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and Body Fat Distribution in a Healthy Population

with Central Obesity: Towards Metabolomics Diagnostics

Ewa Szymańska,1,2* Jildau Bouwman,1,3* Katrin Strassburg,1,4 Jacques Vervoort,1,5 Antti J. Kangas,6

Pasi Soininen,6,7 Mika Ala-Korpela,6–8 Johan Westerhuis,1,2 John P.M. van Duynhoven,1,9,10 David J. Mela,10

Ian A. Macdonald,11 Rob J. Vreeken,1,4 Age K. Smilde,1,2 and Doris M. Jacobs1,10

Abstract

Obesity is a risk factor for cardiovascular diseases and type 2 diabetes especially when the fat is accumulated to
central depots. Novel biomarkers are crucial to develop diagnostics for obesity and related metabolic disorders.
We evaluated the associations between metabolite profiles (136 lipid components, 12 lipoprotein subclasses, 17
low-molecular-weight metabolites, 12 clinical markers) and 28 phenotype parameters (including different body
fat distribution parameters such as android (A), gynoid (G), abdominal visceral (VAT), subcutaneous (SAT) fat)
in 215 plasma/serum samples from healthy overweight men (n= 32) and women (n= 83) with central obesity.
(Partial) correlation analysis and partial least squares (PLS) regression analysis showed that only specific me-
tabolites were associated to A:G ratio, VAT, and SAT, respectively. These association patterns were gender
dependent. For example, insulin, cholesterol, VLDL, and certain triacylglycerols (TG 54:1-3) correlated to VAT in
women, while in men VAT was associated with TG 50:1-5, TG 55:1, phosphatidylcholine (PC 32:0), and VLDL
((X)L). Moreover, multiple regression analysis revealed that waist circumference and total fat were sufficient to
predict VAT and SAT in women. In contrast, only VAT but not SAT could be predicted in men and only when
plasma metabolites were included, with PC 32:0 being most strongly associated with VAT. These findings
collectively highlight the potential of metabolomics in obesity and that gender differences need to be taken into
account for novel biomarker and diagnostic discovery for obesity and metabolic disorders.

Introduction

T
he accumulation of additional fat in central and
intra-abdominal depots increases the risk of cardiovas-

cular disease (CVD) and type 2 diabetes mellitus. However,
not all overweight/obese individuals develop cardiovascular
or metabolic diseases. A substantial portion of overweight/
obese subjects are without any of the metabolic abnormalities
associated with insulin resistance, while insulin resistance

and associated metabolic abnormalities are not uncommon
in normal-weight subjects (Reaven, 2011). Much effort has
been made to relate susceptibility to CVD to clinical mea-
sures of adiposity (Wormser et al., 2011). The difficulty in
finding correlations between fat distribution and CVDmay be
rooted in the uncertainty that people with a high risk profile
develop disease, in the heterogeneity of the disease, and in the
diverse nature of its association with body fat distributions
(BFDs).
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Gender differences in body fat distributions are apparent
and may explain differences in the prevalence of CVD be-
tweenmen andwomen. In general, men accumulate excessive
fat in the abdominal region, whereas women are more sus-
ceptible to the accumulation of fat in the gynoid (gluteo-
femoral) region. Although increase in gynoid adipose tissue
also correlates to CVD risk in obese women (mainly due to the
general increase in weight), high storage of fat in the gynoid
region relative to total fat is negatively related to CVD risk
(Wiklund et al., 2008). Excessive accumulation of fat in the
abdominal region has strongly been associated with meta-
bolic alterations such as disturbed plasma lipoprotein pro-
files, hyperinsulinaemia, insulin resistance, and glucose
intolerance (Lemieux et al., 1994).

The adipose tissue in the abdominal region can be further
divided into intra-abdominal (visceral) and subcutaneous fat,
which are dissimilar in more than just their localization. For
example, excess visceral fat accumulation, in contrast to
subcutaneous fat accumulation, appears to be the main
component of abdominal obesity and has been suggested to
be an important correlate of gender difference in CVD risk
(Lemieux et al., 1994).

Numerous studies have demonstrated that specific re-
gional BFD parameters are clearly associated with metabolic
complications (Despres et al., 1990;Williams, 2004). However,
these evaluations were generally limited to a number of
relevant blood biomarkers such as triacylglycerols (TG), high-
density lipoprotein (HDL) cholesterol, low-density lipopro-
tein (LDL) cholesterol, very-low-density lipoprotein (VLDL)
cholesterol, insulin, and glucose. The armory of metabolomics
technology available nowadays offers a broader view on
metabolism. For instance, lipidomics provides detailed in-
formation on more than 90 lipid components in plasma and
has been demonstrated to be useful in identifying lipid com-
ponents that are linked to metabolic and cardiovascular dis-
orders (de Mello et al., 2009; Graessler et al., 2009;
Quehenberger and Dennis, 2011). Recently, untargeted me-
tabolite profiling using ultra performance liquid chromatog-
raphy and Q-TOF mass spectrometry (UPLC-Q-TOF MS) has
identified three lysophosphatidylcholines (LPC) as potential
plasma markers and confirmed eight known metabolites for
overweight/obesity in men (Kim et al., 2010). Moreover, li-
poprotein subclasses and particles have been considered to
play a critical role in the assessment of coronary heart disease
(Ala-Korpela, 2008; Despres et al., 1990; Superko, 2001).
Central obesity, as measured by waist-to-hip ratio, has been
shown to be associated with modifications in lipoprotein
distribution and composition indicative of CVD (James et al.,
1997). In another study, the visceral fat area was positively
correlated with certain VLDL and LDL subclasses and nega-
tively with large and medium HDL subclasses in male obese
subjects (Okazaki et al., 2005). From the current evidence it is
apparent that an in-depth view of metabolism will help to
describe relationships to phenotypic parameters in more de-
tail and to better understand their underlying metabolic
processes.

In the current study we systematically investigated rela-
tionships betweenmultiple blood parameters and phenotypic
characteristics (including body fat distribution parameters)
among 215 samples from healthy overweight male (n = 32)
and female (n = 83) individuals (including one or two samples
per subject). In total, 177 metabolites were measured in blood

using lipidomics (parameters (p) = 136), lipoprotein sub-
class profiling (p = 12), NMR-based low-molecular-weight-
metabolite (LMWM) profiling (p = 17), and clinical chemistry
(p = 12). The phenotypes were described by typical pheno-
typic parameters and diverse BFD parameters asmeasured by
magnetic resonance imaging (MRI) (intra-abdominal and
subcutaneous fat) and dual-energy X-ray absorptiometry
(DEXA) (android and gynoid fat). We calculated (partial)
correlations between single metabolites and the different BFD
parameters in order to estimate the importance of each me-
tabolite with respect to a certain BFD parameter. Considering
that a combination of certain metabolites rather than a single
metabolite may be linked to a physiological endpoint, we also
identified sets of metabolites that are needed to describe best a
specific BFD parameter. In addition, we estimated the added
value of metabolomics analysis in the presence of phenotypic
and clinical chemistry data. Therefore, we quantified the in-
cremental gain in the prediction of the certain fat distribution
parameters with different measures from anthropometry,
clinical chemistry, and metabolomics analysis.

