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Abstract
Establishing an association between variables is always of interest in genomic studies. Generation of DNA micro-
array gene expression data introduces a variety of data analysis issues not encountered in traditional molecular biol-
ogy or medicine. Frequent pattern mining (FPM) has been applied successfully in business and scientific data for
discovering interesting association patterns, and is becoming a promising strategy in microarray gene expression
analysis. We review the most relevant FPM strategies, as well as surrounding main issues when devising efficient
and practical methods for gene association analysis (GAA).We observed that, so far, scalability achieved by efficient
methods does not imply biological soundness of the discovered association patterns, and vice versa. Ideally, GAA
should employ a balanced mining model taking into account best practices employed by methods reviewed in this
survey. Integrative approaches, in which biological knowledge plays an important role within the mining process,
are becoming more reliable.
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INTRODUCTION
It is widely believed that thousands of genes and their

products (i.e. RNA and proteins) in a given living

organism function in a complicated and orchestrated

way. However, classical methods in molecular biol-

ogy generally worked on a ‘one gene in one experi-

ment’ basis and it implies a very limited throughput

so the overall picture of gene function is hard

to accomplish. In the past several years, a new tech-

nology, called DNA microarray, has attracted tre-

mendous interests among biologists. The DNA

microarray allows parallel genome-wide gene

expression measurements of thousands of genes at a

given time, under a given set of conditions and for

cells/tissues of interest. Generation of microarray

data introduces a variety of data analysis issues not

encountered in traditional molecular biology or

medicine. The data obtained from a series of micro-

array experiments is commonly in the form of an

N�M matrix of expression levels, where the N
rows correspond to various experimental conditions

(generally hundreds) and the M columns correspond

to genes under study (generally thousands).

Clustering and biclustering techniques are one

of the most used computational strategies for analyz-

ing microarrays [1, 2]. However, determining the

interactions that can exist between different genes

is not easily achieved by direct (bi)clustering solu-

tions, particularly because genes can participate

in more than one gene network. Thus, relationships

that could be identified by gene association

analysis (GAA) provide associations which do not

appear adjacent to each other in a one shot clustering

strategy [3–5].
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GAA is employed through the application

of sophisticated association mining methods.

These associations, usually represented in terms of

implication rules, describe how the expression of

one gene may be linked or associated with the

expression of a set of genes. Besides, it is also possible

to generate gene networks from discovered associa-

tions [6]. During the last decade the research com-

munity has focused on association mining methods

since they not only reveal interesting gene relation-

ships, but also are useful in integrative genomic stu-

dies [7]. In this sense, gene associations are also

evaluated according to its linkage to other informa-

tion obtained from several heterogeneous biological

data sources.

Independently of applying GAA on a single

source (microarray) or on an enriched one (micro-

array plus other biological information), finding

interesting gene associations is not a trivial task.

The intrinsic characteristics of the microarrays also

bring the curse-of-dimensionality dilemma to

GAA, and it is even more remarkable when one

incorporates other biological information to enrich

the final data model. In this survey, we focus on

GAA from a frequent pattern mining (FPM) per-

spective. FPM is related to the most costly task of

association mining methods, namely the enumera-

tion of all possible combinations of gene pairs.

Next, the extraction of rules from frequent subsets

of genes is straightforward.

This work focuses on three aspects: strategies,

scalability and biological soundness of the discovered

patterns. These issues are essential to achieve efficient

and practical GAA. Therefore, in this study we will

survey main concepts and issues, data structures and

algorithms that have already been proposed for

exploring associations on DNA microarrays, as well

as the most used strategies for evaluating biological

soundness of discovered patterns.

This article is organized as follows: in ‘Association

rules’ section, the main concepts related to associa-

tion rules are described. FPM strategies are presented

in ‘Mining frequent pattern’ section. ‘Using external

biological information’ section deals with well-

known biological data sources in order to improve

and evaluate the quality of discovered gene associa-

tion patterns, including examples of the associations

extracted from data. An overall compilation of FPM

methods and their strategies to extract biological

knowledge is presented in ‘Summary of FPM meth-

ods for GAA’ section. Finally, in ‘Conclusions’

section the most interesting conclusions and future

directions are summarized.

ASSOCIATION RULES
Concepts
Association rules have been extensively used with the

aim of describing interesting relationships between

variables in large datasets [8]. Next, the original asso-

ciation rule definition proposed by [9] is presented.

DEFINITION 1 (Association Rule). Let I¼
{i1, i2, . . ., im} be a set of m elements called items. A rule
is defined as an implication of the form X�!Y, where
X;Y � I and X\Y¼�.The left-hand side of the rule
is named antecedent and the right-hand side is named
consequent.

A typical application of association rules is the

analysis of the so-called supermarket basket data, in

which the goal is to find regularities in the customer

behavior in terms of combinations of products

that are purchased often together. In bioinformatics,

association rules can be used to reveal biologically

relevant associations between different genes,

between environmental conditions and gene expres-

sion or even between biological information

about genes and gene expressions [4]. For instance,

an association rule between genes in the form

geneA�!geneB; geneC could mean that when

gene A is overexpressed it is also very likely to

observe an overexpression of genes B and C.

