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A Proofs

A.1 'Wage Equation

In this subsection, we analytically derive the closed form solution of the equilibrium wage equation.
The first step is to find the partial derivative with respect to the wage of the value of a job in a
firm with productivity p for a worker with ability e.

Applying the Leibniz integral rule in (1).
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Integrating (17) between w(pmin, €) and w(p, €).
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Using the surplus-splitting rule (3), the value of the job for the worker (1), the value of the job

for the firm (2) and rearranging:
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Noting that
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and taking derivatives with respect to p
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Then, plugging in equation (18):
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Rearranging, we have a first order differential equation,
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Integrating (20) between pyi, and p, and noting that the lowest productivity firm will produce no

surplus < w(Pmin, €) = Pmin€, straightforward algebra shows that:
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Separating the integral in a convenient way and noting that:
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it solves as:

(p+0+MH(p))°
(p+0+X\)°

c(1=B3)p+6+MH 5/ (p+6+MAP)) " dp +

min€ —

w(p,e) =

min

e(p+d+MH dp'.

/ 8<(p—|—5+)\1 ))*ﬁp')

Rearranging, we get the wage equation as a function of individual ability (&), friction patterns (&

and A1) and firm’s productivity (p).
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A.2 Minimum Productivity

Now we show that p,.;, is independent of €. pu;, is the minimum observed productivity level.
Firms with productivity pm;, make zero profit, and therefore the whole productivity goes to the
worker, who receives epnin. This wage exactly compensate the worker to leave the unemployment,
Therefore:
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Using the surplus splitting rule (3):
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This is the value function for a worker of a given €, so we can rearrange everything in terms of p.
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Pmin€ = b€+€()\0—)\)

Pmax
8 /
Pmi

min

1—
~B) " (oot MHP) Tdp
sty W)

€ becomes irrelevant:

v [V (p+ 6+ M H(P)” dp
(p+ 6+ AH(p))=

Pmin = b+ (Ao — A1) H(p')) u

Pmin

Note that pni, is a function of the distribution of p and the parameters of the model. The
intuition, in discrete time, is clear because the value of being employed and the value of being
unemployed are infinite additions of flows which are linear on ¢ (w(e,p) and be). Each flow is
multiplied by the discount rate and the probability of being in each state, that do not depend
on ¢. Hence the value of being employed and the value of being unemployed are both linear in €.

This condition must hold in order to avoid sorting between p and ¢.

A.3 Duration model - Maximum Likelihood Specification

The unconditional likelihood of job-spell durations is:

awzjlmmmmw.



Pmax 1 + )‘_1 h
L(t) :/ —( = J )_ () [0 4+ M\ H (p)] e OFMHDIE gy,

Rearranging,
14 At)§ [Pma= 1
E(t) _ #/‘ T lerMHDIE h( )d

Changing the variable within the integral, = [6 + A1 H(p)] t. After straightforward algebra we

get:
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where F(t) = [, “—duz is the exponential integral function WM.
Our sample covers a fixed number of periods, so that some job durations are right censored,

and other job spells started before the panel’s beginning. This means that the exact likelihood

function that takes into account these events is:
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where ¢; is a truncated spell indicator and H; is the time period elapsed before the sample.
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The same is true for [ ;o L(t)dt. Then the likelihood takes the following form:
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B Robustness Checks

B.1 Allowing for Between-Firms Bertrand Competition

In the model presented in Section 2, workers do not have the option of recalling old employers. In

this subsection we estimate the model allowing recalling and Bertrand competition between firms

as in Cahuc, Postel-Vinay and Robin (2006).  has a different interpretation in this model, it is

still a surplus-splitting parameter where the surplus has been defined in terms of a time varying

outside option given by a poaching firm.%*

The estimated bargaining power are smaller than in the model without Bertrand competition:

now the weighted average is 21.8 percent. We find similar patterns in terms of gender, than in

the model without renegotiation. Women are found to have smaller bargaining power than men

64 For the exact formulation of the bargaining scenario and a discussion on its implication see Cahuc, Postel-Vinay

and Robin (2006).



Table 14: Robustness Check: Allowing for Renegotiation

WOMEN | MEN

BCPR BCPR
MANUFACTURING | Low-Q 0.212 0.182
HicH-Q 0.163 | 0.172
CONSTRUCTION | LOw-Q 0.223 | 0.289
Hicu-Q 0.182 | 0.206

TRADE Low-Q 0.238 | 0.254
Hicu-Q 0.203 | 0.215
SERVICES Low-Q 0.325 | 0.341

HicH-Q 0.241 0.231
Note: Boppg is the Nash bargaining power of the worker in the model with renegotiation proposed in
Cahuc, Postel-Vinay and Robin (2006). Sopp are recovered by simulated method of moments.

in most of the groups. As in the model proposed in this paper, female workers are only found to
have larger [ in services and in manufacturing and then only in low-qualification occupations.