Materials and Methods

Subjects

Study subjects were 83 women and 32menwith abdominal
obesity, waist circumference of over 80 cm for women or
94 cm for men, age 18–55 years, and only pre-menopausal
women. Apart from the increased waist circumference and
overweight or obese status, they were apparently healthy (no
known cardiovascular, respiratory, neurological, or metabolic
disease) and nonsmoking. Although currently healthy, many
subjects had evidence of elevated cardiovascular risk: 14% of
the women and 48% of the men would be classified with
metabolic syndrome (MetS) according to inclusion criteria of
World Health Organization (WHO). Subjects were not taking
any medications, did not follow any weight loss or medically
prescribed diet, were not suffering from renal and/or liver
disease, and did not have an abnormal lipid profile at the
screening visit. They participated in a double-blinded, ran-
domized, parallel nutritional intervention trial that was
conducted at the University of Nottingham. The experimen-
tal protocol allowing for metabolomics analysis was ap-
proved by the University of Nottingham Medical School
Ethics Committee. In this study, subjects consumed twice a
day either a drink (250mL) containing a catechin-enriched
green tea extract (daily dose: 600mg) or a green tea flavored
placebo drink (without any of the active ingredients) over
12 weeks.

Blood collection

Blood samples were taken after an overnight fasting period
at baseline (start of the experiment) and after 12 weeks of
intervention from an arterialized venous cannula. Blood
samples were placed in EDTA-treated or plain tubes, centri-
fuged to yield plasma or serum, and stored at - 80�C until
analysis. In total, 166 and 64 blood samples from women and
men, respectively, were collected and analyzed.

Phenotype parameters

The BMI (weight/height2) was calculated from measured
body weight and height. Six circumferences were measured,
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including upper arm, waist, hip, proximal thigh, middle
thigh, and distal thigh. The waist/hip ratio was calculated
from the waist and hip circumferences. The total body fat
(based on estimated body density) and five regional measures
(biceps, triceps, subscapular, suprailiac, and thigh) were de-
rived from skinfold measurement (Durnin and Womersley,
1974). The lean body mass (LBM) was calculated by using the
following equation: LBM¼weight � bodyfat)=100. The total
body, android, and gynoid fat contents were measured by
dual energy X-ray absorptiometry (DEXA) (Kiebzak et al.,
2000) and the android/gynoid ratio was calculated. The vis-
ceral (VAT) and subcutaneous (SAT) fat content were deter-
mined by magnetic resonance imaging (MRI) of 16 transaxial
scans reaching at the fourth and fifth lumbar interspace (Hu
et al., 2011). Basal systolic blood pressure (SBP), diastolic
blood pressure (DBP), and heart rate (HR) were measured
twice (with a 2-minute interval) using an automated BP-
monitor after a 10-minute resting period in a sitting position.

Clinical parameters

Fasted blood samples were analyzed for glucose (YSI 2300
analyzer; YSI Inc, Yellow Springs, Ohio), free fatty acids (FFA)
(NEFA HR kit; Wako Chemicals, Neuss, Germany), glycerol
(Sigma kit F6428; Sigma-Aldrich, St Louis, MO, USA), b-
hydroxybutyrate (Williamson et al., 1974), insulin (Siemens
TKINX radioimmunoassay kit; Siemens, Erlangen, Germany),
creatinine, triacylglycerols (total TG), high-density lipopro-
tein (HDL) cholesterol, low-density lipoprotein (LDL) cho-
lesterol, total cholesterol (Olympus AU automated analyzer;
Olympus UK Ltd. Southall, UK), epinephrine, and norepi-
nephrine (Forster andMacDonald, 1999). The total cholesterol/
HDL cholesterol ratios were calculated. Insulin resistance (IR)
was calculated by the homeostasis model assessment (HOMA)
using the following equation: IR= [fasting insulin (lLU/mL)
x fasting glucose (mmol/L)]/22.5 (Matthews et al., 1985)).

NMR-based metabolite profiling

NMR samples (3-mm tubes) were prepared by adding
100 lL phosphate buffer solution [0.1M, NaH2PO4/Na2H-
PO4, pH 7,4 containing 4mM3-(trimethylsilyl)propionic acid-
d4 sodium salt (TSP), 1lL sodium azide (4%), and 20 lL
deuterium oxide (D2O)], and 100 lLD2O to 100lL serum. The
buffer allocation and subsequent serum mixing was per-
formed manually in a gentle fashion.

One-dimensional 1H NMR spectra were acquired on a
Bruker Avance III 600 NMR spectrometer operating at
600.13MHz and equipped with a cryoprobe and a sample
changer (Bruker BioSpin GmbH, Germany) for sample de-
livery. For the lipoprotein (LIPO) profiles, a ‘noesygppr1d’
pulse sequence was used with a mixing time of 10 msec to
suppress the water peak. The acquisition time was 2.7 sec and
the relaxation delay 4.0 sec. The spectra were acquired with 4
dummy scans, 64 transients and a sweep width of 18028Hz.
For the low-molecular weight metabolites (LMWM) profiles,
a cpmg pulse sequence with water suppression was used to
suppress water and most of the broad macromolecule and
lipoprotein lipid signals. A 38.4 msec T2-filter with a fixed
echo delay of 300 lsec was applied to minimize diffusion and
J-modulation effects. The acquisition time was 3.3 sec and the
relaxation delay 4.0 sec. The spectra were acquired with
4 dummy scans, 64 transients, and a sweepwidth of 12019Hz.

Samples of the same volunteer were measured in a random-
ized manner. Both spectra were acquired at a temperature of
310 K and with 65536 data points. The temperature was
equilibrated for 5min before data acquisition. The 90� pulse
was calibrated automatically for each sample. A constant re-
ceiver gain of 57 was used for all samples.

The spectra were automatically corrected for phase and
baseline distortions using Topspin 1.3 software (Bruker
Analytik Rheinstetten, Germany). Zero-filling and an expo-
nential window function with a line-broadening factor of
1.0Hz were applied to the free induction decay (FID) prior to
Fourier transformation. The spectra were referenced to TSP
(rCH3 = 0 ppm). Total lipids in 12 lipoprotein subclasses were
quantified using a calibrated regression model (Ala-Korpela,
2008; Kettunen et al., 2012; Soininen et al., 2009; van den
Berg et al., 2009).The subclasses were defined via high-
performance liquid chromatography (Okazaki et al., 2005)
and are as follows: very large and large VLDL (average par-
ticle diameter 58.8 nm, (X)L-VLDL) medium VLDL (44.5 nm,
M-VLDL), small VLDL (36.8 nm, S-VLDL), very small VLDL
(31.3 nm, XS-VLDL), IDL (28.6 nm), large LDL (25.5 nm, L-
LDL), medium LDL (23.0 nm,M-LDL), small LDL (18.7 nm, S-
LDL), very large HDL (14.3 nm, VL-HDL), large HDL
(12.1 nm, L-HDL), medium HDL (10.9 nm, M-HDL), and
small HDL (8.7 nm, S-HDL).

13 LMWM (i.e., glucose, valine, isoleucine, leucine, alanine,
tyrosine, phenylalanine, histidine, 3-hydroxybutyrate, lactate,
acetoacetate, acetate, and creatinine) were quantified from the
LMWM spectra using lineshape fitting analysis with the
PERCH NMR software platform (PERCH Solution Ltd.,
Kuopio, Finland) (Mierisova and Ala-Korpela 2001; Soininen
et al., 2005).

