
BRIEF RESEARCH REPORT
published: 30 July 2020

doi: 10.3389/fgene.2020.00808

Edited by:

Isidore Rigoutsos,

Thomas Jefferson University,

United States

Reviewed by:

Aristeidis G. Telonis,

University of Miami, United States

Rachita Yadav,

Massachusetts General Hospital,

Harvard Medical School,

United States

*Correspondence:

Carla Oliveira

carlaol@i3s.up.pt

Pedro G. Ferreira

pferreira@ipatimup.pt

†These authors have contributed

equally to this work and share senior

authorship

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 23 February 2020

Accepted: 06 July 2020

Published: 30 July 2020

Citation:

Sousa A, Ferreira M, Oliveira C

and Ferreira PG (2020) Gender

Differential Transcriptome in Gastric

and Thyroid Cancers.

Front. Genet. 11:808.

doi: 10.3389/fgene.2020.00808

Gender Differential Transcriptome in
Gastric and Thyroid Cancers
Abel Sousa1,2,3,4, Marta Ferreira1,2, Carla Oliveira1,2,5*† and Pedro G. Ferreira1,2,6,7*†

1 Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal, 2 Institute of Molecular

Pathology and Immunology of the University of Porto, Porto, Portugal, 3 Graduate Program in Areas of Basic and Applied

Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal, 4 European Molecular Biology

Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom, 5 Faculty

of Medicine of the University of Porto, Porto, Portugal, 6 Department of Computer Science, Faculty of Sciences of the

University of Porto, Porto, Portugal, 7 Laboratory of Artificial Intelligence and Decision Support, Institute for Systems

and Computer Engineering, Technology and Science, Porto, Portugal

Cancer has an important and considerable gender differential susceptibility confirmed

by several epidemiological studies. Gastric (GC) and thyroid cancer (TC) are

examples of malignancies with a higher incidence in males and females, respectively.

Beyond environmental predisposing factors, it is expected that gender-specific gene

deregulation contributes to this differential incidence. We performed a detailed

characterization of the transcriptomic differences between genders in normal and tumor

tissues from stomach and thyroid using Genotype-Tissue Expression (GTEx) and The

Cancer Genome Atlas (TCGA) data. We found hundreds of sex-biased genes (SBGs).

Most of the SBGs shared by normal and tumor belong to sexual chromosomes,

while the normal and tumor-specific tend to be found in the autosomes. Expression

of several cancer-associated genes is also found to differ between sexes in both

types of tissue. Thousands of differentially expressed genes (DEGs) between paired

tumor–normal tissues were identified in GC and TC. For both cancers, in the most

susceptible gender, the DEGs were mostly under-expressed in the tumor tissue, with

an enrichment for tumor-suppressor genes (TSGs). Moreover, we found gene networks

preferentially associated to males in GC and to females in TC and correlated with

cancer histological subtypes. Our results shed light on the molecular differences and

commonalities between genders and provide novel insights in the differential risk

underlying these cancers.

Keywords: gastric cancer, thyroid cancer, gender differences, RNA-seq, The Cancer Genome Atlas, Genotype-

Tissue Expression, differential expression, gene co-expression networks

INTRODUCTION

Sexual dimorphism is a taxonomically widespread phenomenon, whereby certain traits differ
consistently between males and females within a given species. In humans and other animals,
these differences go beyond morphological and behavioral traits and include molecular phenotypes
such as gene expression (Trabzuni et al., 2013; Melé et al., 2015; Gershoni and Pietrokovski, 2017;
Naqvi et al., 2019). It has been hypothesized that sex-specific gene regulation underlies important

