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Abstract: The name of individuals has a specific meaning and great significance. Individuals’ names
generally have substantial gender differences, and explicitly, Bengali names usually have a solid
sexual identity. We can determine if a stranger is a man or a woman based on their name with
remarkably suitable precision. In this research, we primarily conducted a thorough investigation into
gender prediction based on a person’s name using DL-based methods. While various techniques
have been explored for the English language, there has been little progress in the Bengali language.
We address this gap by presenting a large-scale experiment with 2030 Bangladeshi unique names. We
used both convolutional neural network (CNN)- and recurrent neural network (RNN)-based deep
learning methods to infer gender from the Bangladeshi names in the Bengali language. We presented
the one-dimensional CNN (Conv1D), simple long short-term memory (LSTM), bidirectional LSTM,
stacked LSTM, and combined Conv1D and stacked bidirectional LSTM-based models and evaluated
the performance of each scheme using our own dataset. Experimental results are analyzed on the
basis of accuracy, precision, recall, F1-score, ROC AUC score, and loss performance metrics. The
performance evaluative results show that Conv1D outperforms with 91.18% accuracy, which is likely
to improve as the size of the training data grows.

Keywords: NLP; gender prediction; gender classification; feature extraction; deep learning; LSTM;
CNN

1. Introduction

Bengali, commonly known as Bangla, is a widely spoken language in Bangladesh as
well as India’s eastern regions (West Bengal and Kolkata). Bengali is the native language
of more than 228 million people and ranks sixth in the world in terms of native speakers.
Bengali speakers are 265 million worldwide, placing it sixth in terms of total speakers [1,2].
Nowadays, Bangla natural language processing (BNLP) has become a focal point in the
area of NLP and AI for both academic and industrial researchers [3–6]. As a preprocessing
step in many AI and NLP applications, gender recognition of names is required. It can
help to improve the performance of applications such as coreference resolution (discover
all phrases in a text that refer to the same item), machine translation (transforming a text
from one natural language to another), automatic query replying, content-based ad, and
automatic retrieval of specific information, etc. Person’s names have important relevance
in several sectors since they are an essential element of social groups. Many tasks, such
as testing for fairness using machine learning algorithms for content recommendation,
need knowledge of users’ demographic information, which includes gender [7,8]. As a
result, those registered users who do not reveal their gender must be inferred by using
their information, such as name provided during the registration process. We proposed
various approaches for automatic gender prediction from a person’s name, described in
detail in Sections 5 and 6. At present, many academic and commercial investigators have
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been studying and exploring the automated identification of human names [9–12]. It is
known from the literature reviewing that many researchers of academic institutions and
industries have been working on NLP using AI, ML, and DL-based algorithms, but to our
knowledge, we did not find many research works on gender inference from names. The
majority of previous works available in the literature have focused on English, ignoring
other languages such as Bangla. The currently available software for determining the sexual
identity of people uses dictionary lookup algorithms. Currently, there is no freely available
system/method to determine the sexual identity from Bangla names for research, industrial,
or other uses. Many attempts are also being made to make the Bangla language more
accessible on the web and in technological areas. CNN- and LSTM-based classification
approaches find use in a large number of NLP tasks and other machine learning applications
specifically for text and time sequence data [13–16]. Our main contributions are Bangla
name data collection, cleaning and preprocessing of collected data, preparation of a suitable
dataset of Bangla names, an in-depth inspection of different word-level characteristics
of Bangladeshi names in the Bengali language that differentiate between the two sexes,
identification of the attributes that are very useful in classification, and presentation of a
state-of-the-art gender identification technique based on CNN and LSTM. This research is
mostly concerned with the gender recognition of Bengali names. In this paper, we built
Conv1D, LSTM, bidirectional LSTM, stacked LSTM, and combined Conv1D and stacked
bidirectional LSTM-based gender classifier and critically evaluated the performance of each
classifier using our prepared own dataset through the analysis of the values of accuracy,
precision, recall, F1-score, ROC AUC score, and loss metrics. The following is a breakdown
of the paper’s structure. The related works will be covered in the second section, details
of dataset preparation are mentioned in the third section, the proposed framework for
the development of the gender classifier is presented in Section 4, and the description
of the DNN-based experimental models will be introduced in the fifth part. The sixth
section of this article will discuss the experimental setup and procedure, and analysis of
the outcomes of the developed DNN-based gender classifiers will be presented in Section 7.
The performance comparison and discussion will be covered in Section 8, and the last
portion will summarize the advantages and draw conclusions for future research.