Workers in low-qualification occupation are found to have higher bargaining power than work-
ers in high-qualification occupation. This results have been found also estimating the model
without renegotiation but it is different from what has been found by Cahuc, Postel-Vinay and
Robin (2006), who estimate a similar model with French data.

The counterfactual decomposition works in the same way as the decomposition described in
Section 5. We first calculate the mean wages of female workers, as a function of female wage

determinants, and we sequentially change each parameter until reaching the male mean wages.

Table 15: Gender Wage-Gap decomposition - Allowing for Renegotiation

COUNTERFACTUAL SECTORS
MEAN-DAILY WAGES M C T S

w AT, 6™ M M) 1190.3 150.0 119.2 155.9
Hicu w A\ oM M gy 11829 1252 1151 162.7
QUALIFICATION |  w(AY, 6™ ~F pF) 1163 91.3 799 957
OCCUPATIONS wA\M, 67 47, 7)Y 11003 805  70.1  79.8
w(\, 67 ~F, B 106.5 828 67.7 88.6
w AT, 6M M 37y 11091 96.3 841 888
Low w A\ M AM gEY 11266 679 805 81.6
QUALIFICATION | w(AM, 6™, ~F, g5 83.4 470 51.8 482
OCCUPATIONS w N\, 67 AF pE) 69.6 48.4 451  45.7
) 743  53.0 475 49.1




The decomposition is similar to the one that comes out from the model without Bertrand
Competition. Now 6.2 percent of the wage gap is explained by differences in the bargaining
power, slightly less than before. Female workers in high qualification occupations are suffering
more wage discrimination. Differences in productivity are responsible for most of the wage gap.
Allowing for Bertrand competition also increases the effect of differences in destruction rates,
decreases the effect of differences in job-offers arrival rates, and the net effect of friction is now
more important.

Details of the simulations:

The model used for simulations is a simplified version of the Cahuc, Postel-Vinay and Robin

(2006) model, where the worker heterogeneity has been omitted.%

Bepr are recovered by the simulated method of moments.

Simulations use the punctual estimates of Ay, 9, v,,, 7, and a; for every sector and worker

group, reported in Section 3.
e We assume that the primitive distribution of firm’s productivity is log-normal.

32 moments have been matched

— The mean-wages of female and male workers in each occupation group and in each

sector.

— The mean-productivity of the endogenously truncated distribution of firms faced by

female and male workers in each occupation group and in each sector.

e Using condition (5), the unemployment rate of each group as reported in EUROSTAT®® and
the estimates of § for each group, we recover an estimate of \y for female and male workers

in each occupation group and in each sector.

65Given that we match sample means, and the wage equation is linear in worker ability, worker heterogeneity
does not play any role in these simulations.

MATA codes for simulating the model previously described are available from the author upon request.

66The mean unemployment rate between 1996 and 2005 was 9.64 percent for females and 9.11 percent for males
(see EUROSTAT).



B.2 Wage Gap Decomposition - Inverse Order

The decomposition results depend upon the sequence of decompositions implemented. This is
because each sequence stands for a different series of counterfactual wage distributions. We
suggest an order of decomposition for which we think the sequence of counterfactuals is of interest.
Our sequential decomposition involves five components for each group. It would be beyond the
scope of this paper to report all the conceivable 8 x 5! = 960 permutations of the sequence of
decompositions. In any case, we also estimate an alternative sequence of our decomposition, in

reversed order, as a robustness check. Results are presented in Table 16.

Table 16: Counterfactual wages - Inverse Decomposition

COUNTERFACTUAL SECTORS
MEAN-DAILY WAGES M C T S

w AT, 6™ AM H(p)M, M) [190.3 1509 119.2 156.3
HiGH w(\, M AM H(p)M, M) 1 208.9 187.1 127.1 137.9
QUALIFICATION | w(A, 6% 4™ H(p)M, M) | 194.8 1745 118.7 119.7
OccuPATIONS | w(AL, 6% +F H(p)™,pM) | 158.1 1324 90.1  75.3
w N\ 65 AF H(p)F, pM) | 131.0 1223 952 70.3
w( A0 4F H(p)F,BY) 1057 828 678 874
w N\, 6™ AM H(p)M, M) 1109.2 966 849 885
Low w A, M AM H(p)M, M) 1 119.9 1084 82.1  78.6
QUALIFICATION | w(AL, 6% 4™, H(p)™, ™) | 109.6 110.7 76.0 758
OccupPATIONS | w(A, 6% A% H(p)™, pM) | 778 887 758 61.7
) | 73.7 81.6 63.6 445