Lipid profile

The UPLC-MS Lipidome Platformwas developed, validated,
and applied in this study at theDemonstration andCompetition
Laboratory (DCL) of the Netherlands Metabolomics Centre, si-
tuated at Leiden University in The Netherlands. This lipidome
platform was based on the protocol given by Hu et al., (2008)
and Castro-Perez et al., (2011) and was described in detail in the
previous study by Jansen et al., (2011) as well as in Supple-
mentary Box S1. (See Supplementary Box S1 at www
.liebertpub.com/omi). With this platform, 136 lipids species
were measured in plasma samples. They are cholesterol esters
(CE), di- and triacylglycerols (DG and TG), lysophosphati-
dylethanolamines (LPE), phosphatidylethanolamines (PE), ly-
sophosphatidylcholines (LPC), phosphatidylcholines (PC), and
sphingomyelins (SM). These groups also include ether lipids
[i.e., plasmalogens (PE-O, LPE-O, PC-O, LPC-O)]. A complete list
of the detected metabolites is given in Supplementary Table S1.

Data sets

All phenotype parameters and metabolites were collected
in two data sets: phenotype data set and metabolic data set.
The phenotype data set contained 28 phenotype parameters in
an order listed in Supplementary Table S1. Themetabolic data
set contained 177 metabolites: 136 lipids, 12 lipoproteins
subclasses, 17 low-molecular weight metabolites, and 12
clinical parameters in an order also listed in Supplementary
Table S1. For 215 samples (out of analyzed 230, 94%), all
data including phenotype parameters, clinical parameters,

654 SZYMAŃSKA ET AL.



NMR-based metabolite profiles, lipids profiles were available
and only those are included in statistical analysis. For 15
samples (out of analyzed 230, 6%), a complete data set was not
available due to problemswith data acquisition or processing.
The data sets contained 157 samples from 83 women and 58
samples from 32 men. All statistical analysis was performed
on nontransformed data, because log- or square-root trans-
formation did not affect the current results.

Data analysis strategy

Our data analysis strategy (Fig. 1) pursued two main goals,
namely (i) to determine robust correlations of metabolites

with BFD, (ii) to assess the added value of metabolomics
analysis in describing BFD. Initially, an exploratory analysis
of phenotype and metabolite data sets was performed where
main trends in each data set, and associations between two
data sets and gender differences were studied. Next, due to
observed gender differences, data sets were divided by gen-
der and used in extensive analysis of associations of BFD
parameters and metabolites separately for women and men.
Because of the different size of the data sets available for
women (n = 157) and men (n = 58), not only correlations but
also their statistical significance were taken into account when
comparing the associations between women and men. Ana-
lysis of associations was composed of three types of analyses:

FIG. 1. Data analysis strategy.
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analysis of bivariate associations, analysis of multivariate
associations, and multiple regression analysis including dif-
ferent sets of phenotype and metabolic variables. Bivariate
associations were combined with multivariate associations
into association patterns to determine the best set of metab-
olites for each BFD parameter. Bivariate associations inde-
pendent on other phenotype parameters were studied to
select associations that are specific only for a given BFD pa-
rameter. Finally, the added value of metabolomics analysis
was assessed by performingmultiple regression analysis with
variable selection on several data sets encompassing different
groups of variables, such as phenotype parameters, clinical
markers, and metabolites. The best set of variables for each
BFD parameter was evaluated on an independent set of
samples (these were kept aside) and used to assess the
added value of metabolomics analysis in describing each BFD
parameter.

Statistical analyses were performed in the Matlab 2010a
(The Mathworks Inc., Natick, MA, USA) using Statistics
Toolbox (The Mathworks Inc.) and in-house written routines,
partly based on the PLS Toolbox (Eigenvector Research,
USA). Permutation tests have been performed on the LISA-
SARA Dutch super-computer.

Exploratory analysis and gender differences

Principal component analysis (PCA) was performed sepa-
rately on the phenotype data set and metabolic data set in
order to identify major trends in each. Data sets were auto-
scaled before PCA analysis (Fig. 2A and 2B). The resulting
score plots were color coded according to gender. Canonical
correlation analysis (CCA) was performed on PCA scores to
examine the link between the two data sets (Fig. 2C). (Massart
et al., 1997; van den Berg et al., 2009). PCA scores from the 4
(phenotype data set) and 10 (metabolic data set) first PC
components were used in this analysis. Results of the CCA
analysis were validated according to procedure presented by
van den Berg et al., 2009.

Furthermore, gender differences in the levels of physio-
logical parameters and metabolites were assessed by com-
parison of basic statistical parameters (mean, standard

deviation (SD), median, minimum, and maximum). Radar
plots were used to visualize gender differences in parameters
(Fig. 3). The median for men was used as the reference value
(Szymanska et al., 2010). Mann-Whitney tests were used to
test whether the gender differences were statistically signifi-
cant at a < 0.05, corrected for multiple comparisons with False
Discovery Rate (FDR) by Benjamini-Hochberg at a signifi-
cance threshold q < 0.05.

Correlations with BFD: (Independent) bivariate

associations

Spearman correlation coefficients were calculated to assess
the bivariate associations of certain BFD parameters and all
metabolites separately for women and men. The BFD pa-
rameters included android fat (A), gynoid fat (G), A:G ratio,
VAT, SAT, waist circumference (waist), and lean body mass
(LBM). By this analysis, an overview of all associations of
those BFD parameters was obtained. Additionally, in order to
identify associations that were independent on other pheno-
type parameters, partial correlations were calculated also
with Spearman correlation coefficients. In this analysis, the
bivariate associations of A:G ratio, visceral fat, and subcuta-
neous fat were adjusted by one of selected phenotype pa-
rameters (possible covariate) at a time (Fig. 1). Phenotype
parameters used for adjustment were: age, diastolic blood
pressure (DBP), heart rate (HR), total fat, lean body mass
(LBM), waist circumference, A:G ratio (for associations of
VAT and subcutaneous fat), VAT (for associations of A:G
ratio and SAT), and SAT (for associations of A:G ratio and
visceral fat).

The statistical significance ( p value) of all obtained Spear-
man correlation coefficients was assessed by both large-
sample approximations and 2000 permutations tests (Fuji-
koshi et al., 2010; van den Berg et al., 2009). The significance of
bivariate associations ( p values) is dependent on data set size,
so usually lower for men (n= 58) than women (n= 157) as
given in Supplementary Table S2. FDR correction was per-
formed per BFD parameter (i.e., for 177 p-values of correla-
tions between a BFD parameter and 177 metabolites/clinical
parameters). In general, all bivariate associations with an

−20 −15 −10 −5 0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

P
C

2
(1

3
.2

7
%

)

PC1(25.74%)

PCA of Metabolic dataset ALL Samples

 

 

Men
Women

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

P
C

2
(2

6
.4

2
%

)

PC1(34.90%)

PCA of Phenotype dataset ALL Samples

 

 

Men
Women

−8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5

6

Canonical variate Phenotype

C
a
n
o
n
ic

a
l 
v
a
ri
a
te

 M
e
ta

b
o
lic

Canonical variate 1, Association 0.8537

 

 

Women
Men

A B C

FIG. 2. Principal component analysis and canonical correlation analysis of metabolic and phenotype data set. (A) Score plot
of PCA analysis of metabolic data set. (B) Score plot of PCA analysis of phenotypic data set. (C) Score plot of Canonical
correlation analysis for Canonical Variate 1 with association equal 0.85.

656 SZYMAŃSKA ET AL.



absolute Spearman correlation coefficient higher than 0.22 (for
women) and 0.38 (for men) were statistically valid after FDR
correction.