Abbreviations: DEGs, differentially expressed genes; GC, gastric cancer; GTEx, Genotype-Tissue Expression; SBGs, sex-
biased genes; TC, thyroid cancer; TCGA, The Cancer Genome Atlas; TSGs, tumor-suppressor genes.
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phenotypic gender differences and may contribute to gender
differential susceptibility to disease (Ober et al., 2008; Rawlik
et al., 2016; Labonté et al., 2017). Cancer has a considerable
differential incidence between genders (Dorak and Karpuzoglu,
2012; Ali et al., 2016; Clocchiatti et al., 2016), with men showing
a higher cancer incidence than women in 32 of 35 anatomical
sites (Edgren et al., 2012). In 13 of these sites, the differences
could not be explained by known risk factors, including smoking,
alcohol consumption, and potential occupational carcinogens
such as toxic metals and ionizing radiation. Men are at
higher risk and worst prognosis in several types of cancers in
non-reproductive tissues, including skin, esophagus, stomach,
liver, and urinary bladder cancers (Siegel et al., 2018). One
remarkable exception is the thyroid tissue, where women have
three times higher risk of developing cancer (Rahbari et al.,
2010). For malignancies such as acute lymphoblastic leukemia
or non-Hodgkin lymphoma, the gender-bias incidence occurs
already in childhood, being more common in boys (Dorak
and Karpuzoglu, 2012). Although environmental and lifestyle
factors largely contribute to gender disparities in cancer, it
seems clear that gender intrinsic molecular factors may also play
an important role.

Cancer sexual disparity may be the consequence of a complex
interplay between sex chromosomes and the hormonal system
(Clocchiatti et al., 2016). In females, several X chromosome
genes may escape the XIST-dependent inactivation, triggering
an imbalanced expression between genders (Carrel and Willard,
2005). This asymmetry can make females more resistant
to inactivating mutations in tumor-suppressor genes (TSGs)
(Dunford et al., 2017). For instance, UTX is known to escape
silencing in females (Bellott et al., 2014) and to have inactivating
mutations in renal and esophageal cancers, more prevalent
in males (van Haaften et al., 2009). Sex steroid hormones
can interact with the cellular receptors estrogen receptor-α
(ERα), ERβ, and androgen receptor (AR) and induce gene
expression changes, affecting cellular metabolic states, tumor
microenvironments, and the immune system (Clocchiatti et al.,
2016). For example, in liver cancer, more frequent in males, AR
stimulates and ERα restrains cellular proliferation (Li et al., 2012).
Moreover, an estrogen-mediated inhibition of inflammatory IL-
6 production may reduce liver cancer risk in females (Naugler
et al., 2007). In thyroid cancer (TC), the association between
sex hormones and cancer risk is uncertain (Rahbari et al.,
2010). While animal models and in vitro studies suggest that
sex hormone levels can affect TC tumorigenesis and progression,
the same has not been observed at the clinical level (Yao
et al., 2011). Sex hormones are also known to regulate the
thyroid gland in a gender-specific manner (Banu et al., 2002).
It is therefore possible that the thyroid glands in females are
biologically more prone to cancer development than in males
(Yao et al., 2011).

Pan-cancer systematic studies on gender differences have
identified sex-biased genes (SBGs) and pathways across several
cancer types from The Cancer Genome Atlas (TCGA) project
(Ma et al., 2016; Yuan et al., 2016). These studies found
that sex-specific gene signatures have differential responses to
chemical and genetic agents and that, in certain cancer types,

more than 50% of clinically relevant genes are differentially
expressed between sexes. Importantly, while TC showed
extensive sex-biased gene expression, the gender differences of
gastric cancer (GC) remained uncharacterized.

In this work, we set out to provide a fine-detailed
characterization of the gender differential transcriptome in GC
and TC (Cancer Genome Atlas Research Network, 2014a,b),
chosen due to their clear unbalanced gender incidence. While
GC is two times more common in males, TC is three times
more common in females (Siegel et al., 2018). Our results
demonstrate that sex-biased gene expression is more pronounced
in normal tissues than tumor tissues and that most of the shared
variation arises from the sexual chromosomes. Expression of
several cancer-associated genes differs between genders, with
TSGs preferentially downregulated in the tumor tissue of the
most susceptible gender. Gene co-expression network analysis
revealed an extensive topological preservation between genders,
with gender-specific networks appearing correlated with cancer
histological subtypes.