Hypothesis formulated on the validity of some

concrete associations rules can be verified by correla-

tion coefficients, which provide a numerical estimate

of the association between two variables. Hence,

these are used to assess the association between

two gene expression profiles or to establish a con-

nection between two genes in a genetic network

[10]. Pearson’s Product Moment Correlation (Pearson’s

rho), Spearman’s Rank-order Correlation Coefficient
(Spearman’s rho) and Kendall’sTau are some of the

most used correlation coefficients.

Although they can help biologists to test a con-

crete association between two variables, in studies

based on microarrays there are huge datasets and

little prior knowledge about possible relationships

between variables. So, other methods, like FPM

techniques, are very useful to explore over the

intrinsic relations of data and to extract rules that

provide a better understanding of genes behavior

and their subsequent interactions.
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FPM concepts
Frequent itemsets play an essential role in many data

mining tasks. They are related to interesting patterns

in datasets, such as association rules.

DEFINITION 2 (Transaction) LetT ¼ ft1; t2, . . . ; tng be
a set of n subsets of items called transactions. Each transaction
inT identifies a subset of items.

DEFINITION 3 (Support of an itemset) The support of
an itemset X, support(X), is defined as the number of transac-
tions inTwhich contain the itemset X.

supportðXÞ ¼ ft 2 TjX � tgj

DEFINITION 4 (Frequent Itemset) Given a set of
items I ¼ fi1; i2, . . . ; img and a set of transactions
T ¼ ft1; t2, . . . ; tng, a subset of I, S � I, is called a frequent
itemset if S occurs in a percentage of all transactions inT that
exceeds a threshold, named minimum support.

FPM techniques provide methods to extract auto-

matically all the frequent itemsets from a dataset in

order to generate association rules from them. The

problem of enumerating the number of maximal

frequent itemsets in a dataset of transactions, given

an arbitrary support threshold, is an extremely costly

task [11]. As the search space contains exactly 2jIj

different itemsets, if I is large enough, then the

naive approach to generate and count the supports

of all itemsets over the dataset cannot be achieved

within reasonable time. Therefore, the task of disco-

vering all frequent itemsets is quite challenging.

In order to understand how to apply FPM algo-

rithms in the context of GAA, FPM concepts will

be related to gene expression data. What exactly

constitutes an item or a transaction depends on the

application and on the type of information to be

extracted [4, 5]. Commonly, the meaning of transac-

tion in terms of gene expression data is associated

with ‘overexpression’, i.e. only those overexpressed

genes will be understood to be included in the trans-

action. Nevertheless, other valid strategies could

be ‘underexpression’, ‘downregulation’, ‘upregula-

tion’ or involving time frames for further associa-

tions. Equivalently, the term frequent itemset is

related to frequent subset of genes. Figure 1 clarifies

the terminology, in which table T presents the

items (genes) that take part of every transaction

(experimental condition), only when they are

overexpressed.

Association rules extraction process
FPM tasks are only a part in the overall association

rules extraction process. The general schema of this

process is presented in Figure 2. The starting point

is a N�M matrix of gene expression values, where

the rows correspond to experimental conditions and

columns represent genes. In Phase 1, the matrix is

preprocessed. One reason for this data transformation

deals with the adaptation of gene expression values

to association rules mining, as these methods work

with binary values (discretization). A key factor for

determining which items belong to a certain transac-

tion concerns with gene expression properties

encoding [12]. Different expression properties

might be considered, such as overexpression, up-

or down-regulation or strong variation in order

to determine the items of a certain transaction

(Figure 1). For this purpose one can use statistical

methods to detect differentially expressed genes,

create different partitions by means a fixed threshold

[5, 13], or apply adaptive discretization methods

based on dynamic threshold selection policy [14].

Phase 2 has to do with the most costly task of

association mining methods: FPM. The main aim

is to extract all the frequent itemsets which support
exceeds a certain threshold given by the users (see

Definitions 3 and 4). The two most popular strategies

are: column–enumeration-based methods (take the

combination of genes as search space) and row-enu-
meration-based methods (search through the experimen-

tal conditions space). Due to the importance of these

methods, they are discussed in ‘Mining frequent pat-

tern’ section.

Once all the frequent itemsets have been

obtained, the generation of association rules is per-

formed in Phase 3. Any frequent itemset I of size

greater than one is divided into two itemsets: X
and Y, which will form the association rule

X�!Y if its support exceeds a given threshold

Figure 1: M is the gene expression matrix, previously
discretized (for instance, 1 means overexpressed, and
0 underexpressed). Experimental conditions C are in
rows, whereas genes G are in columns. T is the set of
transactions. Each transaction ci contains a subset of
items (genes).
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(Definition 5) and its confidence is high (Definition 6).

According to the type of GAA application, those

itemsets can represent relationships among different

semantic concepts, like genes, annotations, other

genomic information or even a labeled class

(cancer, noncancer).

DEFINITION 5 (Support of a rule) The support of
rule X�!Y with respect to the transaction set T is given
by the ratio:

supportðX�!YÞ ¼
supportðX [ YÞ
j T j

DEFINITION 6 (Confidence of a rule) The confidence
of rule X�!Y with respect to a transaction set T is given
by the ratio:

confidenceðX�!YÞ ¼
supportðX [ YÞ
supportðXÞ

Given a frequent itemset I, 2k � 2 association rules

can be generated from it, being k ¼ jIj. Hence, the

confidence helps to reduce the number of association

rules obtained, by selecting those with higher cred-

ibility among which a certain level of significance

given by the support is shown.

