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Gene-based interaction analysis by incorporating
external linkage disequilibrium information

Jing He1, Kai Wang2, Andrew C Edmondson3, Daniel J Rader3, Chun Li4,5 and Mingyao Li*,1

Gene–gene interactions have an important role in complex human diseases. Detection of gene–gene interactions has long been

a challenge due to their complexity. The standard method aiming at detecting SNP–SNP interactions may be inadequate

as it does not model linkage disequilibrium (LD) among SNPs in each gene and may lose power due to a large number of

comparisons. To improve power, we propose a principal component (PC)-based framework for gene-based interaction analysis.

We analytically derive the optimal weight for both quantitative and binary traits based on pairwise LD information. We then use

PCs to summarize the information in each gene and test for interactions between the PCs. We further extend this gene-based

interaction analysis procedure to allow the use of imputation dosage scores obtained from a popular imputation software

package, MACH, which incorporates multilocus LD information. To evaluate the performance of the gene-based interaction

tests, we conducted extensive simulations under various settings. We demonstrate that gene-based interaction tests are more

powerful than SNP-based tests when more than two variants interact with each other; moreover, tests that incorporate

external LD information are generally more powerful than those that use genotyped markers only. We also apply the proposed

gene-based interaction tests to a candidate gene study on high-density lipoprotein. As our method operates at the gene level,

it can be applied to a genome-wide association setting and used as a screening tool to detect gene–gene interactions.
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INTRODUCTION

With continued decreasing cost of high throughput genotyping

technology, genome-wide association studies (GWAS) are becoming

increasingly popular for gene mapping of complex human diseases.

Most of the published GWAS papers report results from single-

marker-based analysis in which each SNP is analyzed individually.

Although this simple approach has led to the discovery of disease

susceptibility genes for many diseases, the identified SNPs often only

explain a small fraction of the phenotypic variation, suggesting a large

number of disease variants are yet to be discovered. There is growing

evidence that gene–gene interactions are important contributors to

genetic variation in complex human diseases.1–6 However, detecting

gene–gene interactions remains a challenge due to the lack of powerful

statistical methods. The most commonly used statistical approach for

studying gene–gene interactions is to use a regression framework in

which a pair of markers and their interaction terms are included as

predictors. When a large number of markers are available, one might

consider doing a stepwise regression7 or a two-stage analysis.8

Although such methods have been proven useful in simulation

studies, they may lose power when multiple interacting variants

exist in each gene.

One potential solution to the aforementioned problem is to

perform interaction analysis at the gene level. There is increasing

recognition for the importance of gene-based analysis.9 Several

methods have been developed to test whether a gene is associated

with the trait of interest.10–13 The central idea of these methods is to

summarize marker genotypes into a few components so that the

overall degrees of freedom are reduced while most information in the

data is retained. Extensive simulations demonstrate that gene-based

association analysis can increase the power of detecting genetic

association compared with single-marker-based analysis. It is there-

fore reasonable to expect that gene-based interaction analysis may

outperform SNP-based interaction analysis and lead to identification

of novel disease susceptibility genes.

Recently, Li et al13 proposed a novel gene-based association test –

ATOM, by combining optimally weighted markers within a gene. For

each marker in the gene, either genotyped or untyped, an optimally

weighted score is derived based on observed genotypes and linkage

disequilibrium (LD) information in a reference data set such as the

HapMap.14,15 To reduce the dimensionality of the data, ATOM tests

for association using selected principal components (PCs) of these

derived scores. Simulations and analysis of real data showed improved

power of ATOM over methods that do not incorporate external

LD information, especially when the disease loci are not directly

genotyped.

The success of ATOM motivated us to extend it to the analysis

of gene–gene interactions. Here we describe a PC framework for

gene-based interaction analysis. We analytically derive the optimal

weight for both quantitative and binary traits based on pairwise

LD information. We then use PCs to summarize the information in

each gene, and test for interactions between the PCs. We further

extend this gene-based interaction analysis procedure to allow the
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use of imputation dosage scores obtained from popular imputation

software packages MACH16 or IMPUTE,17 which incorporates multi-

locus LD information. We evaluate the performance of the proposed

tests by extensive simulations and the analysis of a candidate gene

study on high-density lipoprotein cholesterol (HDL-C).