2. Related Works

In this section, some relevant works are described briefly. The authors of [17] focused
their study on gender identification of English names using different machine learning
algorithms, including support vector classifier, naive Bayes classifier, decision tree classifier,
and maximum entropy classifier. SVM classifiers and naive Bayes classifiers are two of
the most effective ML-based models. Authors did related work in [18] to recognize the
Chinese organization names automatically based on conditional random fields. Authors
proposed several machine learning approaches such as LSTM and BERT to predict users’
genders based on their first names and conducted their experiment on a very large real-
world dataset of 21M unique first names in [19]. They found that genders can be classified
very effectively using the composition of the name strings and also demonstrated that the
performance could be further enhanced when utilizing both the first and the last names
through the dual-LSTM algorithm. The authors of [20] looked at and used feed-forward and
recurrent deep neural network models to classify gender based on the first name, including
MLP, RNN, GRU, CNN, and Bi-LSTM. The models are trained and evaluated using a
dataset of Brazilian names. To assess the models’ performance, they looked at the accuracy,
recall, precision, and confusion matrix. The findings show that gender prediction can be
made using a feature extraction method that looks at names as a group of strings and that
some models can correctly identify gender in more than 90% of cases. Authors proposed a
method in [21] based on three types of features: word endings, character n-g, and dictionary
of names, all of which are integrated with a linear supervised model to determine a person’s
gender based on his or her full name. They conducted a large-scale experiment on a dataset
of 100,000 Russian full names from Facebook and found that the suggested simple and
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computationally efficient technique produces outstanding results, with an accuracy of up
to 96%. In [22], the authors proposed a support vector machine (SVM)-based classification
method for predicting the gender of Indian names. They discovered different characteristics
based on morphological analysis and then proposed a unique technique of combining these
traits with n-g suffixes, which outperforms the baseline approach significantly. The system
achieved an F1 score of 94.9%, according to the authors of this article. In [23], the authors
made an investigation on gender recognition for characters in text. Authors demonstrated
that they could detect a character’s gender based on the variations in the words when a man
or a woman is mentioned in the text, besides the word characteristics of a character’s name.
A large number of significant words with gender differences, gender bias feature words,
and gender bias personal appellations are obtained depending on different explanations
of males or females in numerous perspectives, and finally, authors proved that gender
bias feature words have a better description of different gender roles than gender bias
personal appellations. Authors in [24] systematically compared the three most widely used
DNNs- CNN, GRU, and LSTM- on a wide range of NLP tasks, including sentiment/relation
classification, textual entailment, answer selection, Freebase question-relation matching,
Freebase path query answering, and part of speech tagging. They discovered that for text
classification tasks, CNNs and RNNs provide complimentary information and that which
architecture performs better depends on how essential it is to interpret the entire sequence
semantically. They also recommended that optimizing the hidden size and batch size is
critical for excellent CNN and RNN performance. The authors also tested CNN and RNN
for relation classification and found that CNN outperformed RNN. Both authors of [24]
and [25] agreed that CNN should be preferred over GRU/ LSTM for lengthy sentence
classification. In [26], authors introduced three neural network-based approaches for
Twitter sentiment analysis. They evaluated three proposed methods based on different
supervised classifiers: gated recurrent unit neural network (GRU), convolutional neural
network (CNN), and support vector machine (SVM) classifier and demonstrated that
GRU-based solution achieved the best macro-averaged F1-score and also has the best
micro-averaged F1-score. Important similar works from the literature are summarized
in Table 1.

Table 1. Summary of the literature review.