Correlations with BFD: Association patterns

Partial least squares (PLS) regression analysis was used to
identify associations of specific BFD parameters with a

metabolic data set (all metabolites at once) (Fig. 1). The BFD
parameters (selected from phenotype data set for this analy-
sis) were A:G ratio, VAT, and SAT. All metabolites (p = 177)
were included. The analysis was run separately for women
and men and with a double-cross validation scheme (7-fold
single cross validation and 8-fold double cross validation),
including 5-step variable selection (van Velzen et al., 2008).
Root mean square error of cross validation (RMSECV) was

FIG. 3. Radar plots of median levels of selected phenotypic and metabolic variables. (A) Selected phenotype variables; (B)
selected lipids; (C) selected lipoproteins; and (D) selected clinical parameters. *Statistically significant gender difference.
Radar plots of all variables are presented in Supplementary Fig. S1.

FIG. 4. Gender-dependent association patterns of BFD parameters; (A) A:G ratio in women; (B) A:G ratio in men; (C) intra-
abdominal fat (VAT) in women; (D) VAT in men; (E) subcutaneous fat (SAT) in women; (F) SAT in men. Each association
pattern is composed of 177 markers representing metabolic variables: orange squares, clinical parameters, green crosses, low
molecular weight metabolites, blue circles, lipid metabolites, and green triangles, lipoproteins. Strength of single association of
each metabolic variable with phenotype parameter is presented on horizontal axis and expressed as value of Spearman
correlation coefficient. The significance of contribution of each metabolic variable to multivariate association of phenotype
parameter with all metabolites simultaneously is presented on vertical axis and expressed as significance of contribution to
multivariate association based on rank products in PLS regression models. Regions of plots marked a–f contain metabolic
variables with similar associations with phenotype parameter and are used in interpretation. For clarity of the figures, only
the most important metabolic variables are labeled.

‰
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Table 1. Correlations Between BFD Parameters and Metabolic Variables

Women A G A:G Ratio VAT SAT Waist LBM

LPC O-16:1 -adhtlwr
LPC 18:2 -adh -ah -ah
LPC 22:6 -ah -adh
PC 32: (1:2) + ah
PC O-34:1 -atr
PC 34:4 + adht
PC O-36:3 -a --ah -adhtr -adht -adh
PC 36:3 + adht
PC 38:3 ++ adh + adh + ad
SM d18:1/16:1 + ahr
DG 36:3 + adh + adh + adhts
TG 44:(0:2) + adhtw
TG 46:(1:2) + adhtls + aht
TG 48:(0:3) ++ adht + ht + adht
TG 48:4 + ad + adht + adht
TG 50:1 ++ adh
TG 50:(2:3) + adh ++ adht + adhtl + ah ++ adht + ah
TG 50:4 + adh ++ adht + adhtl + adht
TG 50:5 + adhtls + adhtl + adht
TG 51:1 + adhtls
TG 51:3 ++ adht + adht
TG 52:(2:3) + adh ++ adhtls ++ ht ++ adht + adh
TG 52:1, TG 53:2 + adhtls + ht
TG 54:(1:4) ++ adhtls + adht + adht + ah
TG 54:(5:7) + adht ++ adht + adht
TG 55:1, TG 56:(6:7, 1:2) + adht + adhtls + adhts
TG 56:5 + adht ++ adht + adh + dts
TG 58:3 + adh ++ adh + adh ++ adht + ah
TG 58:2 + adhtl
TG 59:2 + adht
VLDL(XL-S) ++ adht ++ adhtls ++ adhtr + adh ++ adht ++ ah
VLDL (XS) + adh + ah + adht + adh + adht + ah
HDL (XL-L) -ah -adh --ah -adh
isoleucine + ah ++ adhtls + adtls ++ adht
valine + a
TOTAL TAG ++ adht ++ adhtls ++ adh ++ adhts
Chol:HDL ratio ++ adhr + adht + adht + ah
Insulin ++ adht ++ adhts + adh ++ adhts ++ adhtrsv
HOMA-IR + adht ++ adht + adh ++ adhtsv ++ adht

Men A G A:G Ratio VAT SAT Waist LBM

CholE 22:6 + adhtlwsv
LPC 16:0, O-16:1 -adhlr
LPC 16:1 + ahtlwrs
LPC 18:(0:2) --adhtlrsv -adhtlrsv
LPC 20:1 -adhtrsv
LPC 20:4 -adhwrsv
LPC 20:5 -adhrv
LPE 18:0 -dhlwv
PC 32:0 ++ adhtwrs
PC 32:(1:2) + adhtlwsv
PC 34:0 + adhtlwsv -adhtrsv
PC O-34:2 + hwv --adhtlwsv
PC O-34:3 --adhtlwsrv
PC 36:6 + adhtlwsv
PC O-36:5 + adhtlwsv --adhtlwsv
PC O-36:(2:3) - adhtlwsv -ars
PC 38:3 + adhwrsv + dhlsv
PC 38:7 -dhrv
PC 40:8 -adhlrsv
PE O-36:5 + dhv + adhrv

(continued)
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used as a diagnostic statistic to assess model quality as well as
to assess its statistical significance in comparison with the
results of 3000 permutation tests run for each model. Con-
tribution of each metabolite to the obtained model was eval-
uated on the basis of its rank product and its statistical
significance ( p value) by relating it to rank products obtained
by 3000 permutation tests run for this model.

To determine the best set of metabolites that is associated to
A:G ratio, VAT, and SAT, respectively, the p values from PLS
regression analysis were plotted against the Spearman cor-
relation coefficients from bivariate associations (Fig. 4). Each
of these association patterns is composed of 177 metabolites.
For clarity of Figure 4, not all metabolites are labeled. (How-
ever, all metabolites with absolute values of Spearman cor-
relation coefficients higher than 0.3 are listed in Table 1.) In
each plot of Figure 4, six regions (labeled ‘‘a–f’’) can be dis-
tinguished. Region ‘‘a’’ is comprised of metabolites with
strong bivariate correlations (absolute value of Spearman
correlation coefficient higher than 0.4) and statistically sig-
nificant contribution to multivariate association (significant at
p < 0.05). This group of metabolites gains in importance when

the high order interaction between all metabolites is included
and thus belongs to the optimal set of metabolites related to
this BFD parameter. In contrast, the region ‘‘b’’ is comprised of
metabolites with strong bivariate correlations but an insig-
nificant contribution to multivariate associations. Strong bi-
variate associations of these metabolites with phenotype
parameter lose relevance when other variables are taken into
consideration, and thus provide the same (redundant) infor-
mation about the phenotype parameter. The regions ‘‘c’’ and
‘‘e’’ are comprised of metabolites with weak or very weak
bivariate correlations with phenotype parameters, but gain in
importance when multivariate associations are taken into
account, meaning that they only emerge when interactions
with other metabolites are present. Metabolites from the re-
gions ‘‘d’’ and f’’ have weak or very weak associations with
phenotype parameter and they also have insignificant con-
tributions to multiple associations. These metabolites do not
contribute to the association to the phenotype parameter. In
brief, in this article, metabolites from regions ‘‘a’’ and ‘‘c’’ were
considered as best set of metabolites associated with the re-
spective phenotype parameter.