METHODS
We consider the problem of gene-based interaction analysis between two genes

with multiple markers in each gene. We first present the analytical solutions for

quantitative and binary traits assuming the interacting trait loci are known. We

then extend the method to the more realistic situation in which the interacting

trait loci are unknown.

Quantitative trait
Suppose the quantitative trait of interest, Y, is influenced by the interaction

between two diallelic quantitative trait loci (QTLs) located in two different

genes. Let Tj and tj (with frequencies pTj and ptj , respectively) denote the two

alleles at QTL j (¼1, 2). Assume the mean of the trait value Y given genotypes

gT1 and gT2 can be written as

EðY jgT1 ; gT2 Þ ¼ aT+bT1 gT1+bT2gT2+bT1 ;T2 gT1 gT2 ; ð1Þ

where gTj 2 f0; 1; 2g is the number of allele Tj at QTL j. To detect inter-

action between the two QTLs, we test H0 : bT1 ;T2 ¼ 0. However, as gT1
and gT2 may not be directly observed, the test of interaction is often

accomplished through examination of interactions between genotyped

markers. Assume a diallelic marker j in gene j (with alleles Aj and aj and

allele frequencies pAj
and paj , respectively) is in LD with QTL j. We will

show that the mean of Y given genotypes g1 and g2 at markers 1 and 2 can be

written as

EðY jg1; g2Þ ¼ a+b1g1+b2g2+b1; 2g1g2; ð2Þ

Equation (2) allows indirect assessment of interaction between the QTLs by

testing H0: b1,2¼0.

The regression coefficients bT1 ;T2 and b1;2 reflect the magnitude of inter-

action effects between the QTLs and between the markers, respectively, and

their relationship depends on the degree of LD between the QTLs and the

markers. To explicitly derive their relationship, we note that EðY jg1; g2Þ can be

written as

EðY jg1; g2Þ ¼
X

gT1

X

gT2

EðY jgT1 ; gT2 ÞPðgT1 jg1ÞPðgT2 jg2Þ

¼aT+bT1H1ðg1Þ+bT2H2ðg2Þ+bT1;T2H1ðg1ÞH2ðg2Þ;

ð3Þ

where HjðgjÞ ¼
P

g
Tj

gTjPðgTj jgjÞ, j ¼ 1, 2. Li et al13 have shown that when the

QTLs and the markers are in Hardy–Weinberg equilibrium in the population,

HjðgjÞ ¼ 2ðpTj � Dj=paj Þ+½Dj=ðpAj
paj Þ��gj; ð4Þ

where Dj ¼ pAjTj � pAj
pTj is the LD coefficient between QTL j and marker j.

Therefore,

H1ðg1ÞH2ðg2Þ ¼4½pT1 � D1=pa1 �½pT2 � D2=pa2 �

+2½pT2 � D2=pa2 �½D1=ðpA1pa1 Þ��g1

+2½pT1 � D1=pa1 �½D2=ðpA2pa2 Þ��g2

+½D1=ðpA1pa1 Þ�½D2=ðpA2pa2 Þ��g1g2:

ð5Þ

If we replace the items in equation (3) accordingly by those in equations (4)

and (5), it becomes apparent that equation (2) holds, with

b1;2 ¼ ½D1=ðpA1pa1 Þ�½D2=ðpA2pa2 Þ��bT1 ;T2 : ð6Þ

Equation (6) indicates that the two interaction coefficients, bT1 ;T2 and

b1,2, differ only by a factor ½D1=ðpA1pa1 Þ�½D2=ðpA2pa2 Þ�, which is a function

of the marker allele frequencies and the LD coefficients between the QTLs and

the markers. The above derivation can be readily extended to binary traits such

as disease affection status (see Supplementary Materials).