Article Origin of
Names Language Processing

Methods Dataset and Results

Q. Shuai et al. [17] Chinese English

Naïve Bayes,
support vector,

decision tree, and
maximum tree

classifier-
based models.

NLTK (Natural Language
Toolkit) dataset with

7944 entries is used for
English names. These

models achieved around
72%, 73%, 71%, and 69%
accuracy, respectively.

Y. Hu et al. [19] USA English

Character-based
machine learning
models such as

LSTM and BERT.

A dataset of 21M unique
first names from SSA and
YAHOO data. LSTM and

BERT-based different
models obtained

approximately 87% and 88%
accuracy, respectively.



Appl. Sci. 2023, 13, 522 4 of 14

Table 1. Cont.

Article Origin of
Names Language Processing

Methods Dataset and Results

C. B. Rego et al. [20] Brazilian English

DNN-based
models, including
MLP, RNN, GRU,

CNN, and
Bi-LSTM.

The dataset consists of
100,787 Brazilian names, of
which 54.82% are female

names and 45.18% are male,
based on 2010 CENSO data.
CNN, Bi-LSTM, RNN, MLP,

and GRU-based models
achieved 92%, 95%, 93%,

86%, and 94%
accuracy, respectively.

A. Panchenko et al. [21] Russian English

Statistical models
based on one type

of features:
endings, character

trigrams, and
dictionary.

A dataset of 100,000 Russian
full names from Facebook.
Accuracy of up to 96% is

obtained from a combined
model:

endings + 3-g + dictionary.

A. Tripathi et al. [22] Indian English

Support vector
machine

(SVM)-based
different

classifiers.

A dataset of 2000 Indian
names with almost equal

numbers of Gujarati, Punjabi,
Bangla, Hindi, Urdu, Tamil,

and Telugu names. The
compiled training data

contained 890 female and
1110 male names. Achieved
maximum F1 score is 94.9%.

3. Dataset Preparation

We prepared a dataset for NLP tasks containing 2030 data samples of Bengali names
and corresponding gender, both for females and males. In our dataset, there are 1029 names
of the male gender and 1001 names of the female gender. The data samples are collected
from different sources such as Wikipedia, baby name suggestion websites, etc. Mainly we
collected the names and corresponding gender of famous poets, singers, athletes, baby
names, and other well-known persons in Bangladesh. Our dataset is publicly available
in the Hugging Face (https://huggingface.co/datasets/faruk/bengali-names-vs-gender?
fbclid=IwAR1lT_GGiWRquGAJ4tefNSUqQj8OuCeTCiaOY1t_79SbLdq8Pv94W4Fto7Y, ac-
cessed on 26 December 2022). Full documentation and dataset specifications are also
provided in the repository. The dataset in CSV format has two columns, namely Name and
Gender. We classified the data into two categories, which are Male and Female. Each row
has two attributes. The first one is name, and the second one is gender. The name attribute
is in utf-8 encoding, and the gender attribute has been signified by 0 and 1; 0 is used for
male, and 1 is for female. We did not consider only diminutive names, all kinds of names
that means short, medium, and large size names are available in our dataset containing one,
two, and three string, respectively. We did not perform augmentation to our collection by
multiplying the number of names. This whole dataset was prepared and cleaned manually
for our work. Our prepared dataset is graphically depicted in Figure 1.

https://huggingface.co/datasets/faruk/bengali-names-vs-gender?fbclid=IwAR1lT_GGiWRquGAJ4tefNSUqQj8OuCeTCiaOY1t_79SbLdq8Pv94W4Fto7Y
https://huggingface.co/datasets/faruk/bengali-names-vs-gender?fbclid=IwAR1lT_GGiWRquGAJ4tefNSUqQj8OuCeTCiaOY1t_79SbLdq8Pv94W4Fto7Y
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4. The Proposed Framework

The overall system architecture, including major components of the proposed method,
is shown in Figure 2. The detail of each component is described in the following subsections:
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Figure 2. Flow diagram of gender classification from Bengali names.

4.1. Char-Level Sequence Generator

We converted all the names in our dataset to char-level sequences. For generating
sequences, we choose the maximum length of the sequences to be 29. If any sequence is
less than the maximum length, we padded zero as the default value.