MATERIALS AND METHODS

Data Collection
Gene-level TCGA mRNA-seq data for GC and TC tumor
matched-normal samples were downloaded from the Genomic
Data Commons (GDC) data portal, and from the Genotype-
Tissue Expression (GTEx) portal for stomach and thyroid
normal samples, in reads per kilobase of exon model per
million mapped reads (RPKM) and read counts formats. TCGA
methylation data as beta values per probe were obtained from the
FireBrowse portal.

Data Preprocessing
Protein-coding and long intervening/intergenic non-coding
RNA (lincRNA) genes were selected for downstream analysis.
After removing lowly expressed genes (less than 5 counts per
million in at least 20% of samples), the TCGA datasets comprised
12,690 genes for TC and 13,674 genes for GC. The GTEx
datasets comprised 12,501 genes for thyroid and 12,371 genes
for stomach. The TCGA and GTEx samples yielded a total of
11,734 genes for thyroid and 11,842 genes for stomach. Principal
component analysis (PCA) analysis was then performed using
prcomp function in R.

Differential Gene Expression
Differential expression analysis was performed using the edgeR
package (Robinson et al., 2010) for the comparisons represented
in Figures 1A,B and taking into account several covariates
(Supplementary Methods).

We selected genes differentially expressed between genders
using a false discovery rate (FDR) threshold of 5%, additionally
requiring for tumor and matched-normal comparison an
absolute log2 fold change higher than 1. Tissue-specific SBGs and
gender-specific tumor-normal biased genes were calculated by
intersecting both gene sets.
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FIGURE 1 | Study design. (A) Differential expression analysis between males and females in normal [Genotype-Tissue Expression (GTEx)] and tumor [The Cancer

Genome Atlas (TCGA)] samples, adjusted for confounding effects. SBGs, sex-biased genes. (B) Differential expression analysis between tumor and matched-normal

(TCGA) samples in males and females, adjusted for confounding effects. DEGs, differentially expressed genes. (C) Differential co-expression network analysis

between males and females in normal (GTEx) and tumor (TCGA) samples. (D) Functional enrichment analysis of SBGs, DEGs, and gene co-expression modules was

performed using hypergeometric-based tests and Gene Set Enrichment Analysis (GSEA).

Differential Gene Promoter Methylation
The differential methylation analyses were performed using a
Wilcoxon rank sum test (wilcox.test R function). Differentially
methylated genes were defined with an FDR < 5%. See
Supplementary Methods for more details.

Gender Differential Co-expression
Network Analysis
We built gene co-expression networks for each gender, in
TCGA tumor and GTEx normal samples, for stomach and
thyroid tissues, using the Weighted Correlation Network
Analysis (WGCNA) package (Langfelder and Horvath,
2008). We compared male to female networks by calculating
the percentage of overlapping genes between each pair of

modules, where each module belongs to a different network.
Based on the overlap percentage and on the Fisher’s exact
test P-value, modules were classified as gender-specific,
lowly preserved, moderately preserved, and highly preserved
between genders.

Association of Gender-Specific Modules
With Cancer Clinical Traits
We evaluated the biological significance of gender-specific
modules in tumors by fitting a linear regression model
between the module eigengene as dependent variable and
the cancer clinical traits overall survival (in days), tumor
stage [American Joint Committee on Cancer (AJCC) staging
system], and cancer histological subtype as independent variables
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(Supplementary Methods). For modules associated with cancer
histological subtypes, we selected the hub genes and tested them
for differential expression between histological subtypes using a
Kruskal–Wallis rank sum test (kruskal.test R function).

Functional Enrichment Analysis
We performed functional enrichment using hypergeometric tests
and Gene Set Enrichment Analysis (GSEA), implemented in
the functions enrichr and GSEA from the clusterProfiler package
(Yu et al., 2012). We used gene sets downloaded from the
MSigDB database (Supplementary Methods). The enrichment
for TSGs, oncogenes, X-inactivated genes, and differentially
methylated genes was performed using the fisher.test R function
(alternative = “greater”).