From the above derivation, we can see that if we define a weighted genotype

score for marker j, g�j ¼ ½Dj=ðpAj
paj Þ�gj, then the corresponding mean model

for Y given the weighted genotype scores becomes

EðY jg�1 ; g
�
2 Þ ¼a�+½bT1+2bT1 ;T2 ðpT2 � D2=pa2 Þ�g

�
1

+½bT2+2bT1 ;T2 ðpT1 � D1=pa1 Þ�g
�
2+bT1 ;T2g

�
1 g

�
2

¼a�+b�1g
�
1+b

�
2g

�
2+bT1;T2g

�
1 g

�
2 ;

ð7Þ

where the interaction coefficient becomes the same as that in equation (1). This

indicates that for any pair of markers with one from each of the two genes,

using weighted genotype scores will result in models that share the same

interaction coefficient bT1 ;T2 , a fact that we will use below to combine multiple

markers within a gene.

Suppose mj diallelic markers in gene j are genotyped, with alleles 1
ðjÞ
lj

and 0
ðjÞ
lj

for marker lj (1rljrmj) and allele frequencies p
ðjÞ
lj

and q
ðjÞ
lj
, respectively.

The above derivations suggest that for individual i (1rirn) and marker

lj (1rljrmj) in gene j, we may consider the weighted genotype score

g
ðjÞ�
i;lj

¼ ½D
ðjÞ
lj
=ðp

ðjÞ
lj
q
ðjÞ
lj
Þ��g

ðjÞ
i;lj
, where D

ðjÞ
lj

is the LD coefficient between QTL j

and marker lj in gene j, and g
ðjÞ
i;lj

denotes the number of allele 1
ðjÞ
lj

carried by

individual i. Then the mean of the trait value Yi given weighted genotype

scores at marker l1 in gene 1 and marker l2 in gene 2 will be

EðYijg
ð1Þ�
i;l1

; g
ð2Þ�
i;l2

Þ ¼ a�l1 ;l2+b
�
l1
g
ð1Þ�
i;l1

+b�l2g
ð2Þ�
i;l2

+bT1 ;T2 g
ð1Þ�
i;l1

g
ð2Þ�
i;l2

. When all possible

marker combinations in the two genes are considered, then all m1�m2

interaction terms share a common interaction coefficient bT1 ;T2 . This suggests

that for individual i, we can aggregate the information from mj markers in gene

j by defining a weighted genotype score

S
ðjÞ
i ¼

1

mj

Xmj

lj¼1

D
ðjÞ
lj

p
ðjÞ
lj
q
ðjÞ
lj

g
ðjÞ
i;lj

¼
1

mj

Xmj

lj¼1

w
ðjÞ
lj
g
ðjÞ
i;lj
; ð8Þ

and then assess the interaction between the two QTLs by examining the cross

product of their scores, S
ð1Þ
i �S

ð2Þ
i . In situations in which the trait locus is in

complete or strong LD with a genotyped marker or is itself genotyped, the score

in equation (8) may not work well as the other markers will simply add noise

and dilute the association signal. Given this consideration, an alternative

weighted genotype score is

S
ðjÞ
i ¼ w

ðjÞ
lj;max

g
ðjÞ
i;lj;max

; ð9Þ

where lj,max is the genotyped marker that has the strongest LD with the trait

locus as measured by r2.

Estimation of weights
In the previous sections, we assumed the trait loci are known. In real data

analysis, the locations of the trait loci are unknown. It is reasonable to assume

that each of the known polymorphisms in the gene, either genotyped or

untyped in the study sample, is equally likely to be the trait locus. For each such

locus, we can estimate the weights for all the genotyped markers and calculate a

score for the locus. Following Li et al,13 we propose to estimate the weight using

LD information obtained from a reference database such as that generated by

the HapMap, other publicly available dense SNP data sets or resequencing data

from a subset of the study sample. Suppose Mj markers are available for gene j

in the reference data set, and they are a superset of the markers genotyped in

the study sample. If marker kj (1rkjrMj) in the reference data set is the trait

locus, then the weight for marker lj in the study sample is

w
ðjÞ
kj ;lj

¼
D
ðjÞ
kj; lj

p
ðjÞ
lj
q
ðjÞ
lj

; ð10Þ

where D
ðjÞ
kj; lj

is the LD coefficient between markers kj and lj, and p
ðjÞ
lj

and q
ðjÞ
lj

are

allele frequencies at marker lj in gene j. These quantities can be estimated from

the reference data set. For individual i and each marker kj in the reference data

set, we can calculate a weighted genotype score

S
ðjÞ
i;kj

¼
1

mj

Xmj

lj¼1

w
ðjÞ
kj ;lj

g
ðjÞ
i;lj
; ð11Þ
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or an alternative weighted genotype score

S
ðjÞ
i;kj

¼ w
ðjÞ
kj ;lj;max

g
ðjÞ
i;lj;max

; ð12Þ

where lj,max is the genotyped marker that has the strongest LD with marker kj.