To manage the very large number of discovered

association patterns they have to be filtered, grouped

and organized. Therefore, Phase 4 is a necessary step

in order to allow researchers to focus only on the

most interesting association rules. External biological

information might also be used for classification pur-

poses [15].

Finally, in gene expression studies, the rules have

to be evaluated for verifying their biological signifi-

cance. For this purpose, prior biological knowledge

from the literature or open access biological databases

Figure 2: Association rules from gene expression data extraction process. It is composed of five sequential
phases: initial dataset preprocessing, FPM techniques application in order to obtain frequent itemsets, generation
of association rules from frequent itemsets, rules filtering and finally, biological evaluation to generate useful
knowledge.
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are usually taken into account in Phase 5. In some

cases, association rules have been modeled as gene

interaction networks at this final stage of the whole

process [6, 16].

MINING FREQUENT PATTERNS
As it was mentioned in ‘Association rule’ section, the

FPM phase is the most costly part from the compu-

tational point of view. In microarray data analysis,

the specific gene expression dataset structure (thou-

sands of genes against only hundreds of experimental

conditions) increases the frequent itemsets mining

process complexity. Due to this fact, developing effi-

cient FPM techniques to be applied to genomic

studies has been an important challenge during the

last years. In this section, the most important FPM

methods are reviewed from two angles: column-

enumeration-based methods and row-enumeration-

based methods. Given the relevance of the

discretization as previous step to generating

frequent itemsets, a brief description of the main

discretization strategies is outlined next.

Discretization
Most works related to the application of association

rule mining on gene expression profiles still rely on

discretization tasks before applying any data mining

technique. Although discretization may imply ‘loss

of information’, it also alleviates the noise dilemma

[4, 5]. It is not the aim of this survey to focus

on discretization methods, so only a brief description

of the main strategies will be presented next (the

reader can refer to [12, 17] for more information).

When the microarray dataset has a particular class

associated to (for instance, tissue samples from cancer

microarrays), the recursive minimization strategy

proposed by Fayyad and Irani [18] is a suitable super-
vised discretization strategy. This method partitions

the values of an attribute into a number of disjoint

intervals in such a way that the entropy of the parti-

tion is minimal. Starting from a binary discretization

boundary that minimizes the entropy function, a

recursive algorithm is applied to both of the parti-

tions created, until a stopping criteria is reached.

The basic unsupervised strategy is the equal width
partitioning. It evolves sorting the observed values of

a continuous feature and dividing the range of values

for the variable into k equally sized bins, where k
is a parameter supplied by the user. One can also

make use of equal depth partitioning, in which each

interval contains approximately the same number

of values, or equal width partitions, as presented in

[19]. Discretization over nonsupervised datasets also

requires some prior evaluation concerning data dis-

tribution. Thus, it can be possible to find a suitable

curve for binning such datasets. For this purpose one

can use threshold methods [4, 5]. In this sense, genes

with log expression values greater than a particular

value are considered as overexpressed, otherwise as

underexpressed. Recently, in [7] the authors pro-

posed a fuzzification approach, partitioning the con-

tinuous domain into fuzzy sets. Such fuzzy-based

model is likely to be more robust to noise when

compared with other simple binning techniques.

In [14], the thresholds are calculated dynamically

by applying the same continuous-valued attribute

discretization techniques as those used for classifica-

tion algorithms based on decision trees.

In principle, the main issues about the use of dis-

cretization methods rely on two aspects: the distribu-

tion of data and the outliers processing. Once one

can understand better the data distribution of a par-

ticular microarray, some assumptions can be taken in

order to choose the more appropriate discretization

method [20]. It is frequent to consider that data

fits a normal distribution, although it is probably

false. Some statistical tests (for instance, Pearson’s

chi-square test or Shapiro–Wilk test) are helpful to

determine normality on data and then decide about

which method is more suited. Regarding the detec-

tion of outliers, it is important to consider the

impact of these on further discretization [21],

hence smoothing their effects into the global data

distribution will improve the quality of bins.

Column-enumeration-based strategy
Most of the proposed itemset-mining methods are

a variant of the APRIORI algorithm [9]. APRIORI car-

ries out a breadth-first search (BFS) that enumerates

every single frequent itemset. APRIORI also explores

the downward closure property of an itemset filter-

ing out non-frequent itemsets—the property that

all subsets of a frequent itemset must be frequent.

A simple APRIORI example to provide a better under-

standing of FPM methods is illustrated in Figure 3.

Let M be a discretized matrix, where 1 and 0 mean

over- and under-expressed, respectively (Figure 1).

Table T represents the transactions and their items.

The APRIORI algorithm performs a BFS through the

search space of all the itemsets by iteratively generat-

ing candidate itemsets. At each iteration, the support
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of every candidate itemset is calculated, eliminating

those itemsets with support value under a threshold

(set to 2/4 in this example). Based on the idea that

an itemset is candidate if all its subsets are known to

be frequent, the resulting itemsets are combined to

create new candidate itemsets. The algorithm ends

when no new candidate group can be generated.

In Figure 3, after three iterations the final frequent

itemset is composed of the genes g2, g3, g5. From this

frequent itemset the association rules are generated

in phase 3. Afterwards in phase 4, the complete asso-

ciation rule set is filtered out following a given cri-

terion (in Figure 3, the confidence is set to 100%, so

only two out of six potential rules meet the filtering

criterion).

APRIORI-based methods show good performance

with sparse datasets such as market–basket data,

where the frequent patterns are very short.