Table 1. (Continued)

Men A G A:G Ratio VAT SAT Waist LBM

PE 38:6 + adhtlwsv
PE O-38:5 + dhv - dhlwv + adhlwrv
SM d18:1/(14,17,18,20,21:0) -adhlsv + adhtlwsv
SM d18:0/24:0 + dhtrsv + dhrv
SM d18:0/25:1 -dhlsv
TG 46:0, 48:(0:2) + adhltwsv + ahtlwrs
TG 50:0 ++ ahts
TG 50:1 + adhlwsv + adhtlwrs + tr
TG 50:2 + adhlwrv + adhtlwrs
TG 51:1 ++ adhtlwsv
TG 52:1 + adhtlwsv ++ adhtlwrs
TG 53:2 + adhtlwsv
TG 54:(1:2, 6:7) + adhtlwrs
TG 55:1 + ahlws ++ ahtlwrs + atr
TG 56:(1,3), TG 58:3, TG 59:2 + adhtlwrs
VLDL (XL-S) + ahtlwrs
LDL (L) ++ dhtrv
IDL, LDL (M-S) + adhlsv
HDL(XL) -dhtrs -adhrs
alanine + htwsv
isoleucine + dhwsv + ahtlwrs
tyrosine + hws
creatinine -adhlwsv
Cholesterol, Chol:HDL ratio + dhtr
HDL cholesterol -adhtrv -dhtrsv
FFA + adhrv + adhrsv
TOTAL TG + adhtlwrs
Insulin ++ adhtlrsv
HOMA-IR ++ adhtlrsv

Correlations are measured with Spearman correlation coefficient: + weak positive correlations with 0.4 > R > 0.3 with p < 1*10- 4 for
women and p < 0.03 for men, ++ strong positive correlations with R > 0.4 with p < 1*10- 7 for women and p < 2*10- 3 for men, - weak
negative correlations with - 0.4 < R < -0.3 with p < 1*10- 4 for women and p < 0.03 for men, and - - strong negative correlations with R < -0.4
with p < 1*10- 7 for women and p < 2*10- 3 for men. Listed correlations were controlled by other phenotype parameters in partial correlation
analysis and independence of each correlation is indicated by letters.

#Correlations independent of: a, age; d, DSP; h, HR; t, total fat; l, LBM; r, A:G ratio; s, SAT; v, VAT; and w, waist; (e.g., in women correlation
of SAT with LPC 18:2 is independent on age, DSP, HR, but is dependent on total fat, LBM, waist, A:G ratio, and VAT).

A, android fat; CholE, cholesterol esters; Chol:HDL ratio, ratio of total cholesterol and HDL-cholesterol; DG, diacylglyceride; FFA, free fatty
acids; G, gynoid fat; HDL, high density lipoprotein; LBM, lean body mass; LDL, low density lipoprotein; LPC, lysophosphatidylcholine; LPE,
lysophosphatidyletanolamine; PC, phosphatidylcholine; PE, phosphatidyletanolamine; SAT, subcutaneous fat; SM, sphingomyelin; TG,
triacylglyceride; Total TG, total triacylglycerides; VAT, visceral fat; VLDL, very low density lipoprotein; waist, waist circumference.
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Added value of metabolomics analysis

Multiple linear regression analyses were used to assess the
strength of associations of one of three BFD parameters: A:G
ratio, VAT, and SAT, with different sets of phenotype and
metabolic variables (Fig. 1). Four different sets including
phenotype and metabolic parameters were tested:

a. set 1: age, total fat, LBM, waist circumference, DBP and
HR (p = 6)—the set of the basic phenotypic and car-
diovascular parameters

b. set 2: age and all variables from the phenotype data set,
excluding android fat, gynoid fat, % VAT, and % SAT
(p = 24)—the extensive set of the phenotypic, cardio-
vascular, and body fat distribution parameters

c. set 3: all variables of set 2 plus clinical parameters from
the metabolic data set (p = 36)—the set containing set 2
with clinical parameters

d. set 4: all variables of set 2 and all variables from the
metabolic data set (p = 201)—the set containing set 3
with metabolomics parameters

Multiple linear regression analyses were performed sepa-
rately for each BFD parameter (A:G ratio, VAT, and SAT) and
for each gender. They consisted of three different types of
analyses: multiple linear regression analyses with stepwise
variable selection from four different sets of variables (i.e., set
1, set 2, set 3, and set 4), simple linear regression analysis with
only one variable at a time (i.e., separate analysis for each of
201 variables), and final multiple regression analyses with
variables selected based on the results from the two previous
analyses. First and second types of analyses were performed
on a calibration set (containing 75% of all samples) and were
used to select the best variables from each of four sets for each
phenotype parameter. The following criteria for variables
selection were used: both the relevance score obtained during
the first analysis had to be above 20% aswell as the percentage
of explained variance, and significance of standardized
regression coefficient of models (the second analysis) had to
be higher than 0.1. The only exception to these criteria was
the selection of variables from set 1 for regression models
of VAT for men. In this case, none of variables met criterion
of R2

> 0.1 and all variables meeting the criterion of the
relevance score > 20% were selected for the final model. The
final multiple regression analysis was performed on inde-
pendent test set (containing 25% of all samples) and was
used to select the overall best set of variables for each phe-
notype parameter.

In the first analysis, multiple linear regression analysis with
forward stepwise variable selection was performed within a
double-cross validation scheme with 7-fold single-cross vali-
dation and 8-fold double-cross validation (Smit et al., 2007) (in-
house written routine available on request). The analysis was
repeated 30 times with different assignments of samples into
validation, calibration, and test sets. In the first cross validation
loop, initial conditions of analysis were optimized by selecting
one optimal initial variable to which other variables were ad-
ded in further steps of stepwise variable selection (forward
selection). In the stepwise variable selection, inclusion and ex-
clusion criteria were set at p value= 0.05. In the second cross
validation loop, performance of the regression model opti-
mized in the first cross validation loop was assessed by a test
set giving Root-Mean-Square Error of Cross-Validation

(RMSECV). The number of times that each variable was pres-
ent in multiple linear regression models (models optimized in
the first cross validation loop of performed linear regression
analysis) was calculated and referred to as the relevance score.
A relevance score of 100% means that the variable was always
selected in stepwise variable selection and is present in all
models optimized in the single-cross validation loop.

In the second analysis, simple linear regression analyses
were performed for each parameter: A:G ratio, VAT, and SAT,
including one independent variable at a time (separate anal-
ysis for each of 201 variables tested). Percent of explained
variance (R2), standardized regression coefficients and their p
values were used to assess importance of each variable in
describing: A:G ratio, VAT, and SAT.

In the third analysis, final multiple regression models for
A:G ratio, VAT, and SAT were obtained for an independent
set of samples, including subsets of variables from sets 1–4
selected in the first and the second analysis. Performance of
each regression model was assessed by R2 value adjusted by
number of variables included in this model.

Results

Subject characteristics

In the current study, all 83 women and 32 men were ap-
parently healthy yet had increased waist circumference and
an overweight or obese status. All participants were included
regardless of whether they followed the green tea extract
treatment or placebo treatment, because the green tea extract
had no statistically significant effect on any plasma lipids
( Jansen et al., 2011), lipoproteins, small molecular-weight
metabolites, or phenotype parameters (internal communica-
tion). For each subject, parameters derived from two blood
samples and twomeasures of phenotype parameters collected
before and after treatment were taken into account. By in-
cluding both samples and measures of each subject, more
robust associations between phenotype parameters and
metabolic parameters could be obtained, because high intra-
subject variation in metabolic profiles (variation between be-
fore and after treatment samples from the same subject) not
related to phenotype are taken into account when phenotype-
metabolite associations are estimated. The characteristics of
the subjects are presented in detail in Supplementary Table S1.
Complete data sets were available for 215 (out of 230) sam-
ples/measures.

Biological parameter selection

All phenotype parameters (28 parameters) were tested on
associations with metabolic parameters. However, the main
focuswas given to associations of parameters describing body
fat distribution, especially A:G ratio, VAT, and SAT, because
they have been associated with different metabolic activities
related to cardiovascular risk (Thomas et al., 2011).