We note that the weighted genotype scores in equations (11) and (12) share

similarity with imputation dosage scores, and they can be considered as a

simple version of the multilocus LD-based imputation dosage scores obtained

from software packages such as MACH and IMPUTE. Although using pair-

wise-LD information only, the weighted genotype scores in equations (11) and

(12) provide an intuitive justification of why incorporating external LD

information may provide power gain for association testing. In the following

sections, we will consider both the pairwise LD-based weighted genotype scores

and multilocus LD-based imputation dosage scores in the testing procedure.

Gene-based interaction analysis
Once we have calculated the scores, either weighted genotype scores in equation

(11) or (12) or imputation dosage scores in MACH or IMPUTE, for each

marker in the reference data set, we can then test for gene–gene interaction

based on the scores ðS
ðjÞ
1 ; :::; S

ðjÞ
Mj
Þ for gene j, where S

ðjÞ
kj

¼ ðS
ðjÞ
1;kj

; :::; S
ðjÞ
n;kj

ÞT and

n is the total number of individuals in the study. As the trait loci are unknown,

a simple test of interaction could be to include all pairwise interactions of the

imputation dosage scores in a regression framework and then test for their

overall significance. However, this approach may suffer from low power due to

the large number of degrees of freedom involved. To efficiently aggregate all

information while reducing the degrees of freedom, we propose to test for

gene–gene interaction using PCs obtained from the scores. Without loss of

generality, for gene j, we order its PCs such that PC
ðjÞ
1 has the largest variance

and PC
ðjÞ
2 has the second largest variance and so on.

Once the PCs are computed, we can then test for gene–gene interaction by

conducting a regression analysis with a set of selected PCs and their interactions

as covariates. As the PCs are ordered by the magnitude of explained variance,

for each gene, we select the first several PCs that explain a prespecified fraction

of the total variance. Suppose Lj PCs are selected for gene j. For a binary trait,

we can fit the data with the following logistic regression model (see Supple-

mentary Material)

logit ½PðY ¼ 1jgenotypesÞ�

¼ a+
XL1

l1¼1

b
ð1Þ
l1
PC

ð1Þ
l1

+
XL2

l2¼1

b
ð2Þ
l2
PC

ð2Þ
l2
+
XL1

l1¼1

XL2

l2¼1

bl1 ;l2PC
ð1Þ
l1
PC

ð2Þ
l2
:

ð13Þ

For a quantitative trait, we can fit the data with a linear regression model.

Under the null hypothesis of no interaction between the two genes, bl1 ;l2 ¼ 0

for l1¼1,y, L1 and l2¼1,y, L2. We can test this null hypothesis by a likelihood

ratio test, and the corresponding test statistic is approximately distributed as a

w2 distribution with L1�L2 degrees of freedom. We call this test as a global test.

Alternatively, we can conduct pairwise interaction analysis between all selected

PCs and choose the statistic for the most significant pair as the test statistic and

evaluate its significance by Bonferroni correction. We call this test as a pairwise

test. In our analyses, we used 90% threshold for the fraction of variance as it

generally provides better power than other variance thresholds in scenarios we

considered. We note that for binary traits, the null hypothesis tested by logistic

regression is only an approximation to the null hypothesis that (f2,2–f2,0)–

(f0,2–f0,0)¼0, and thus the weighted genotype scores we derived earlier may not

be ‘optimal’. However, as shown in the Supplementary Material, this approx-

imation is probably valid as long as the interaction effects are not too strong

and the disease is not common.