However, with dense datasets such as telecommuni-

cations, census data, microarrays, etc., where there

are many long frequent patterns, these methods

scale poorly and sometimes are impractical. This

drawback is due to the high-computational cost of

the evaluation of candidate and test sets used by

APRIORI-based approaches. Thus, new methods like

FP-GROWTH [22], which simplifies the problem of

finding long patterns by concatenating small ones,

have emerged as a promising strategy. In fact, several

methods have been devised on the FP-GROWTH

basis [8, 23]. The main idea relies on a compact

tree structure called FP-tree, which is searched

through recursively for enumerating all frequent pat-

terns. The pattern growth is achieved by concatenat-

ing the suffix pattern with the frequent pattern

generated from a conditional FP-tree (for instance,

the patterns with length equal to 1 will be used

for generating those with length equal to 2, and so

on). Even tree-based methods such as FP-GROWTH

may find some difficulties when dealing with high-

dimensional datasets. A frequent pattern of size

(number of items) s implies the presence of 2s� 2

additional frequent patterns as well, each of which

is explicitly checked out by such methods. Thus,

FPM algorithms that employ sophisticated heuristics

for mining long frequent itemsets are practical solu-

tions for GAA.

There are currently two alternatives for mining

long patterns. The first one is to mine only maxi-

mal frequent itemsets, as in MAXMINER [24] and

GENMAX [25], which are typically orders of magni-

tude fewer than all frequent patterns. Maximal itemsets
are those longest frequent patterns found under

certain support threshold. Despite the fact that max-

imal patterns help understand the long itemsets in

Figure 3: Example of the APRIORI algorithm, with support set to 2/4. Therefore, every itemset to be considered
as a valid candidate must appear at least in two out of the four transactions. At each iteration, the support of
candidate itemsets is calculated eliminating those which support is under the threshold. The removed itemsets
are colored.The resulting itemsets are combined to create a new candidate group. At the end of the process, asso-
ciation rules are generated from the final frequent itemsets and their confidence and support are calculated.
Finally, these rules are filtered following some criterion (e.g. confidence¼100%). In this example, Phase1 (discretiza-
tion), Phase 2 (FPM), Phase 3 (association rules generation) and Phase 4 (rule filtering) of the overall process
described in previous section (Figure 2) are illustrated.
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dense domains, they lead to loss of information; since

subset counting is not available, maximal sets are not

suitable for generating rules. The frequent set

{g2, g3, g5} from Figure 3 is an example of a maximal

frequent itemset. The second alternative is then

mining only frequent closed sets as in CLOSE [26],

CLOSETþ [27] and CHARM [28]. Closed sets are loss-

less in the sense that they can be used to uniquely

determine the set of all frequent patterns and their

exact frequencies. A ‘closed itemset’ is a frequent

pattern that fits a support threshold and does not

have any other super frequent pattern set with simi-

lar support value covering it (Figure 3). Examples

of closed itemsets are the following ones: {g3},

{g1, g3}, {g2, g5}, {g2, g3, g5}. We can observe that

the itemset {g3, g5} is not a closed itemset since it

is covered by the itemset {g2, g3, g5}. Furthermore,

closed-based algorithms can handle pattern redun-

dancy, which is quite common in the application

of association mining on high-dimensional data-

bases [8, 23]. However, even by using such strategy

the high dimensionality of microarrays still poses

great challenges for column-enumeration-based

methods.

Aforementioned methods employ exponential

combination of all the columns (i.e. genes) in the

gene expression matrix. Such search space size

increases proportionally with the number of genes.

Therefore, FPM methods that do not use candidate-

set generation are usually more efficient. The type

of patterns found also plays an important role in

the strength or weakness of a FPM method. Thus,

closed itemset strategies are more reliable for GAA.

From such general discussion, one could expect that

CLOSEþ is the most suitable column-enumeration

approach for GAA. Indeed, the method was not

applied to any kind of gene expression data, although

it was successfully evaluated against its counterpart

using other high dense datasets.

Row-enumeration-based strategy
Recently, support-based row-enumeration methods

have emerged to handle efficiently GAA in micro-

arrays. In terms of implementation it means that

they use a vertical data format for enumerating fre-

quent patterns rather than the horizontal format

employed by most of the previously mentioned

column-enumeration-based methods [23]. For

instance in Figure 3, where each condition is a row

and each gene is a column, the (row) enumeration

process is then driven by intersecting the set of

conditions instead of using the set of genes. As

discussed previously, those classical column-

enumeration methods might not be suitable for

GAA, given the high dimensionality of DNA micro-

arrays. Since the number of experiments (or experi-

mental conditions) is lower than the number

of genes in a microarray, new methods were

proposed for enumerating frequent itemsets by

considering the row-space (experiments) rather

than the column-space (genes). These include

CARPENTER [29], COBBLER [30], FARMER [31],

TOPKRGS [32], TD-CLOSE [33], PATTERN-

FUSSION [34] and MAXCONF [35].

CARPENTER [29] was the first method to

explore the row-enumeration search space by con-

structing projected transposed tables recursively.

Furthermore, it provides the complete frequent

closed patterns. CARPENTER does recursive genera-

tion of conditional transposed tables, performing a

depth-first traversal search of the row-enumeration

tree. Pruning techniques, which were devised to

enhance efficiency, prevent unnecessary traversal of

the enumeration tree. A comparative study showed

that CARPENTER improved CLOSETþ on about 500

times. Most of known row-enumeration algorithms

have their basis on CARPENTER ideas.