RESULTS

Gender Differences Are Not Revealed by
Genome-Wide Transcriptomic Profiles
We analyzed RNA-seq data, generated by the TCGA project, of
375 GC samples (female, n = 134 and male, n = 241) and 502 TC
samples (female, n = 367 and male, n = 135). As normal tissue
counterparts, we used data from GTEx V6 (GTEx Consortium,
2013) that encloses 225 normal stomach samples (female, n = 82
and male, n = 111) and 381 normal thyroid samples (female,
n = 112 and male, n = 211), as well as the TCGA tumor-matched
normal samples (stomach, n = 32 and thyroid, n = 58). Altogether,
we collected 1,483 tumor and normal samples from stomach
and thyroid tissues (Supplementary Figure S1A; see section
“Materials and Methods”). Minimal expression filtering yielded
11,842 genes in stomach and 11,734 in thyroid (see section
“Materials and Methods”).

Principal component analysis analysis revealed that both
tissues segregated by dataset of origin rather than tumor or
normal status (Supplementary Figure S1B). As a consequence
of this strong batch effect, all analyses have been performed
separately for the TCGA and the GTEx datasets. No global
distinct transcriptomic patterns were observed between genders
(Supplementary Figure S1B). Confounding effects were
successfully regressed out (Supplementary Figures S1C, S2).

A detailed characterization of the transcriptomic differences
between genders was performed following the design in Figure 1.

Tumor and Normal Tissues Show
Specific Sex-Biased Genes
To understand the gender- and tissue-specific (tumor and
normal) expression patterns in stomach and thyroid, we
performed gender differential expression analysis using the
normal samples from both tissues available from GTEx, followed
by the same analysis in the tumor samples from TCGA
(Figures 1A,D). In the stomach, we found 75 SBGs in the
normal and 55 SBGs in the tumor, of which 32 were common
(Figures 2A,C and Supplementary Table S1). For the thyroid,
we found 691 and 128 SBGs in the normal and tumor,
respectively, with 46 genes in common (Figures 2B,E and

Supplementary Table S2). Common SBGs originated mostly
from the X and Y chromosomes (Figures 2D,F) and were similar
in the stomach and thyroid (27 genes; 84 and 59% of the
common SBGs in the stomach and thyroid). These genes were
involved in translational initiation, protein dealkylation, and
demethylation, with preferential location in the genomic regions
chrXp22/p11/q13 and chrYq11 (Supplementary Figure S3;
FDR < 5%). Contrarily, normal and tumor-specific gender
differences derived mostly from autosomes (Figures 2D,F).

The 43 normal-specific SBGs in the stomach (Figure 2C)
were enriched for sterols metabolic processes and in the
peroxisome proliferator-activated receptor (PPAR) signaling
pathway (Figure 2G; FDR < 5%). The majority of genes involved
in these processes were over-expressed in the normal stomach
of females, the less affected gender in GC (Supplementary

Figure S4A). In the thyroid, the 645 normal-specific SBGs
(Figure 2E) were enriched in innate and adaptive immune
response processes and lipid metabolism (Figure 2H and
Supplementary Figure S5A; FDR < 5%), including over-
expression in females, the most affected gender in TC
(Supplementary Figures S4B, S5B).

The 23 tumor-specific SBGs in GC and 82 in TC
(Figures 2C,E) were involved in lipid metabolic processes
(Supplementary Figure S6; FDR < 20%).

The X-chromosomal SBGs from GC and TC showed
an enrichment for genes that escape X-inactivation
(Supplementary Table S3; P-value < 5%). Of note, USP9X
(log2FC/FDR = −0.31/1.7e-06), a previously reported cancer
driver, TXLNG (−0.54/3.3e-17), OFD1, MED14, and CDK16
are known to evade X-inactivation and were over-expressed
in females’ GC. This suggests that tumorigenesis in females’
stomach may take advantage from over-expression of genes that
escape X-inactivation.

Gender differential promoter methylation analysis showed
that 54 (GC) and 20% (TC) of the previously found SBGs
were differentially methylated (Supplementary Figures S7A,B;
see section “Materials and Methods”; P-value = 2e-15, 2.7e-6).
Among these, 96% belong to the X-chromosome and 89% are
known to escape X-inactivation.