RESULTS

In this section, we evaluate the performance of the gene-based

interaction tests for binary traits and compare with SNP-based

interaction test. We considered four gene-based interaction tests:

(1) ATOM-AVG, which uses weighted genotype scores from equation

(11); (2) ATOM-MAX, which uses weighted genotype scores from

equation (12); (3) MACH, which uses imputation dosage scores from

MACH; and (4) PCA, which uses genotyped markers only. For each

test T, we considered two versions: (1) the global version, which tests

for the joint interaction effect of all selected PCs; and (2) the pairwise

version, which tests for the pairwise interaction among all selected

PCs. Significance for the pairwise version is adjusted by Bonferroni

correction. For the SNP-based interaction analysis, we only considered

the pairwise version as the power of the global version is extremely low

due to the large number of degrees of freedom.

Comparison of type I error and power based on simulated data

We simulated data based on the LD structures of two genes

CHI3L2 (Figure 1) and PTPN22 (Figure 2), both are located

on chromosome 1 but are in linkage equilibrium with each other.

For each gene, we considered common SNPs with minor

allele frequency Z0.05 and selected tagSNPs using the program

Tagger18 with pairwise tagging at r2 Z0.8. We identified 25 common

SNPs for CHI3L2 and selected seven tagSNPs; for PTPN22, 29

common SNPs and 9 tagSNPs. We assumed that only the tagSNPs

were genotyped and available for analysis, a common scenario in both

candidate gene and GWAS studies. To simulate case–control data with

LD, we first estimated the haplotype frequencies of the tagSNPs for

each gene, and then simulated the genotype data according to the

estimated haplotype frequencies. We considered two situations: (1)

each gene has only one disease locus; and (2) each gene has two

disease loci.

For the first situation, we designated one locus in each gene as the

disease locus, and the case–control status for individual i was

simulated according to the following model

logit ½PðYi ¼ 1jg
ð1Þ
i;D1

; g
ð2Þ
i;D2

Þ� ¼a+0:2g
ð1Þ
i;D1

+0:2g
ð2Þ
i;D2

+0:3g
ð1Þ
i;D1

g
ð2Þ
i;D2

;

where a is determined in a way such that the overall disease prevalence

is 5%. Power was estimated based on 1000 replicate data sets

each consisting of 2000 cases and 2000 controls and significance was

assessed at the 1% level. The type I error rate was evaluated based

on 10 000 data sets by setting the interaction effect in the above logit

model to 0. Since gene-based interaction tests based on ATOM

and MACH require external LD information, we simulated 60 indivi-

duals (mimicking the HapMap CEU samples) as a reference data set

and then calculated the weighted genotype scores or the imputation

dosage scores using the LD information estimated from these 60

individuals.

As the performance of different tests may vary depending on

whether the disease loci are genotyped or not, we considered three

scenarios: (1) both disease loci are genotyped; (2) only one of the

disease loci is genotyped; and (3) both disease loci are untyped. A

thorough evaluation of all tests would require consideration of

25�29¼725 combinations. To avoid extensive simulations for all

marker combinations, we classified the markers in each gene into

three categories according to LD levels. Specifically, a marker is

classified into the ‘strong LD’ category if five or more markers in

the gene have r2 40.8 with it; a marker is in the ‘moderate LD’

category if three to five markers in the gene have r2 40.8 with it; the

rest are in the ‘weak LD’ category. On the basis of this classification,

markers in CHI3L fall into either strong or weak LD categories. By

classifying markers in this manner, we were able to investigate the

performance of various tests under a wide range of settings, yet

avoided simulations of all marker combinations.

Gene-based interaction analysis
J He et al

166

European Journal of Human Genetics



Table 1 displays the estimated type I error rates under two-locus

interaction model. The type I error rates of all tests are under control.

Not surprisingly, for each test, the pairwise version of the test is more

conservative than the global version due to the correction of a large

number of pairwise comparisons. Table 2 shows the estimated power. As

expected, when there is a single disease locus in each gene, TSNP�pairwise

consistently outperforms the other tests. Among the other tests we

considered, TATOM�AVG�global, TATOM�MAX�global and TMACH�global, which

incorporate external LD information, offer better power, followed by

TPCA�global. We note that the powers of ATOM- andMACH-based tests are

similar, despite that MACH is much more computationally intensive. For

example, it requires B210 s to finish one simulation for MACH-based

tests with 2000 cases and 2000 controls; however, the required computing

time for ATOM-based tests is only B5 s, 40 times faster.