4.2. Char-Level Embedding

Embedding is one of the most important parts of working with text data. We used
character-level embedding for the following two reasons: Firstly, the majority of the names
in our dataset are short; that is, most of them contain only one string, which may be the
person’s first name or last name. Secondly, occurrences of characters in a person’s name
largely depend on the person’s gender. Normally, the suffix (‘
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prevails at the end of a female name.

4.3. Feature Extractor and Binary Classifier

To learn the features from the embedding, we performed several experiments using a
convolution neural network (CNN) as well as with long short-term memory (LSTM) and
their variations. Table 1 shows the detailed configurations of those feature extractors. We
used a binary classification layer with a sigmoid activation for our classification purpose.
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5. DNN-Based Models

A brief introduction of CNN- and LSTM-based DNNs used in this research work is
provided in this section.

5.1. Convolutional Neural Network

Convolutional neural network (CNN/ConvNet) is a multiple-layer deep neural net-
work that is commonly used in the design and calculation of natural language processing
(NLP)-related tasks, including word segmentation (WS), information extraction (IE), re-
lation extraction (RE), named entity recognition (NER), parts of speech tagging (POS),
coreference resolution, parsing, word sense disambiguation (WSD), speech recognition,
text to speech (TTS), machine translation (MT), etc. [27]. The idea behind using CNNs in
NLP is to make use of their ability to extract features that capture salient information about
an input. CNNs are applied to embedding vectors of a given sentence with the hopes that
they will manage to extract useful features, such as phrases and relationships between
words that are closer together in the sentence, which can be used for text classification.
The NLP CNN is usually made up of 3 or more 1D convolutional and pooling layers,
unlike traditional CNNs. In this work, we used one-dimensional CNN (Conv1D) and a
combination of Conv1D and stacked LSTM-based models.

5.2. Long Short-Term Memory

Long short-term memory (LSTM) networks are a kind of RNN that can learn long-
term dependencies. It is essentially their default behavior to remember information for
longer durations. LSTM holds promise for any sequential processing tasks, including
language modeling, machine translation, handwriting recognition and generation, speech
recognition, speech synthesis, etc. [28,29]. Several models based on LSTM, Bi-LSTM, and
stacked LSTM are used in this paper.

5.3. Loss Function

The purpose of loss functions is to compute the quantity that a model should seek to
minimize during training. Since there are only two label classes (assumed to be 0 and 1) in
this work, we used the binary cross-entropy loss function, which is a kind of probabilistic
loss function that computes the cross-entropy loss between true labels and predicted
labels. For each example, there should be a single floating-point value per prediction. The
binary cross-entropy loss function calculates the loss (L) of an example by computing the
following average:

Loss = − 1
output size

output size

∑
i=1

yi·logŷi + (1 − yi)·log(1 − ŷi) (1)

where ŷi is the ith scalar value in the model output, yi is the corresponding target value,
and outputsize is the number of scalar values in the model output [30].

5.4. Optimizer

The Adam optimizer, which implements the Adam algorithm, was utilized in this
research. Adam optimization is a stochastic gradient descent approach based on adaptive
first- and second-order moment estimation. This technique is computationally efficient,
requires minimal memory, is insensitive to diagonal rescaling of gradients, and is well
suited for large data/parameter issues [31].

5.5. Model Configurations

Five distinct deep neural networks based on LSTM, Bi-LSTM, and Conv1D were
employed in total. Table 2 lists the technical specifications for each model. In addition,
from Figure 3a through Figure 3e, each model’s layer visualization with data dimension
is depicted.
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Table 2. Experimental setting of different DNN models.

Model
No.