Tumor Suppressor Genes Show
Tumor-Specific Under-Expression in the
Susceptible Gender
To identify tumor-normal differentially expressed genes (DEGs)
in each gender, tumor and matched-normal TCGA samples were
compared (Figures 1B,D and Supplementary Tables S4, S5).
In GC, we found 1,552 DEGs shared between genders,
corresponding to 84% of the female and 68% of the male
DEGs (Figures 3A,C). Similarly, in TC, 89% of the female and
68% of the male DEGs were common to both genders (1,023
DEGs) (Figures 3B,E). The shared DEGs likely reflect genes that,
independently of the gender, are pivotal for tumorigenesis. In
fact, a significant proportion of these are oncogenes (5% for
GC and 6% for TC; P-value = 0.02, 9e-3). In GC, it includes
the cancer drivers WHSC1, CBFB, RUNX1, EZH2 (male, female
log2FC/FDR = 1.6/2.1e-10, 1.9/6e-7), MET, and CARD11. In
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FIGURE 2 | Features of sex-biased genes in tumor and normal stomach and thyroid tissues. (A,B) Differentially expressed genes between males and females in

normal [Genotype-Tissue Expression (GTEx)] and tumor [The Cancer Genome Atlas (TCGA)] tissues from the stomach and thyroid. The Y-chromosome genes and

XIST were removed for visualization purposes. Vertical lines: left, genes over-expressed in females (under-expressed in males); right, genes under-expressed in

females (over-expressed in males). (C,E) Shared and tissue-specific sex-biased genes (SBGs). (D,F) Distribution of SBGs in autosomes and sexual chromosomes.

(G,H) Gene Ontology (GO) biological processes (GO BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the normal-specific SBGs

[top 5; false discovery rate (FDR) < 5%].

TC, we recapitulatedMET (2.6/2.2e-10, 2.5/3.1e-25) and RUNX1,
plus CCND1, CDKN1A, ERBB3, FOXQ1, FGFR3, and the known
oncogene in TC ZCCHC12 (Wang et al., 2017).

Gender-specific DEGs were frequently under-expressed in
tumors of the most susceptible sex (males in GC and females in
TC), but not in the less susceptible one [Figures 3D,F (left plots)].
Of 742 male-specific DEGs in GC and 125 female-specific DEGs
in TC, 64 and 70% were under-expressed in tumors, respectively.
Following this trend, we found a significant enrichment for TSGs
on males in GC (9%) and females in TC (17%) [Figures 3D,F
(left plots)], with the majority being under-expressed in tumors
[Figures 3D,F (right plots)].

Overall, our results showed that for these two cancers, the
majority of tumor-normal DEGs were shared by genders and
have oncogenic properties. Most of the gender-specific DEGs
were under-expressed in tumors from the most susceptible
gender with a significant fraction being TSGs.

Promoter methylation analysis between tumor and matched-
normal tissues of TC (data not available for GC) showed

that in females and males, 53 and 26% of the DEGs were
differentially methylated (Supplementary Figures S7C,D; see
section “Materials and Methods”; P-value = 1e-3, 1.7e-24).

Tumor-Normal Differentially Expressed
Genes Were Enriched for Functional
Gene Categories
Functional enrichment analysis showed that in GC, gender-
common DEGs were involved in muscle structure development
and contraction, female-specific in cellular responses to cytokine
stimulus and male-specific in epithelial cell differentiation and
metabolic processes (Supplementary Figure S8A; FDR < 5%).
In TC, gender-common DEGs were involved in positive
regulation of cellular proliferation and pathways in cancer,
female-specific in regulation of cell adhesion and T-cell receptor
signaling pathways, and male-specific in response to cytokines
and innate immune response processes (Supplementary

Figure S8B; FDR < 5%).
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FIGURE 3 | Features of differentially expressed genes (DEGs) between tumor and normal tissues in gastric cancer (GC) and thyroid cancer (TC). (A,B) DEGs

between tumor and matched-normal samples in females and males. Vertical line (x = 0): left, genes under-expressed in tumors (over-expressed in normal); right,

genes over-expressed in tumors (under-expressed in normal). (C,E) Shared and gender-specific DEGs. (D,F) Gender-specific DEGs over- and under-expressed in

tumors. Left, all DEGs and respective enrichment for tumor-suppressor genes (TSGs) (Fisher test P-value). Right, DEGs with TSG activity. (G,H) Gene Ontology (GO)

biological processes significantly enriched and shared between gender-specific DEGs (male/female) over-expressed in tumor and normal tissues (up) [false discovery

rate (FDR) < 5%].