Figure 2 LD structure of PTPN22 on chromosome 1 in the HapMap CEU samples. Displayed is estimated r 2 for 29 SNPs with MAF Z0.05. SNPs within

the black boxes are tagSNPs selected using the Tagger program at r 2 threshold of 0.8.

Figure 1 LD structure of CHI3L2 on chromosome 1 in the HapMap CEU samples. Displayed is estimated r 2 for 25 SNPs with MAF Z0.05. SNPs within the

black boxes are tagSNPs selected using the Tagger program at r 2 threshold of 0.8.
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Table 1 Type I error rates (%) under a two-locus interaction model in which one locus in CHI3L2 interacts with one locus in PTPN22

Disease locus in CHI3L2 Disease locus in PTPN22 Interaction tests

SNP PCA ATOM-AVG ATOM-MAX MACH

LD category SNP LD category SNP Pairwise Global Pairwise Global Pairwise Global Pairwise Global Pairwise

G G

W 3 W 13 0.82 1.04 0.79 1.15 0.70 1.10 1.00 1.08 0.80

S 24 S 27 0.72 1.10 0.94 0.93 0.68 1.03 0.91 1.13 1.03

G U

W 3 S 5 0.65 1.09 0.81 1.10 0.66 1.00 0.98 1.17 0.77

S 24 M 10 0.73 1.16 0.95 0.99 0.51 1.20 0.82 0.98 0.88

U G

W 5 S 27 0.71 1.18 0.82 1.15 0.57 1.04 0.90 1.09 0.96

S 7 W 24 0.74 1.06 0.97 1.12 0.84 1.08 1.13 0.91 0.75

U U

W 5 M 12 0.60 0.85 0.86 1.00 0.48 0.86 0.91 0.93 0.77

S 7 W 7 0.72 0.98 1.05 1.14 0.61 1.00 1.06 0.92 0.91

Abbreviations: G/U, genotyped/imputed; S/M/W, strong/moderate/weak LD category.

Table 2 Comparison of power (%) under a two-locus interaction model in which one locus in CHI3L2 interacts with one locus in PTPN22

Disease locus in CHI3L2 Disease locus in PTPN22 Interaction tests

SNP PCA ATOM-AVG ATOM-MAX MACH

LD category SNP LD Category SNP Pairwise Global Pairwise Global Pairwise Global Pairwise Global Pairwise