Model
Name

Embedding
Layer

Conv1D
Layer

MaxPooling1D
Layer

LSTM
Layer

Bi-LSTM
Layer

Fully
Connected

Layer

Dropout
Layer

Classification
Layer

Model 1 LSTM Based
Model

Dimension: 64 N/A N/A Layer: 1
Unit: 64

N/A Layer: 1
Unit: 256

Layer: 1
(40%)

Unit: 1
(Sigmoid)

Model 2 Bi-LSTM
Based Model

Dimension: 64 N/A N/A N/A Layer: 1
Unit: 64

Layer: 1
Unit: 128

Layer: 1
(40%)

Unit: 1
(Sigmoid)

Model 3 Stacked
LSTM Based

Model

Dimension: 64 N/A N/A Layer: 2
Unit:

32 (L1),
64 (L2)

N/A Layer: 1
Unit: 256

Layer: 1
(40%)

Unit: 1
(Sigmoid)

Model 4 Conv1D
Based Model

Dimension: 64 Layer: 3
Filter:

16 (L1),
32 (L2),
64 (L3)

Filter Size: 3

Layer: 2
Pooling Size: 2

N/A N/A Layer: 1
Unit: 256

Layer: 1
(40%)

Unit: 1
(Sigmoid)

Model 5 Conv1D
&

Stacked
Bi-LSTM

Based Model

Dimension: 64 Layer: 3
Filter:

16 (L1),
32 (L2),
64 (L3)

Filter Size: 3

Layer: 2
Pooling Size: 2

N/A Layer: 3
Unit:

64 (L1),
128 (L2),
256 (L3)

Layer: 1
Unit: 128

Layer: 1
(40%)

Unit: 1
(Sigmoid)

6. Experimental Setup

We have tried different deep learning-based algorithms to investigate the adaptability
and improvements for various approaches. Five different classifiers have been trained and
tested on the test set for comparing and selecting the suitable classifier as the best one for
classifying gender form name data. We have executed the whole experiment in python
3.8. For training the deep learning models/classifiers, we have used keras with tensorflow
(version 2.4.1) backend. We have used it to train, validate, and infer the predictions for test
data to calculate the performance metrics. We have also used pandas (version 1.3.5) for
handling, and preprocessing the dataset, matplotlib for visualizing the dataset, scikitlearn
has been used for calculating the performance metrics. In order to evaluate the performance
of our proposed approach, we conducted five different experiments using the dataset with
total data point 2030, shown in Table 3. In every algorithm, our data train test split was
80/20; that is, 80% of the total data was used for training, and 20% was for testing. We have
followed the 10-fold cross-validation method to evaluate how well our model can work.
There is no overlap between the train and test datasets.

Table 3. Splitting of dataset for training, validation, and testing.

Data Type Data Point

Training 1643
Validation 183

Test 204

7. Prediction and Performance Analysis

Using the training dataset, we built the experimental models. We tuned the essential
parameters while constructing the models to make them more accurate and reliable. Once
the models were completed, we ran our test dataset to assess the inferring methodology
for gender prediction from Bangla names. We have achieved a satisfactory performance
in each experiment in terms of accuracy, precision, recall, F1-score, ROC AUC score, and
loss performance metrics, which is clearly demonstrated in Table 4. Table 5 depicts the per-
centage accuracy values for training, validation, and test dataset. The percentage accuracy
of trained networks is also graphically illustrated in Figure 4a–e, and the comparison of
accuracy values for training, validation, and test dataset are clearly depicted in Figure 5.
From both tabular and pictorial representation, it is definitely depicted that Conv1D-based
DNN provides maximum accuracy of 95.65%, 93.44%, and 92.16% for training, validation,
and test dataset, respectively. It is clearly shown from Table 3 that Conv1D and the combi-
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nation of Conv1D and stacked Bi-LSTM-based DNNs are more effective, whereas simple
LSTM-based DNNs had the worst performance among the five variations of CNN and
LSTM-based models.
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Table 4. The performance of gender detection from Bangla name data.

Model Name Accuracy Precision Recall F1-Score ROC AUC Score

LSTM-Based Model 0.715686 0.638712 0.980198 0.773438 0.718254
Bi-LSTM-Based Model 0.872549 0.878788 0.861386 0.870012 0.872441

Stacked LSTM-Based Model 0.813725 0.811881 0.811881 0.811881 0.813708
Conv1D-Based Model 0.921569 0.929293 0.910891 0.920021 0.921465

Conv1D and Stacked Bi-LSTM-Based Model 0.921569 0.938144 0.900991 0.919192 0.921369

Table 5. Accuracy of five different classifiers for training, validation, and test dataset.