In TC, female-specific DEGs over-expressed in normal
tissues and male-specific DEGs over-expressed in tumor tissues
were involved in similar processes and pathways (Figure 3H;
FDR < 5%). Male-specific DEGs over-expressed in normal
tissues were enriched for ion transmembrane transport activity
(Figure 3H; FDR < 5%). In GC, there were no clear
patterns, with gender-specific DEGs showing distinct and diverse
functions (Figure 3G).

Gender-Specific Gene Networks in
Cancer Are Associated With Histological
Subtypes
Co-expression network analysis identifies groups of genes,
called network modules, coherently expressed across samples.
Such modules may highlight biologically related genes. We
reasoned that beyond single gene sex-biased expression, there
are differences between genders regarding the coordinated
expression of groups of genes for tumor and normal tissues
(Figures 1C,D). After removing possible confounding effects
(Supplementary Figures S1C, S2), a full gene co-expression
network was built and modules were identified for each gender

(Supplementary Figures S9, S10; see section “Materials and
Methods”). For the stomach, we found 23 modules in normal
tissue (female: 14; male: 9) and 56 in tumors (female: 22; male:
34) (Supplementary Figure S11A). In the thyroid, we found
75 modules in normal tissue (female: 37; male: 38) and 39 in
tumors (female: 18; male: 21) (Supplementary Figure S11A).
The number of genes inside modules ranged from 21 to 5,976,
with a median size of 119 genes per module (Supplementary

Figure S11B). Next, modules were compared between genders
in terms of their overlap and deemed as preserved (lowly,
moderately, or highly) or gender-specific (Supplementary

Figure S12; see section “Materials and Methods”). Most modules
were preserved in tumor and normal tissues (Figures 4A,F).
Three female-specific modules were found in normal thyroid
related to vasculature development and angiogenesis, thyroid
hormone, and sterol metabolism (Supplementary Figure S13).

Consistent with the higher sex-biased cancer incidence, we
found three male-specific modules in GC and two female lowly
preserved modules (in males) in TC (Figures 4A,F). Correlation
of the modules representative expression profile with the cancer
clinical traits (see section “Materials and Methods”) revealed
one GC module (M2S, P-value = 4e-3) and one TC module
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FIGURE 4 | Gender differential co-expression network analysis. (A,F) Number of modules in stomach and thyroid tissues. (B,G) Association between the gastric

cancer (GC) male-specific modules and the thyroid cancer (TC) female lowly preserved (in males) modules with cancer clinical traits. The numbers inside the heat

maps are regression-derived R2. The one-way ANOVA-derived P-value is shown (–log10). Associations with survival were also tested using Cox hazard regressions

(log-rank P-values > 5%). (C,H) Gene Ontology (GO) biological processes (GO BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in

the GC M2S module and the TC M2T module [top 5; false discovery rate (FDR) < 5%]. Enrichment score (ES) for the oxidative phosphorylation pathway in M2T is

highlighted, with genes sorted by intra-modular connectivity degree. (D,I) Distribution of the pairwise gene correlations (absolute Pearson’s r) for all gene pairs in

M2S and M2T. Vertical lines indicate medians. (E,J) Arc diagrams representing gene pair correlations for M2S (29 genes from 45) and M2T (61 genes from 86). Arcs

represent gene pair correlations >0.7. Genes are sorted by number of connections. The gene pairs with correlations >0.7 were selected in the gender where the

module shows specificity (males in M2S and females in M2T). The number of correlations >0.7 decreases in the opposite gender.

(M2T, 4e-18) associated with the cancer histological subtypes
(Figures 4B,G). The former (M2S) involved genes related to
peptide metabolism and translation elongation (Figure 4C;
FDR < 5%). The latter (M2T) was related to cellular respiration

processes, with the most highly connected (hub) genes forming
part of the oxidative phosphorylation pathway (Figure 4H;
FDR < 5%). A higher intra-module correlation was found
for the gender where the module is specific (Figures 4D,I;
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P-value < 2.2e-16), reflecting considerably different network
topologies (Figures 4E,J). These results demonstrate that the
coordinated expression of these genes differs between genders.