FARMER [31] and TOPKRGS [32] were particularly

designed to generate association rule classifiers of

the form X�!C, where C is a class label and X is

a set of genes. These methods demand microarrays

in which each experiment has a class associated to,

e.g. ‘cancer’ and ‘noncancer’. The itemset mining

is supported through transposed tables taking into

account that class information. Thus, each itemset

in the transposed table should be enumerated

accordingly to the positive and negative class. Both

methods explore the idea of mining interesting

groups of rules. For example, if we set a class

label C to the row¼ {c3: g1, g2, g3, g5�!C}, we

could generate 15 rules in the form X�!C, all of

them covering the same row and having the same

confidence (100%). Instead of generating all those

rules, FARMER employs the concept of rule group,

clustering them into a group with a unique upper

bound (g1, g2, g3, g5�!C, the most specific one)

plus a set of lower bounds rules (g[1 : n]X�!C, the

most general ones). Interestingness is reinforced by

using user-specified thresholds like support, confi-

dence and chi-square. TOPKRGS is quite similar to

FARMER in terms of row-enumeration strategy of

rule groups, but it differs in adopting a preference
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selection (top-k) to filter out significant rules, and

its implementation using compact prefix-tree is

more efficient.

Unlike CARPENTER, TD-CLOSE [33] develops a

top-down row-enumeration method to search

through the row-enumeration space, which makes

the pruning power of minimum support threshold

stronger than using bottom-up search style.

Integrated with this search method, an effective and

efficient closeness-checking strategy is also proposed.

The method called MAXCONF [35] adopts an enu-

meration strategy similar to that of CARPENTER,

mining closed frequent sets and working through

nonsupervised microarrays. It can extract interesting

gene relationships with high confidence and

low support. The previously mentioned row-

enumeration methods cannot provide many interest-

ing unknown gene relationships, since they rely

entirely on the support measure to prune the

search space. This is a great drawback as many poten-

tial gene associations, that have low support and

high confidence, are filtered out by support-based

methods. MAXCONF may only fail at mining colossal

patterns. Association mining tasks usually give greater

importance to patterns that are longer in size. These

large patterns, called colossal patterns, were first intro-

duced in PATTERN-FUSION [34].

PATTERN-FUSION appears as a solution to deal

with pattern explosion. It is based on the concept

of core-pattern strategy, and also has an evaluation

model proposed to assess the quality of the mining

results against the complete set. Several studies con-

ducted on both synthetic and real datasets demon-

strated that PATTERN-FUSION is able to give a good

approximation for colossal patterns in datasets, unlike

existing FPM algorithms. For instance, for the

ALL-A dataset (cf. Table 1), this method discovered

the largest colossal pattern with size greater than 85

genes, although the authors did not provide evidence

of biological relevance.

COBBLER [30] is another FPM method that

employs dynamic evaluation of closed itemsets

by exploring either row-enumeration or feature-

enumeration (column-enumeration) approach

according to the dataset characteristics. Like

CARPENTER, it takes a depth-first traversal search

from both trees with recursive construction of several

conditional transposed tables. The switching condi-

tion is evaluated by estimating the enumeration costs

for the subtrees and selecting the smallest one from

both subtrees, i.e. feature or row based.

Unlike column-enumeration methods, the row-

enumeration approaches prevent the itemset explo-

sion by only expanding closed itemsets and enumer-

ating the rows (experiments) instead of columns

(genes). The row-enumeration space size is expo-

nential with respect to the number of experiments.

On the contrary, the column-enumeration space size

is exponential with respect to the number of genes.

Moreover, almost all the previous row-enumeration

methods are support based, which means that low

support might incur in combinatorial explosion, thus

limiting the search for rare itemsets within the rule

extraction phase. MAXCONF addresses this issue with

a free support-based strategy, composed of two

levels of confidence pruning. A comparative analysis

using several known datasets revealed that without

using any support threshold MAXCONF provided

excellent results. The rules extracted, allowing two

types of gene behavior (up and down), highlighted

interesting relationships. For instance, the rule

CSE1!CRM1, PCL5, obtained from Hughes’

dataset [36], with 100% confidence and 0.33% sup-

port, was biologically verified by the BIND database.

USING EXTERNALBIOLOGICAL
INFORMATION
Nowadays, researchers have a fast and easy access

to biological information through the World Wide

Web. For instance, PubMed Central (http://

www.pubmedcentral.nih.gov/) is a digital archive

of biomedical and life sciences journal literature cre-

ated by the US National Institutes of Health (NIH).

This scientific database contains research articles

from more than 300 journals. The Gene Ontology

(GO) [37] project provides a structured controlled

vocabulary to describe gene and gene product attri-

butes in any organism using three different types of

ontologies (cellular component, molecular function

and biological process). The GO database is a rela-

tional database comprising ontologies and annota-

tions of genes and gene products related to terms

in GO. The Kyoto Encyclopedia of Genes and

Genomes (KEGG) [38] is a bioinformatics resource

that integrates current knowledge on molecular

interaction networks such as pathways and com-

plexes as well as information about genes and pro-

teins. The Biomolecular Interaction Network

Database (BIND) [39] archives biomolecular inter-

actions, reactions, complexes and pathway

information.
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The use of external information is a helpful strat-

egy in any data mining task. Concretely, in asso-

ciation analysis of gene expression data prior

biological knowledge can be used in many phases.