Gender differences

Results of principal component analysis showed major
trends in the phenotype data set and in the metabolic data
set (Fig. 2A, Fig. 2B, and on studies.nmcdsp.org/06E6-P).
Women and men could clearly be separated by means of their
phenotype. PC1 and PC2 explained more than 60% of the
variation. In contrast, themain trend in themetabolite profiles
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was only partially related to a gender difference. PC1 and PC2
explained only 39% of the variation.

Canonical correlation analysis revealed a strong significant
association of 0.85 between the phenotype and metabolic data
sets (Fig. 2C). The association between these data sets was
gender dependent (i.e., canonical correlation analysis provided
evidence of a systematic difference between women and men)
in both datasets. This result necessitated separate analyses of
phenotype–metabolite associations for women and men. In
addition, gender differences based on the median concentra-
tions of single parameters were determined to interpret the
phenotype–metabolite associations. Clear gender-related dif-
ferences were found in global and regional body fat distribu-
tion parameters (Fig. 3, Supplementary Table S1, and
Supplementary Fig. S1) and most of them were statistically
significant (22 out of 28 phenotype parameters were statisti-
cally significant). Women had a higher content of gynoid, total
body fat, and, to a lower extent, android fat, whereas men had
higher weight, BMI, LBM, waist circumference, A:G ratio, and
more VAT. No gender difference was found for SAT. The im-
pact of gender was also clearly visible on numerous metabo-
lites/parameters measured in blood samples (for 94 out of 177
metabolites, differences were statistically significant). Male
subjects had higher levels of insulin, HOMA-IR, total TG, epi-
nephrine, cholesterol/HDL–cholesterol ratio, VLDL’s, creati-
nine, and all three branched-chain amino acids (BCAA: valine,
isoleucine, and leucine). In comparison, female subjects had
higher levels of FFA (total), glycerol, HDL-cholesterol, HDL’s
(very large and large HDL), acetate, and 3-hydroxybutyrate.
From the lipid profiles, it became apparent that men had
generally higher levels of LPCs and TGs, whereas women
showed higher levels of certain SMs and PCs.

Correlations with BFD: (Independent) bivariate

associations

Spearman correlation coefficients between several BFD pa-
rameters and all metabolites were calculated separately for
women and men. Table 1 lists all metabolites with absolute
values of Spearman correlation coefficients higher than 0.3. In
general, different associations were found in women and men
and only a limited number of associations were common. In
women, more and generally stronger correlations were ob-
served than inmen and their statistical significance is higher due
to bigger size of data set for women (n=157) than for men
(n=58). Overall, similar correlations were found to android fat,
A:G ratio, VAT, waist circumference, and LBM inwomen,while
the correlations in men were more specific to each BFD pa-
rameter. For example, insulin and HOMA-IR were strongly
positively correlated to android fat, A:G ratio, VAT, waist cir-
cumference, and LBM in women, while these clinical markers
were only correlated to android fat in men. Similarly, total TG
was positively correlated to android fat, A:G ratio, visceral fat,
andwaist circumference in women, while it was only correlated
to visceral fat in men. Other examples can be seen in Table 1.

Furthermore, we tested whether the bivariate correlations
were specific or dependent on certain influencing factors such
as age, total fat, andwaist circumference. In Table 1, the letters
indicate the phenotype parameter on which the correlation is
independent. For example, in women the bivariate correlation
of SAT with LPC 18:2 is independent on age, DSP, HR, but is
dependent on total fat, LBM, waist circumference, A:G ratio,

and VAT. Overall, most correlations were dependent onwaist
circumference inwomen. In contrast, the correlations found in
men were mostly independent on waist circumference and
other factors, meaning that these associations were unique
and specific for a given pair of phenotype andmetabolite. It is
also notable that the correlations to A:G ratio were more
specific than to android fat in women, possibly resulting from
negative and positive correlations to gynoid fat and android
fat, respectively, that were at the borderline of being statisti-
cally significant.

Correlations with BFD: Association patterns

Bivariate and multivariate phenotype–metabolite associa-
tions were determined with Spearman correlation analysis
and PLS regression analysis, respectively, as described in the
Material and Methods section. The results for both analyses
were combined in a single plot of an association pattern to
determine the best set of metabolites that is associated to A:G
ratio, VAT, and SAT, respectively. In brief, we have consid-
ered metabolites with bivariate associations stronger than
R = 0.3 and with statistically significant contribution to mul-
tivariate associations ( p< 0.05) as members of the best set
(regions ‘a’ and ‘c’ in Fig. 4; more details in Methods section).

In women, the A:G ratio could best be described by certain
triacylglycerols (TG 48:0-3, 50:1-4, TG 52:2-3), total TG, PC
38:3, VLDL (M and (X)L), isoleucine, insulin, and HOMA-IR.
These associations were positive and mostly determined by
the android fat. A similar set of metabolites was found for
VAT. This set of metabolites included in addition positive
correlations of cholesterol, VLDL (S) and TG 54:2-3 and neg-
ative correlations of HDL (L, XL). On the other hand, PC 38:3
and TG 50:1-4 did not significantly contribute to the associa-
tion pattern of VAT. In comparison, the association pattern of
SAT was substantially different from those of the A:G ratio
and VAT. It was mostly determined by the negative correla-
tions of LPC 18:2-3, LPC O-16:1, and HDL (XL) and the pos-
itive correlation of cholesterol:HDL ratio.

In men, the optimal set of metabolites that is associated to
the A:G ratio included certain negative correlations with
phosphatidylcholines (PC O-34:2-3, PC O-36:2-3), and positive
correlations with triacylglycerols (TG 51:1, TG 51:3), sphingo-
myelins (SM d18:1/17:0, SM d18:1/20:1), and alanine. These
associations were typical for the A:G ratio and not reflected in
associations to android or gynoid fat. A specific association
pattern was also observed for VAT including total TG, TG 50:
1-5, TG 55:1, PC 32:0, and VLDL ((X)L), In comparison to
women, cholesterol, insulin, HOMA-IR, and HDL were not
correlated to VAT, but to android fat in men. No relevant set of
metabolites could be determined for SAT in men.

Added value of metabolomics analysis

The performances of multiple regression models of A:G
ratio, VAT, and SAT are shown in Table 2. For each BFD
parameter, four gender-specific models were established
based on independent set of samples and parameters selected
from four different sets of phenotype parameters and me-
tabolites (set 1, set 2, set 3, and set 4) as described in Methods
section. All multiple regression models were obtained on in-
dependent set of samples and with strict variable selection
criteria to avoid selection bias. More details are presented in
Supplementary Tables S2 and S3.
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In women, the multiple regressionmodels based on set 1 or
2 [set 1 included the basic phenotypic and cardiovascular
parameters (p = 6), and set 2 included all phenotype parame-
ters (p = 2 8)] had similar performance when compared to
models based on set 3 and 4 (which also included clinical and
metabolomic parameters, respectively). For our study, this
means that phenotype parameters in women were able to
predict best the A:G ratio, VAT, and SAT, and that metabo-
lomics and clinical parameters had no added value in de-
scribing those body fat distribution parameters. More
specifically, the waist circumference, together with LBM and
total fat, were predictive for the A:G ratio and for VAT and
SAT, respectively.