Hub genes from gender-specific modules were associated
with specific cancer histological subtypes. In GC, 11 out of
12 hub genes showed over-expression in the papillary, tubular,
and non-specified intestinal subtypes of males (Supplementary

Figures S14A,C and Supplementary Table S6). Among these,
Hsp90ab1 and XPO5 have been previously associated with
poor prognosis and tumor-suppressor properties in GC (Melo
et al., 2010; Wang et al., 2019). In TC, all 27 hub genes were
predominantly over-expressed in the follicular subtype of females
(Supplementary Figures S14B,D and Supplementary Table S7).

DISCUSSION

In this work, we set out to characterize the gender differential
transcriptome in tumor and normal tissues. We selected GC
and TC due to their considerable gender-biased incidence. It
is well known that male and females are exposed often to
very different environmental conditions (Zahm and Blair, 2003;
Scarselli et al., 2018). Thus, an important limitation of this study
is the lack of control for environmental effects. Despite this,
we believe this analysis is still of merit since it may capture
intrinsic natural variation between genders and their relation to
disease susceptibility.

Our results show that SBGs in tumor and normal tissues
were mostly derived from sex chromosomes, as previously found
in Yuan et al. (2016). These genes are mostly common to
the stomach and thyroid. Such conservation remains to be
tested for other tissues. On the other hand, SBGs specific to
normal or tumor tissues arose from non-sexual chromosomes,
with little overlap between tissues. These results highlight the
contribution of autosomes for tumor- and normal-specific sex-
biased expression phenotypes, which may ultimately drive sex-
biased cancer incidence.

We foundmetabolic processes of sterols and lipids enriched in
the normal and tumor-specific SBGs of thyroid and stomach and
in a female-specific module of thyroid normal tissues. Sterols are
critical in signaling, regulation of lipid metabolism, development,
and cellular homeostasis (Wollam and Antebi, 2011). Alterations
in the metabolism of sterols and lipids are a known hallmark of
cancer (Gabitova et al., 2014). Other studies have found SBGs
in pathways related to the metabolism of fatty acids in cancer
(Yuan et al., 2016) and in normal tissues (Naqvi et al., 2019),
with a long-standing observation that genders show differences
in themetabolism of lipids (Mittendorfer, 2005;Mittelstrass et al.,
2011; Drolz et al., 2014). Importantly, such differences are not
simply explained by the presence and action of sex hormones
(Mittendorfer, 2005). Our results suggest that beyond differences
in sexual hormonal regulation, the metabolic physiology of the
sexes might be implicated in the gender disparity of GC and TC.

The PPAR signaling pathway was found enriched in
the normal-specific SBGs of the stomach and particularly
over-expressed in females. This pathway is known to control
the expression of genes involved in lipid metabolism and

inflammation (Varga et al., 2011), with increasing evidence
that PPARα/γ inhibits tumor progression and acts as a tumor
suppressor (Gou et al., 2017). Whether this finding is related to
the lower GC incidence in females remains to be seen.

The normal-specific SBGs of thyroid were enriched in
immune-response pathways and mostly over-expressed in
females, in accordance with Naqvi et al. (2019). Thyroid
hormones can trigger different responses in diverse immune
cells and affect several inflammation-related processes (Jara et al.,
2017). The immune system is a highly sexually dimorphic trait,
with females showing an immunological advantage when facing
different immune challenges (Libert et al., 2010). On the other
hand, females are more prone to autoimmune diseases such
as Hashimoto’s thyroiditis (HT) (Ngo et al., 2014). In the last
decades, the association between HT and TC has been growing,
with some studies reporting the coexistence of both diseases
(Jeong et al., 2012; Zhang et al., 2012; Felicetti et al., 2017).