Furthermore, biological information can be inte-

grated in the gene expression database during the

mining process. Finally, it is also important to

verify if the final association rules generated are sig-

nificant from a biological point of view. An associa-

tion pattern is significant from a biological point of

view when there is a significant set of genes in this

rule that shares biological features. From biological

databases, we extract the annotations related to those

genes and measure, by means of statistical methods,

the significant level of enrichment. Besides the bio-

logical evaluation, the most interesting associations

might be true validated experimentally.

Next, the most representative examples of appli-

cation of external biological information in GAA

are presented. Although FPM can tackle different

scenarios of GAA, in this work we focus on rule-

based discovery as knowledge representation basis.

Quantitative association rules based on half-spaces
are presented in [40], in which biological informa-

tion is used as filtering basis for reducing database

size. Such filtering is due to the fact that association

rules based on half-spaces cannot afford the enu-

meration of all relevant rules, as the methods dis-

cussed in ‘Mining frequent patterns’ section, rather

it uses an optimization approach. This optimization

is carried out from observing rules through two

hyperplanes (� and �). From a geometrical perspec-

tive, a hyperplane � is given by a vector � and an

intercept �0. An instance x is then assigned to one

half-space, if the dot product �xþ �0 is positive and

to the other half-space, if it is negative. In this work,

the objective is to find rules defined by two hyper-

planes: �, that specifies the condition of the left-

hand side of the association rule, and �, that specifies

the right-hand side. For example, one could

build an association rule such as ARG1� 0.99�

CAR1� 0.11� 0.062!ARG3 >�0.032, relating

the expression levels of three genes in arginine meta-

bolism. Only those rules with a high confidence

score, that is, if it is located to the left of alpha and

below beta, are susceptible to be generated.

In [4], the authors apply an integrative strategy to

bring out interesting biological patterns. The method

integrates biological knowledge and expression data,

annotating genes with metabolic pathways from

KEGG [38], transcriptional regulatory networks from

literature and other annotations from the three cate-

gories of GO [37]. Thus, an association pattern

is only reported when there is a significant set of

genes that share biological features and similar

expression patterns. In this sense, the associations

are intrinsic to data, and further biological verifica-

tion from other sources reinforces the potential sig-

nificance of the associations. A similar strategy is

proposed by [7], in which fuzzy rules are employed

instead of the classical association rules. Fuzzy set

theory is used to deal with microarray data, as

it works well with imprecision and noise. Then,

fuzzy rules strongly correlated with structural

and functional gene features are extracted.

Fuzzy association rules are expressions of the form

X�!Y, where X and Y are sets of fuzzy attribute-

value pairs. For example, the authors are able

to relate the genes GO annotations with their

lengths generating rules like ‘GO¼DNA helicase

activity�! length¼HIGH’. An interesting exam-

ple of fuzzy-based rule biclustering, containing

51 genes, is also highlighted in [7], in which gene

associations are described as belonging to chromo-

some II and being annotated in the terms macromole-
cules biosynthesis and cytosol.

In [15], GAA is applied as a baseline for classifica-

tion tasks. Thus, genes in rules are linked to a gene

category during the mining process. These categories

can be created according to various criteria (func-

tionality, biochemical pathways, etc.) and they are

useful for the filtering phase (Figure 2). Also, authors

provide rule operators, including rule grouping, fil-

tering, browsing and data inspection operators, to

assist biologists on managing the very large number

of discovered association patterns.

The use of biological knowledge in any of the

phases of GAA enriches the final mining model

and can help biologists to better understand genes

and their complex relations. Using this information,

many generated rules are confirmed to be known

biological relationships among genes. For instance,

the aforementioned MAXCONF detects known

direct biological interactions in BIND [39], and veri-

fies if any of the gene interactions appears in specific

chemical pathways. Sometimes, authors only rely

on literature to find the suitable information

for checking the biological soundness of their

results [4, 5, 7, 40]. It is worth to mention that in

biological validation, many generated rules should

correspond to known biological relationships

among genes. However, a noncorresponding rule
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does not imply incorrect relationship. It might be

possible that this rule has not been hypothesized

yet. Hence, these predictions should be biologi-

cally validated with new experimental analysis.

A general view of classical measures of association

patterns is given in [8, 23, 41].

The association rules extracted from gene expres-

sion data provide a very useful knowledge with

different applications. For example, rules can be

used as an additional support to the conclusions

extracted from previous analysis. Thus, most of the

rules extracted from gene expression [4, 5, 7, 35, 40]

are confirmed by previous works. For instance,

in [35] the rule: MAC1�!FRE7, meaning that

when gene MAC1 is underexpressed gene FRE7 is

underexpressed too, was extracted from a yeast data-

set [36]. The gene MAC1 was selectively mutated

in this dataset, and this rule correctly describes the

relationship between the genes MAC1 and FRE7.
More specifically, MAC1 activates the expression

of the gene FRE7 [42]. Therefore, FRE7 cannot

be expressed when MAC1 is not, and this rule cor-

rectly indicates this causality. Moreover, rules bring

the opportunity of formulating new hypothesis.

In [5], using the information from different rules,

authors discover that when the uncharacterized

yeast genes NIT1 and YIL165C are expressed, then

a very similar group of genes are expressed as well.

