitly negative 

words. These included shocking (5% of female reviews, 0% of male reviews), and 

ruined (4% of female reviews, 6% of male reviews). There were no common explicitly 

negative words that were used more often by males. The closest example was avoid 

(9% of male reviews, 2% of female reviews). 

 In restaurant reviews with the highest ratings, women used more simple explicitly 

positive words. These included lovely (31% of female reviews, 16% of male reviews), 

delicious (15% of female reviews, 8% of male reviews), amazing (13% of female 

reviews, 8% of male reviews), beautiful (9% of female reviews, 5% of male reviews), 
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fab (3% of female reviews, 1% of male reviews), loved (6% of female reviews, 3% of 

male reviews), gorgeous (3% of female reviews, 1% of male reviews), love (7% of 

female reviews, 4% of male reviews), recommend (20% of female reviews, 16% of 

male reviews), fabulous (4% of female reviews, 2% of male reviews), yummy (1.3% of 

female reviews, 0.4% of male reviews). There were also several common explicitly 

positive words that were used more often by males. These included excellent (25% 

of male reviews, 19% of female reviews), good (35% of male reviews, 29% of female 

reviews), superb (6% of male reviews, 4% of female reviews), top (5% of male 

reviews, 4% of female reviews), great (36% of male reviews, 32% of female reviews). 

 In restaurant reviews with the lowest ratings, women used simple explicitly negative 

words more. These included rude (13% of female reviews, 9% of male reviews), and 

disappointed (11% of female reviews, 7% of male reviews), although they also used 

one common positive word, lovely (9% of female reviews, 4% of male reviews). 

Males also used other explicitly negative words more. These included poor (17% of 

male reviews, 13% of female reviews) and worst (10% of male reviews, 8% of female 

reviews), as well as avoid (8% of male reviews, 5% of female reviews), and one 

explicitly positive term, best (7% of male reviews, 5% of female reviews). 

From these results, there main reason for gender differences in accuracy seems to be the 

tendency for female reviewers to use common transparently positive words when awarding 

a high rating and, to a lesser extent, to use common transparently negative words when 

giving a low rating. 

Discussion 

The results are limited by using a single source for the data, the TripAdvisor website, and the 

dynamics of sentiment expression may differ in other contexts. There is likely to be an 

element of spam or paid reviews in TripAdvisor because of its commercial utility, which may 

have affected the results. Although the influence of spam should be minimised by restricting 

each dataset to at most one review for each reviewer, paid reviewers may have multiple 

TripAdvisor accounts. The star ratings of review sites are also problematic because they may 

be applied differently by reviewers (De Langhe, Fernbach, & Lichtenstein, 2016). The results 

apply only to lexical sentiment analysis and may not apply to sentiment analysis programs 

with different lexicons (e.g., Taboada, Brooke, Tofiloski, Voll, & Stede, 2011). The answers to 

the research questions might be different for non-lexical sentiment analysis algorithms 

exploiting machine learning to learn indirect expressions of sentiment that associated with 

strong sentiment. It is also possible that the findings primarily relate to sentiment strength 

and would not be replicated for polarity detection applications. This latter seems reasonably 

likely due importance of strong expressions of sentiment to explain the gender differences 

found. 

 The findings do not align with a previous discovery that machine learning based 

sentiment polarity detection could be improved if terms that had sentiment associations 

that varied by gender were removed (Volkova, Wilson, & Yarowsky, 2013). Although a 

logical implication from this is that sentiment analysis could be more accurate when trained 

on single-gender datasets, insufficient evidence was found for this on the TripAdvisor 

datasets. Thus, the current paper does add to the evidence for the value of gender-specific 

sentiment analysis. It is possible that it is useful for the machine learning approach but not 

for the lexical approach. 
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 In terms of the wider literature about emotions in the social web, the more frequent 

expression of positive sentiment by females found here confirms that females express 

positive sentiment more frequently in the social web (Thelwall, Wilkinson, & Uppal, 2010). 

The current paper deepens these findings with the discovery that this difference persists 

even when extended to balanced datasets in which males and females gave the same 

ratings to the products reviewed. Thus, the increased use of direct positive language by 

females is a communication style difference rather than a communication substance 

difference. 

Conclusions 

The results give evidence that lexical sentiment analysis algorithms have gender biases. 

They are likely to detect more strong positive and negative sentiment from females than 

from males. Thus, market researchers using social media monitoring software incorporating 

lexical sentiment analysis algorithms are likely to get misleading results when comparing 

male and female attitudes (e.g., the implicit assumption of equal accuracy for males and 

females in the separate sentiment-related scores for the two genders in Figure 9 of: Fuchs, 

Höpken, & Lexhagen, 2014). For example, a sentiment analysis of political tweets (e.g., Gul, 

Mahajan, Nisa, Shah, Jan, & Ahmad, 2016) might identify female concerns more readily than 

male concerns. Even when ignoring gender, the consumer sentiment information is likely to 

be misleading due to disproportionately highlighting traits that females are strongly positive 

or negative about.  This issue should not be exaggerated because the gender differences are 

not large but in contexts when small differences are important, gender bias may lead to 

incorrect marketing decisions. Although the findings are specific to sentiment strength 

detection and the SentiStrength software, those using other software and approaches 

should test for similar problems before relying on their results. When this is not practical, 

users should be particularly sceptical of small sentiment differences concerning topics of 

more interest to women. Other applications of sentiment analysis (e.g., Skowron, Rank, 

Theunis, & Sienkiewicz, 2011; Weber, Ukkonen, & Gionis, 2012) should also consider gender 

limitations. 

 From a big data perspective, the conclusions add to the evidence that big data 

analyses in the social sciences, which often employ sentiment analysis, can give biased or 

misleading results. Although the potential for bias in big data analyses has previously been 

noted (Bollier, 2010; Boyd & Crawford, 2012; Hofacker, Malthouse, & Sultan, 2016; Tufekci, 

2014), the source found here is more subtle than demographic differences in the people 

that express opinions online and is not due to analyst bias but is a hidden consequence of 

gender differences in communication styles. Gender bias may go beyond this if customer 

relations personnel are more easily able to identify dissatisfied female customers because 

their opinions are expressed more directly (e.g., see: Ma, Sun, & Kekre, 2015).  

 At the level of software, one way to circumvent the problem of gender bias in 

sentiment analysis would be to calibrate programs on a sample of accurate data and then 

apply a modifying factor to one of the genders to compensate (following the example of 

adjustment strategies for political polls: Wang, Rothschild, Goel, & Gelman, 2015). For 

example, if male top ratings were 10% lower than female ratings on an accurate sample 

then the top rating results for males on other data could be compensated by multiplying 

them by 10/9. 

 In terms of the wider issue of the role of gender in communication, the results 

suggest a small tendency for females to use more direct language to express the same 
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sentiment as males. Whilst this is not surprising, it is a novel source of evidence that this 

difference operates at the level of communication rather than other factors, such as outlook 

on life.  
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Appendix 

 

 
Figure 4. An expanded version of Figure 1, including the SentiStrength scores before overall 

optimisation on TripAdvisor data. 

 

 