Altered expression of oncogenes and TSGs in normal tissue
may be linked to protective or predisposing tumorigenic events
(Muir and Nunney, 2015). In the stomach, females over-
expressed the TSGs FGFR3 and ERCC2 (Lafitte et al., 2013; Zheng
et al., 2015). In the thyroid, 16 of the SBGs were previously
reported as cancer drivers, with 11 being over-expressed in
females’ normal thyroid, including the oncogenes CARD11,
EZH2, and IL7R (Watt et al., 2015; Kim and Roberts, 2016; Kim
et al., 2018). Whether these findings are related to the differential
cancer incidence between genders needs further investigation.

Tumor-specific SBGs were much less frequent, suggesting that
once tumorigenesis starts, the transcriptomic differences become
more diluted between genders. Of notice, in GC, we found the
cancer-associated genes LPCAT1 and RAD51C over-expressed
in females (Meindl et al., 2010; Somyajit et al., 2010; Bi et al.,
2019). In TC, among those over-expressed in males, we found
PPARG, previously reported in thyroid carcinomas (Raman and
Koenig, 2014), ERCC5,MYH11, LEMD2, ZNF133, and IDH1, the
latter found to be mutated in thyroid carcinomas (Yang et al.,
2012). TFRC, whose expression has been associated with poor
prognosis and tumor progression (Shen et al., 2018), was found
over-expressed in females. These genes are potential contributors
to the gender-specific tumorigenesis of GC and TC.

Differential promoter methylation appears as a mechanism
that might underlie some of the observed expression differences,
given its incidence among the SBGs in both cancers and the
tumor-normal differences observed for both genders in TC.
Of the differentially methylated SBGs, most belong to the
X-chromosome and are known to escape X-inactivation. Changes
in promoter methylation in genes escaping X-inactivation have
been previously found (Sharp et al., 2011). However, 46 and 80%
of the SBGs in GC and TC were not differentially methylated in
our study, belonging mostly to the autosomes. Moreover, half
of the SBGs were not profiled by methylation probes. Other
processes that contribute to sex-specific gene regulation include
epigenetic regulation of enhancers (Reizel et al., 2015), estrogen-
regulated miRNA expression (Klinge, 2012), and transfer RNA
(tRNA) regulatory fragments (Telonis et al., 2019).Whether these
processes are involved in the sex-biased patterns not explained by
differential promoter methylation remains an open question.
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Network analysis of co-expressed genes may help in
identifying gender-specific cellular rewirings in normal and
tumor tissues. Our results show thatmost of the networkmodules
are preserved between genders, in agreement with previous work
(Melé et al., 2015), in both types of tissues. The reasons for the
different degrees and modalities of gene module preservation, in
tumor and normal tissues, remain to be studied in the future.
Nevertheless, we found genemodules preferentially associated for
males in GC and for females in TC further associated with cancer
histological subtypes.

The normal tissue surrounding the tumor can be influenced
by pro-inflammatory signals released by tumors, representing
an intermediate state between tumor-free healthy tissue and
established neoplasms (Aran et al., 2017). Nonetheless, our
analysis of the tumor-normal differential transcriptome found
that a significant fraction of the DEGs were oncogenes, as
previously found (Pranavathiyani et al., 2019). We also found
that the most affected sex in each cancer shows an under-
expression of TSGs in tumors, which is an important cancer
hallmark (Hanahan and Weinberg, 2011). The same result was
not observed for the opposite sex, supporting the hypothesis
that TSG inactivation or deregulation may occur in the tumor
tissues of the most susceptible gender. This result reinforces
that genders may follow different carcinogenic programs, and
therefore appropriated and differentiated therapeutic strategies
may be considered (Ma et al., 2016; Yuan et al., 2016;
Buoncervello et al., 2017). In TC, the female-specific tumor-
normal DEGs over-expressed in normal tissues were involved
in the same immune-related pathways as the male-specific
DEGs over-expressed in tumors. This result may highlight some
still unknown predisposing elements that make females more
susceptible to TC.

In summary, we were able to identify the gender-specific
expression landscape in normal and tumor tissues of the
thyroid and stomach. We expect that these results provide novel
insights in the understanding of the gender-differential risk
underlying these cancers.
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