Perhaps these two genes are biologically related, but

this hypothesis is not confirmed by new experimen-

tal analysis.

Association rules can provide new biological

knowledge beyond gene expression data relations,

so interesting conclusions can be obtained by inte-

grating information from different sources. For

example, in [4] rules like: Ribosome�!
½��T6; ½��T7 combines information about meta-

bolic pathways, expression data and temporal dimen-

sion, meaning that genes involved in Ribosome

pathway are underexpressed in time points 6 and 7.

Authors in [7] take advantage of the recent availabil-

ity of estimates of the protein amount and of

the ability to change the expression level to extract

rules like the following: proteinAbundance ¼
HIGH�!G þ C ¼ HIGH, that is, when the pro-

tein abundance is high, then the proportion of

guanine plus cytosine in genes is high as well.

There are rules that can show the temporal depen-

dencies between the behavior of the genes. For

example, rules generated in [43] represent various

transcriptional time delays between associated

genes: POL30upYLR183cup�!ð14 minutesÞHTA2up
implies that the overexpression of genes POL30

and YLR183c from yeast is followed by the over-

expression of HTA2 after 14 min. This approach,

in which time frames are essential markers, searches

for rules in the form X!(�t)Y, where �t is the

temporal delay.

Detecting biological database errors is other appli-

cation of association rules. In [3], authors were able

to detect that the initial identification of a tag in

SAGE (Serial Analysis of Gene Expression) data

[44] was misleading. That is, the data mining tech-

nique presented in this article can allow the correct

reassignment of wrongly data. Sometimes, FPM

techniques are used for other purposes. GENECODIS

[45] is a web-based tool to search for gene annota-

tions and to rank them by statistical significance. In

the process, APRIORI algorithm [9] is used to extract

all combinations of annotations that appear in at

least � genes, with � being a user-defined threshold.

Thus, this tool provides not only gene annotations

but also the potential relations among them.

SUMMARYOF FPMMETHODS
FORGAA
In this section, all the FPM methods for GAA

reviewed in this work are summarized. Table 1

provides an overall presentation of the set of

methods as well as their strategies for enumerating

highly correlated genes from gene expression data.

This compilation is complemented with other char-

acterization of the methods in terms of how biolo-

gical information is processed during the knowledge

discovery process (those methods with no application

on GAA are not included in Table 1). For the sake of

clarity, a chronological view of the FPM methods

related to GAA discussed in this document is

depicted in Figure 4.

A detailed evaluation with respect to either qual-

ity or efficiency of discovering biological patterns

using any of the reviewed methods is outside the

scope of this work, since it would require more

complex controlled conditions. However, in general

terms, we can assume that for association mining

models in which candidates (potential gene pairs)

are examined by implicitly or explicitly traversing

a search tree in either depth-first or breadth-first

fashion, if the search tree is exponential in size at

some level, such exhaustive traversal search should

run with exponential time complexity. Such
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observation is also the main motivation behind the

PATTERN-FUSION approach [34], which provides

a good performance when the targets are long

patterns.

Given the high dimensionality of microarrays,

bioinformaticians have recently adopted row-

enumeration methods as the most efficient strategy.

Quality implies on having some biological evaluation

before assuring biological soundness of found

patterns. An interesting observation is that research-

ers are more concerned about scalability issues rather

than quality. Most of the FPM methods, published

in related peer-reviewed data mining conferences

or journals, are quite robust on handling huge and

sparse microarrays, while other methods published

in bioinformatics circles, bring out more biological

Table 1: Overall compilation of FPM methods with direct application on GAA

Method Patterns Strategy Dataset Reference

CARPENTER Closed Row LC1, ALL2,OC3 [29]
COBBLER Closed Row/Column Synthetic, TH4 [30]
FARMER Rules Row LC1,BC5,CT6,PC7, ALL� A8 [31]
TOPKRGS Rules Row ALL� A8,LC1,OC3,PC7 [32]
HALF-SPACE Rules Half-Spaces SCE�H9 [40]
TD-CLOSE Closed Row LC1 [33]
INTEGRATIVE Rules Column SCEDS10,HFSE11 [4]
PATTERN-FUSION All Pattern-Fusion ALL� A8 [34]
MAXCONF Closed Row SCE�H9,SCE�M12,SCE� S13 [35]
FUZZY Rules Column SCE� ST14 [7]

# Dataset name Size Access

1 Lung cancer 181�12000 http://www.chestsurg.org
2 Acute lymphoblastic leukemia 215�12000 http://www.stjuderesearch.org/data/ALL1
3 Ovarian cancer 253�15000 http://clinicalproteomics.steem.com
4 Compounds target to thrombin 1000�139000 http://www.biostat.wisc.edu
5 Breast cancer 97� 24000 http://www.rii.com/publications
6 Colon tumor 62� 2000 http://microarray.princetion.edu/oncology/affydata
7 Prostate cancer 136�12000 http://www-genome.wi.mit.edu/mpr/prostate
8 ALL-AML leukemia 38� 886 http://www-genome.wi.mit.edu/cgi-bin/cancer
9 Saccharomyces cerevisiae 300� 6000 [36]
10 SCE, diauxic shift (SCEDS) 63� 6153 http://arep.med.harvard.edu/ExpressDB/arraydata/diauxic.newtxt
11 Human fibroblast after serum esposure 12� 8000 http://genome-www.stanford.edu/serum
12 Saccharomyces cerevisiae 215� 6000 [46]
13 Saccharomyces cerevisiae 82� 6000 [47]
14 Saccharomyces cerevisiae 172� 6152 http://www-genome.stanford.edu/yeast-stress/

The first column ‘Method’ presents the methods reviewed in this survey.The second and third columns are related to the strategy.Thus,‘Patterns’
shouldbe either the itemsets (All,Maximal or Closedones) or rules.The enumeration strategy (ColumnorRowbased) used to obtain suchpatterns
is pointed on the third column.Themicroarray data characteristics used in the original papers are described in column ‘Dataset’ (which is detailed
below).The notation used to define the size of every dataset is Rows�Columns, being rows the number of experimental conditions and columns
the number of genes.The last column points out the reference of eachmethod.