In men, statistically significant multiple regression mod-
els were only obtained for VAT and only when including
clinical parameters and metabolomics data (sets 3 and 4).
Interestingly, the VAT model including metabolomics data
clearly outperformed the other models that did not include
metabolomics data (increase from R2

= 0.48 for set 3 to
R2

= 0.78 for set 4 selection: see Table 2 for explanation). Four
parameters, namely PC 32:0, acetate, insulin, and HOMA-IR
were predictive for VAT with a performance of 78%, sug-
gesting that these four parameters together were the most
powerful predictors of VAT in men. The predictability of
the metabolites based on both the relevance scores and the
significance levels were 60%, 69.6%, 28.8%, and 27.5% for PC
32:0, acetate, insulin, and HOMA-IR, respectively in set 4
(see Supplementary Table 3 for significance levels). Insulin
was also included in themodel of set 3 together with total TG
(R2

= 0.48, relevance score of 24.2% and 41.7% for insulin and
TG, respectively).

Associations of VAT with PC 32:0, acetate, insulin, and
HOMA-IR are shown in Figure 4D and Supplementary Figure
S2. Themetabolite PC 32:0 was repeatedly strongly associated
to VAT and selected in the multiple regression analysis with
high relevance score. Although acetate was only weakly cor-
related to VAT in both bivariate (R = -0.22) and multivariate
correlation analysis (Fig. 4D), it had a high relevance score

and contribution to the regression model of set 4. From the
multiple regression analysis it became apparent that the
subjects were clustered in two groups (Supplementary Fig.
S2). One group of subjects had low acetate concentrations,
which correlatedwith awide range of VAT sized, whereas the
other group had high acetate concentrations that correlated
only to low VAT sized. This nonlinear relationship was only
observed for acetate and VAT in men, and the underlying
reason is unclear. We speculate that subjects with high acetate
levels have a relatively higher lipid turnover in VAT (small
VAT size), considering that acetate is a substrate/product in
lipid turnover (Wajchenberg, 2000). An alternative explana-
tion may be related to a differential microbiome in men with
different VAT size (Flint, 2011).

Insulin and HOMA-IR did not have strong bivariate or
multivariate associations with VAT and had low relevance
scores. Their presence in the regression model of set 4 can be
explained by two influential subjects (two outliers in Sup-
plementary Fig. 3), which affected the relationship between
VAT and insulin (HOMA-IR). Therefore, we conclude that PC
32:0 has the highest potential for predictive models of VAT in
men and biological implications of this association are de-
scribed in the Discussion section.

Discussion

In the current study, we identified the most important sets of
metabolites associated with A:G ratio, VAT, and SAT, which
may be related to differential risk in cardiovascular disease
(CVD) and type 2 diabetes mellitus. In addition, we assessed the
added value of metabolomics analysis in the presence of other
parameters including BFD parameters and clinical markers. The
particular strength of our study relied on detailed measures of
BFD (including MRI and DEXA measurements) and plasma/
serum metabolites (205 different parameters in total) as well as
on a relatively large sample size (215 samples in total). Fur-
thermore, we used a sophisticated data analysis strategy in-
cluding careful and strict validation procedures.

Table 2. R2 of Multiple Linear Regression Models Adjusted for Variables.

Women (n= 39) Men (n = 15)

Set/ Parameter A:G ratio VAT SAT A:G ratio VAT SAT

Set 1 selectiona 0.420e,* 0.498f,* 0.322g,* 0.104 0.042 - 0.05
Set 2 selectionb 0.445* 0.492* 0.272* 0.196 0.012 0.14j

Set 3 selectionc 0.447* 0.522* 0.223* 0.196 0.485* 0.14
Set 4 selectiond 0.451* 0.526* 0.281* 0.366h 0.784i,* 0.14

The number of variables were selected by stepwise approach from four different subsets of data (set 1–4) and included in multiple
regression models of A:G ratio, VAT, and SAT separately for women and men. Statistically significant models for each BFD parameter
( p< 0.05) are indicated by *.

aSelection of variables from set 1 composed of age, total fat, LBM, DBP, HR, and waist circumference.
bSelection of variables from set 2 composed of age and variables of phenotype data set excluding: android fat, gynoid fat, %SAT, and

%VAT.
cSelection of variables from set 3 composed of set 2 and clinical parameters.
dSelection of variables from set 4 composed of set 3, lipidomics, lipoproteins, and LMWM variables.
eSet composed of LBM and waist circumference.
fSet composed of total fat and waist circumference.
gSet composed of total fat and waist circumference.
hSet composed of age, total fat, proximal thigh circumference, triceps circumference, PC O-34:2, and PC O-36:5.
iSet composed of PC 32:0, acetate, insulin, and HOMA-IR.
jSet composed of proximal thigh circumference and distal thigh circumference.
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Gender differences

Significant differences in metabolite profiles and pheno-
typic parameters were observed between men and women,
and thus a separate analysis increased the statistical power.
Most of these differences are in agreement with earlier find-
ings (Seidell et al., 1991; Wajchenberg, 2000). For instance, the
higher gynoid fat levels inwomen and the higher A:G ratios in
men go alongwith the higher prevalence of female ‘pears’ and
male ‘apples’, respectively (Wajchenberg, 2000). The gender
differences in clinical markers generally reflect a more favor-
able metabolic risk profile for women, including lower levels
of insulin and triacylglycerols and higher levels of HDL-
cholesterol (Lemieux et al., 1994; Seidell et al., 1991). In ad-
dition, women have lower levels of branched-chain amino
acids that have been shown to be positively associated with
insulin resistance (Adeva et al., 2011).

The gender differences observed by metabolomics analysis
generally corroborate evidence from the literature. The higher
levels of most sphingomyelins in women, which has also been
found in another study (Mittelstrass et al., 2011), may be re-
lated to differences in insulin response (Blachnio-Zabielska
et al., 2011; Straczkowski et al., 2004). For instance, ceramides
are produced in the sphingomyelin signaling pathway by
de novo synthesis or by sphingomyelin hydrolysis. In adipose
tissue, ceramides have been shown to correlate negatively
with HOMA-IR and higher activity levels of enzymes in-
volved in de novo sphingomyelin production, and lower ac-
tivity levels of enzymes involved in sphingomyelin
hydrolysis have been found in obese subjects (Blachnio-
Zabielska et al., 2011). In muscle, ceramides have been shown
to correlate negatively with insulin sensitivity independent of
obesity and positively to the enzyme involved in sphingo-
myelin hydrolysis (Straczkowski et al., 2004). This shows the
importance of the sphingomyelin pathway in insulin sensi-
tivity and the complexity of the regulation of this pathway.
Insulin may also cause the higher level of PC 38:3 (possibly
corresponding to PC(18:0-20:3) (Mahadevappa and Holub,
1984) in men, as some studies have shown a relationship be-
tween the type of fatty acids in phosphatidylcholines and
insulin sensitivity (Clore et al., 1998).

Correlations with BFD

Our systematic correlation analysis revealed significant
differences in the association patterns between the BFD pa-
rameters. Generally, SAT is a well studied tissue due to its
easy accessibility. However, it is not the most interesting tis-
sue, because SAT correlates less strongly with metabolic risks
factors than VAT, as has been demonstrated in the Framing-
ham heart study (Fox et al., 2007). In addition, VAT has been
shown to correlate with insulin resistance, whereas SAT is
protective against insulin resistance, which has been shown
by analysis of VAT and SAT in insulin-resistant and insulin-
sensitive obese subjects (women and men) by adjusting the
relation between SAT and insulin for BMI and VAT
(McLaughlin et al., 2011). In our study, insulin andHOMA-IR
were positively correlated to VAT, but not to SAT, corrobo-
rating the literature observations. Furthermore, the VLDL
subclasses were positively associated to VAT which is in
agreement with previous studies showing negative correla-
tions of VLDLwith insulin resistance (Garvey et al., 2003) and
positive correlations with VAT in men (Okazaki et al., 2005).