Gender Classification Model Name
Prediction Accuracy

Training Validation Test

LSTM-Based Model 83.51% 75.96% 71.57%
Bi-LSTM-Based Model 88.68% 85.79% 87.25%

Stacked LSTM-Based Model 86.62% 81.97% 81.37%
Conv1D-Based Model 95.65% 93.44% 92.16%

Conv1D and Stacked Bi-LSTM-Based Model 94.96% 90.26% 92.16%

8. Experimental Results and Discussion

It is a very difficult and critical issue to extract information from Bangla names. In
this work, five deep learning classifiers, such as LSTM, Bi-LSTM, stacked LSTM, and
Conv1D and stacked Bi-LSTM, have been applied using our own dataset. To evaluate the
effectiveness of our developed classifier models perfectly, we examined several performance
metrics: accuracy, precision, recall, F1-score, and ROC AUC score. The tabular presentation
of the performance metrics’ values of the five proposed systems, along with the comparison,
are neatly shown in Tables 4 and 5. Table 6 represents the summary of the experimental
results. It is clearly depicted from Table 4 that the ConvNet-based model outperforms all
in terms of accuracy, precision, recall, F1-score, and ROC AUC score performance metrics.
From Table 5, it is also shown that the prediction accuracy of the Conv1D-based model
is high for training, validation, and test dataset. The CNN-based system achieved the
highest accuracy, 92.16%, and foremost, an F1 score of 0.920, which is clearly presented
in Table 6. On the contrary, the LSTM-based system provides minimal performance with
an accuracy of 71.57% and an F1 score value of 0.773 only. In addition, the graphical
representation of the accuracy and loss values of the five different models are evidently
displayed in Figures 4–6. From the experimental results, we can conclude that the Conv1D-
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based classifier is very much robust and gives the best output among all of these. The
implementation and trained models of this research are publicly available at the GitHub
(https://github.com/MdHumaunKabir/Gender-Prediction-from-Bangla-Names, accessed
on 26 December 2022).
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Table 6. Comparison among the experimental results.

Best Achieved
Accuracy

Best Performing
Classifier

Second Best Performing
Classifier Least Accuracy Least Performing

Classifier Best F1 Score

92.16% Conv1D-Based
Model

Conv1D and Stacked
Bi-LSTM-Based Model 71.57% LSTM-Based

Model 0.920

In Section 2, we presented some related works. From this section, it is shown that
there is no study available in the literature that classifies gender from Bangladeshi names
in the Bengali language. This is the first research to infer gender from Bangladeshi names
in the Bengali language using our own dataset. For this reason, it is difficult to compare our
achieved results with previous works. We looked into the challenge of determining gender
from a user’s first name in this study. We suggested character-based machine learning
models and proved that our models are able to infer the gender of users with much higher
accuracy. In different cultures, only initial names may have diverse gender connotations. In
this case, we illustrated that using both first and last names may be effective. One drawback
of our system is that if the first name is unisex, determining gender might be difficult. It is
beneficial to utilize both first and last names, or the first name and content information,
in this circumstance. In the future, we intend to investigate whether integrating these
entire factors (first and last names, as well as content information) can provide us even
better outcomes.

9. Conclusions and Future Work

Automatic gender detection can be beneficial for gender analysis in any sector/ service
to discover gender bias or inequality, specifically to understand women’s position in tech,
media, professional domain, academic domain, etc. Additionally, it will be a smart way to
predict the gender from the name, which will be helpful for gender-based data analysis
using text data. If the dataset is increased, we hope to get better performance by using
Conv1D and a combination of Conv1D and stacked Bi-LSTM. Other methods can also
be tried for better results. In the near future, we will work to develop an online-based
name-to-gender inference service API that will be available on the Internet for Bengali and
English names. Other applications and users can utilize the API. We will also aim to collect
additional data and employ other innovative algorithms and technologies to strengthen
the models.
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