Figure 4: Chronogram of pattern frequent mining approaches.
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knowledge from the discovered patterns. Ideally,

new FPM methods for GAA should balance both

scalability and validity in order to provide efficient

and practical methods.

In general, all the methods reviewed are able to

highlight interesting gene associations. However, the

scenario of application can guide the choice follow-

ing the type of pattern or the computational strategy.

For example, TOPKRGS and FARMER are recom-

mended when the goal is to explore gene-to-target

applications, where the target could be any condi-

tional state in which genes are related to a particular

biological study (cancer, noncancer). Other methods,

like CARPENTER, COBBLER, TD-CLOSE, MAXCONF

and PATTERN-FUSION are gene-to-gene applications,

and are devised to find strong gene associations

within the set of genes. MAXCONF, with its free-

support strategy, might provide higher confident

patterns. On the other hand, strong and long associa-

tion patterns are better addressed by PATTERN-

FUSION. In this sense, HALF-SPACES is a good choice

if some filtering step to alleviate the high dimension-

ality is introduced.

Table 2 shows how the reviewed FPM methods

make use of biological knowledge to bring pattern

interestingness. The first columns ‘Method’ stands for

the FPM method, the second column ‘BioKnow’

describes how biological knowledge is integrated

into the mining process (before or after mining) in

order to enhance the discovered patterns. Some of

these methods just take into account scalability rather

than quality of the patterns (BioKnow¼None).

Only a few of the presented methods are built

for classification purposes, but they also have

their basis on association mining. This information

is highlighted in the third column ‘Application’.

The last column ‘AuxDB’ refers to auxiliary infor-

mation, which have been used to integrate, enhance

or evaluate biological soundness of discovered

patterns.

Table 3 shows different types of association rules

extracted from gene expression data. As it can be

observed, the table contains a wide variety of asso-

ciation rules. It is worth highlighting some of them.

For example, the rule published in [40] is a quanti-

tative rule of the form: if the weighted sum of
some variables is greater than a threshold then a second
weighted sum of variables is greater than a second threshold.
In this case, the variables are the expression values

of genes. Rule published in [7] is a fuzzy rule

in which pairs of fuzzy attribute-value are used.

Finally, rules published in [4] and [43] are

related to temporal dependencies between gene

expressions.

In short, the interest on integrating gene expres-

sion data with external biological databases in the

context of GAA is growing, to the extent that the

quality of results has turned into the main goal

nowadays, leaving the efficiency issues in the

background.

CONCLUSIONS
We have presented a survey on GAA in DNA

microarray gene expression data. This work covers

interesting issues related to GAA, from devising effi-

cient computational strategies to the evaluation of

biological pattern significance. The DNA microarray

platforms generally provide highly correlated data.

This observation impacts directly on how FPM

methods should be designed in order to detect

such correlations. So far, FPM methods based

on row-enumeration strategies are those that can

search efficiently for gene associations in microarrays.

However, most FPM methods are not able to catch

highly correlated unknown patterns, since they are

Table 2: Biological knowledge used by FPM methods

Method BioKnow Application AuxDB

CARPENTER None Association None
COBBLER None Association None
TD-CLOSE None Association None
PATTERN-FUSION None Association None
FARMER None Classification None
TOPKRGS After Classification Literature
MAXCONF After Association BIND,GO
HALF-SPACE Before/After Association Literature
INTEGRATIVE Before/After Association KEGG,GO
FUZZY Before/After Association GO, literature

Gene association analysis 221
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/2/210/216177 by guest on 21 August 2022



mainly support-based approaches. Apart from having

several FPM methods available for GAA, just a few

of them really encompass biological knowledge.

Many of the related FPM works concentrated their

efforts on scalability issues and not in finding action-

able biological patterns. On the other hand, new

FPM methods have already been devised using the

potential of related biomedical literature (PubMed)

and scientific databases, such as GO database, KEGG

and BIND, to discover interesting unknown biolo-

gical knowledge. This is done either by employing

an integrative approach or by pushing biological

evaluation tasks either before or right after

finding strong gene associations. There are also

other types of gene expression data that are based

on different platforms and biological processes, such

as sequencing-based approaches like SAGE and

Massively Parallel Signature Sequencing (MPSS),

which will command more attention in the near

future.

Key Points

� FPM is able to discover interesting association patterns in gene
expression data.

� Several approaches have been designed for mining data, and
promising applications are being developed or adapted for
biological data.

� Due to the intrinsic properties of biological data, computational
efficiency of FPM techniques is a key factor for discovering
useful associations.

� The integration of biological knowledge into the mining process
enriches the quality of discovered associations.

� Concepts and main strategies of FPM for gene expression
analysis are reviewed.
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