Interestingly, VLDL and TG consistently showed similar
correlations, probably because TGs are mainly transported by
VLDL particles in blood (Vance and Vance, 2008). In partic-
ular, several TGs, including TG 50:1, TG 50:2, TG 53:2, TG 54:1
and TG 54:7, were clearly associated to VAT and not to SAT,
suggesting that SAT is less sensitive to lypolytic stimuli
(Ibrahim, 2010;Williams, 2004). Hormone-sensitive lipase has
a preference for triacylglycerols with longer chain fatty acids
as substrate (Haemmerle et al., 2002) and VAT has been
shown to be highly lipolytic (Ibrahim, 2010; Williams, 2004).
In contrast to VLDL, large (XL-L) HDL subclasses have gen-
erally been shown to correlate negatively with VAT (Lemieux
et al., 1994; Okazaki et al., 2005) and positively with insulin
resistance (Garvey et al., 2003). In our study, we found weak
correlations between HDL (XL-L) subclasses and VAT. Re-
markably, these relations with VAT were only clearly ob-
served in women and largely coincided with those found for
android fat, A:G ratio, waist circumference, and LBM. Inmen,
however, a similar association pattern (correlations between
lipoproteins and BFD)was only found for android fat with the
exception of VLDL (M, (X)L) and certain TGs that were clearly
associated to VAT and not to other BFD. This indicates that
metabolite profiles in men were more specific to certain BFD
parameters when compared to women, suggesting that the
underlyingmetabolic processes in womenwere similar, while
in men they seemed to depend on specific fat deposits. Please
note, however, that the number of men with metabolic syn-
drome was higher in our study (48% men and 14% women).
Therefore, the tissue specificity in menmay be confounded by
effects resulting from metabolic syndrome.

Interestingly, our metabolomics approach revealed corre-
lations that have not been reported before and mostly con-
sisted of TGs and phosphatidylcholines (including PC-O, PC,
LPC, and LPC-O). In a recent study, certain LPCs (14:0, 18:0,
and 18:1) have been correlated to obesity (Kim et al., 2010).
However, none of these LPCs were associated with the BFD
parameters in our study. In our study, SAT in women was
negatively correlated to PCs (PC O-36:3; PC O-34:1) and LPCs
(LPC O-16:1, LPC 18:2-3) that are downstream metabolites of
PCs. Similarly, negative correlations between SAT and PCs
(PC, PC-O) have been found in a study with 24 monozygotic
twins (Pietilainen et al., 2007). In this study, however, these
lipid components were also negatively correlated to VAT and
involved different species. In our study, the respective PCs
had a low number of double bonds, whereas in the study by
Pietilainen and associates, the respective PCs had a high
number of double bonds. The discrepancy may be explained
by the higher number of subjects in our study as well as dif-
ferences in the regulation of PC production pathways. There
are two different pathways for the formation of PCs with an
enzyme specificity depending on the fatty acid species (Pynn
et al., 2011).

More specifically, a positive correlation between PC 32:0
and VAT was observed in men, which may result from the
relative high levels in saturated fatty acids in obese subjects
(Phinney, 2005). Moreover, certain unsaturated plasmalogens
(PC-O 34:1-3, PC O-36:2,3,5) were negatively correlated to
A:G ratio in men and to SAT in women. Plasmalogens influ-
ence the fluidity of lipids (Pietilainen et al., 2011), which may
be of importance considering the cell stress in adipocytes of
obese subjects. Earlier relations between obesity and plas-
mologens have shown that plasmalogens are higher in SAT in
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obese subjects (Pietilainen et al., 2011) and that plasma levels
of unsaturated plasmalogens are lower in hypertensive sub-
jects (Graessler et al., 2009).

Added value of metabolomics analysis

Our multiple regression models could explain up to 78% of
the variation in A:G ratio, VAT, and SAT. The models ob-
tained for women and men were different in their statistical
significance (probably related to the larger number of women
in the study). In females, the waist circumference and LBM
already gave reasonable estimates for the prediction of A:G
ratio, and waist circumference and total fat were predictive
for VAT and SAT. Clinical markers nicely complemented
these predictors. Metabolites obtained by metabolomics
analysis (lipidomics, lipoprotein profiling, and LMWM pro-
filing) did not contribute to the improvement of themodels. In
comparison to women, phenotypic parameters as well as
clinical markers did not result in predictive models for the
A:G ratio, VAT, and SAT in men. In particular, the waist cir-
cumference was only a weak or even no predictor for these
BFD parameters in men, which is in contrast to literature
(Klein et al., 2007). This may be explained by the higher av-
erage muscle mass in men, possibly obscuring the relations
between phenotypic and BFD parameters. Only when meta-
bolomics data were included, the prediction of the models
could be significantly improved. The model for VAT was
significant and the model for A:G ratio was on the borderline
of significance. Remarkably, the model of VAT excluded
waist circumference, BMI, and related phenotype parameters.
Specific phosphatidylcholine and triacylglycerol components
were important determinants in both models and in the bi-
variate associations. Phosphatidylcholine may be a source of
fatty acids for triacylglycerols (van der Veen et al., 2012),
which may explain why they often co-occur in the models. PC
32:0 was included in the model of VAT, whereas PC-O 36:5
and PC O-34:2 were included in the model of A:G ratio,
possibly indicating tissue and fatty acid specific enzyme ac-
tivity (Pynn et al., 2011; Raclot et al., 2001). For example, en-
zymes converting esterified fatty acids are known to vary
between tissues (Kotronen et al., 2010). PC 32:0 is a new po-
tential indicator of VAT size and abdominal obesity, as PC
32:0 has been shown earlier to be related to obesity (Oberbach
et al., 2011). It has also been shown that PC levels in plasma
are related to hepatic steatosis (van der Veen et al., 2012). The
main enzyme responsible for PC clearance from the blood is
lecithin-cholesterol acyltransferase (LCAT), an enzyme with a
substrate prevalence for certain PC species (Subbaiah and
Monshizadegan, 1988). A positive relation between LCAT
and obesity has been described (Sutherland et al.. 1979) and
LCAT-null mice have been shown to be protected from diet-
induced obesity (Li et al., 2011). Therefore, the relative high
level of LCAT in obese subjects may be responsible for
clearance of specific PC species. In addition, relative high
levels of PCs in adipose tissues compared to other tissues may
explain the relation of PCs to BFD (Kotronen et al., 2010).

Conclusion

In summary, our findings demonstrate significant gender-
related differences in the metabolite patterns associated to
various BFD parameters, which is in line with a recent meta-
analysis that revealed sexual dimorphism in the genetic basis

of fat distribution (Heid et al., 2010). The consistent associa-
tion patterns observed in women suggest that VAT, android
fat, A:G ratio, and waist circumference are mainly related to
well-known parameters, such insulin, VLDL, HDL, and TG.
Interestingly, lipidomic analysis identified certain phospha-
tidylcholine species that were negatively correlated to SAT. In
comparison to women, the metabolite patterns were more
depot-specific in men. Multiple regression analysis revealed a
predictive metabolite, namely PC 32:0, for VAT in healthy
overweight men. Plasma PCs are related to storage of TG,
which may explain why PC in plasma can be predictive for
VAT. Considering that TGs and PCs are involved in obesity-
related disease, PC32:0 may be an early marker for diabetes
and CVD. However, future studies still need to confirm the
predictability of PC32:0 in similar populations. In addition,
lipidomic analysis in fat tissues should provide further evi-
dence of the underlying metabolism.
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