w\ 65 AT H(p)F,pY) | 76.9 533 476  49.1

This alternative decomposition is qualitatively similar to the one that comes out from the
original order. Now 18.1 percent of the wage gap is explained by differences in the bargaining
power, slightly more than before. As before, female workers in high qualification occupations are
suffering more wage discrimination. Differences in productivity are still responsible for most of
the wage gap, 47 percent in the case of low-qualification occupations and 52 percent in the case

of high-qualification occupations.

B.3 Detecting Discrimination - Traditional Approach

In order to compare different strategies to detect wage discrimination, we perform the traditional

approach using Mincer-type wage equations. As can be seen in Table 17, women have large wage
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differentials. Controlling for observable characteristics, they receive wages, on average, 21 percent
lower than men. This difference is significant and consistent with what has been found in previous
research: Blau and Kahn (2000), with OECD data reports a difference of 25.5 percent between
male and female mean wages, while Fitzenberger and Wunderlich (2002) with the same data as in
this paper, but using quantile regression, the estimated German gender wage gap ranges between
16 percent and 25 percent depending on the job’s qualification.

Oaxaca-Blinder Decomposition

Using the results presented in Table 17, we calculate a Oaxaca-Blinder decomposition, which
basically decomposes the wage-gap into differences in observable and unobservable characteristics.
The counterfactual female mean-wage has to be interpreted as the mean-wage that women would
have if they had the male distribution of observable characteristics. Therefore, the difference
between the counterfactual female mean-wage and the observed women mean-wage is the portion
of the gap understood as discrimination.

Following this approach, we would conclude that women are being discriminated against. They
are receiving wages which are on average almost 15 percent lower than wages of similar men in
terms of observable characteristics. These results are slightly different to those obtained in this
paper.

Additional References:

Abramowitz, M., and. A. Stegun (1972), "Handbook of Mathematical Functions, with For-
mulas, Graphs, and Mathematical Tables" National Bureau of Standards Applied Mathematics
Series, Vol. 55. Washington, DC: U.S. Government Printing Office.

Fitzenberger, B. and Wunderlich, G. (2002). "Gender Wage Differences in West Germany: A

Cohort Analysis", German Economic Review, 3(4) pp.379-414.
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Table 17: Mincer Wage Equations - Censored-Normal Regression. Maximum Likelihood Estimates

v=LoG(WAGE) | ALL MEN WOMEN
WoMEN | -0.211 - -
(0.0004) - -
IMMIGRANT 0.073 0.061 0.076
(0.0006) (0.0016) (0.0006)
HiGH-QUALIFICATION | 0.255 0.178 0.276
(0.0004) (0.0010) (0.0005)
AGE 0.056 0.068 0.054
(0.0002) (0.0004) (0.0002)
AGE2 | -0.001 -0.001 -0.001
(0.0000) (0.0000) (0.0000)
PRIMARY EDUCATION 0.236 0.257 0.234
(0.0004) (0.0011) (0.0005)
COLLEGE | -0.127 -0.082 -0.162
(INCOMPLETE) | (0.0014) (0.0028) (0.0015)
TECHNICAL COLLEGE 0.386 0.436 0.354
(cOMPLETED) | (0.0010) (0.0021) (0.0012)
COLLEGE 0.609 0.616 0.566
(0.0011) (0.0033) (0.0011)
UNIVERSITY DEGREE 0.757 0.819 0.700
(0.0011) (0.0027) (0.0012)
TENURE 0.017 0.025 0.015
(0.0001) (0.0002) (0.0001)
EXPERIENCE 0.033 0.021 0.036
(0.0001) (0.0003) (0.0001)
ParT-TIME | -0.638 -0.651 -0.608
(0.0007) (0.0010) (0.0011)
MANUFACTURING 0.178 0.175 0.103
(0.0008) (0.0016) (0.0010)
CONSTRUCTION 0.063 0.026 -0.081
(0.0013) (0.0029) (0.0014)
SERVICES 0.037 0.025 -0.023
(0.0009) (0.0017) (0.0011)
CONSTANT 2.500 2.189 2.599
(0.0029) (0.0066) (0.0031)
Pseupo R? | 47.23 30.92 52.53
SIGMA 0.38 0.48 0.34

Note: Std. errors are given in parentheses. Time Dummies included.
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