G G

W 3 W 13 40.6 23.9 21.0 29.4 24.2 18.5 6.1 20.1 17.7

W 3 M 16 60.3 51.9 52.1 56.1 48.7 54.2 29.2 56.6 40.3

W 3 S 27 71.6 65.6 66.0 67.9 65.6 68.3 40.2 66.3 58.1

S 24 W 13 36.4 21.6 14.6 24.9 18.7 17.6 5.6 16.3 17.8

S 24 M 16 55.9 44.5 38.9 47.4 39.3 51.3 26.3 50.0 46.5

S 24 S 27 68.0 61.5 52.1 58.7 55.0 64.7 38.7 66.7 72.1

Mean 55.5 44.8 40.8 47.4 41.9 45.8 24.4 46.0 42.1

U G

W 5 W 13 40.1 20.3 18.1 27.6 24.0 18.6 14.5 19.7 14.8

W 5 M 16 60.1 51.4 54.7 58.6 50.5 54.3 37.1 56.5 41.2

W 5 S 27 72.7 66.7 62.2 69.1 63.2 67.5 54.9 66.3 58.5

S 7 W 14 80.1 73.7 65.5 72.6 60.1 75.0 76.9 70.0 56.1

S 7 M 16 55.3 46.3 41.2 50.8 39.2 52.4 47.7 50.1 46.0

S 7 S 27 68.6 60.2 50.8 59.5 52.8 62.7 68.4 66.8 72.8

Mean 62.8 53.1 48.8 56.4 48.3 55.1 49.9 54.9 48.2

G U

W 3 W 17 73.6 69.3 58.7 71.7 59.3 70.4 52.1 67.3 56.8

W 3 M 3 61.0 52.8 52.0 57.4 50.1 56.3 38.6 57.7 42.5

W 3 S 5 74.3 67.5 62.8 69.7 63.5 69.0 55.2 65.9 57.8

S 24 W 17 67.4 59.4 42.2 59.8 48.2 63.4 63.4 65.8 67.5

S 24 M 15 58.5 50.3 42.9 52.4 40.4 54.2 49.1 52.8 46.5

S 24 S 5 66.5 59.8 50.9 58.5 51.8 63.2 67.9 63.6 68.4

Mean 66.9 59.8 51.6 61.6 52.2 62.8 54.4 62.2 56.6

U U

W 5 W 17 74.1 66.5 60.7 72.5 60.1 69.3 53.7 68.9 59.1

W 5 M 12 61.9 55.5 53.8 60.7 50.5 56.3 36.9 54.8 39.9

W 5 S 5 72.9 65.0 62.6 69.8 63.6 65.8 53.6 67.5 61.3

S 7 W 7 66.4 59.0 45.7 61.0 51.2 62.4 66.6 63.0 66.1

S 7 M 3 55.6 47.1 40.7 50.5 40.5 53.3 47.2 54.3 50.7

S 7 S 5 66.1 61.5 46.6 57.6 51.7 63.6 68.7 62.0 69.0

Mean 66.2 59.1 51.7 62.0 52.9 61.8 54.5 61.8 57.7

Abbreviations: G/U, genotyped/imputed; S/M/W, strong/moderate/weak LD category.
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For complex diseases, it might be an oversimplification to consider

only one disease locus per gene. To evaluate the performance of

different tests under a more complicated setting, we considered a

model in which two loci in CHI3L2 interact with two loci in PTPN22.

Specifically, we simulated case–control status according to the model:

logit½PðYi ¼ 1jg
ð1Þ
i;D1

; g
ð1Þ
i;D2

; g
ð2Þ
i;D1

; g
ð2Þ
i;D2

Þ� ¼ a+0:2ðg
ð1Þ
i;D1

+g
ð1Þ
i;D2

+g
ð2Þ
i;D1

+g
ð2Þ
i;D2

Þ+0:3ðg
ð1Þ
i;D1

g
ð2Þ
i;D1

+g
ð1Þ
i;D1

g
ð2Þ
i;D2

+g
ð1Þ
i;D2

g
ð2Þ
i;D1

+g
ð1Þ
i;D2

g
ð2Þ
i;D2

Þ:

Again, the overall disease prevalence was set at 5% by adjusting the

value of a. For type I error estimation, we set the coefficient for the

interaction effect at 0.

As shown in Table 3, the type I error rates of all interaction tests are

under control. Table 4 shows the power comparison results. These

results indicate that all gene-based interaction tests outperform

the SNP-based test. For example, the power advantage of

TATOM-MAX-global over TSNP-pairwise as measured by mean power differ-

ence ranged from 12.7 to 27.3%. This is much higher than the mean

power difference (4.1–9.7%) between the two tests under the simpler

disease models in Table 2. This indicates that SNP-based interaction

analysis is not sufficient when multiple loci in a gene interact with

multiple loci in another gene. Among all gene-based tests we con-

sidered, TMACH-global is generally the most powerful test, followed by

TATOM-MAX-global, TATOM-AVG-global and TPCA-global. It is worth noting

that the power of TATOM-MAX-global is only slightly lower than

TMACH-global despite that MACH is much more computationally

intensive. The pairwise versions of these three tests are typically less

powerful than the global versions of the tests. Moreover, our results

clearly indicate the advantage of incorporating external LD informa-

tion in the analysis. The power gain of TATOM-MAX-global over

TPCA-global as measured by the mean power difference ranged from

3.3 to 7.9%, and the power gain of TMACH-global over TPCA-global ranged

from 4.6 to 10.7%.

Application to the HDL data set

We applied the three gene-based interaction tests to an ongoing

candidate gene study on subjects with extreme levels of HDL-C. In

this study, 625 subjects of European ancestry with HDL 490th

percentile were considered as cases and 606 subjects with HDL

o30th percentile were considered as controls. All study subjects

were genotyped using the IBC 50K SNP array.19 Our previous SNP

pairwise interaction analysis on this data set reveals that a number of

SNPs in CETP significantly interact with several SNPs in BCAT1. It is

well known that CETP promotes the transfer of cholesteryl esters from

HDL to low-density lipoprotein, and individuals that are genetically

deficient for CETP often have extremely high HDL levels.20,21 In a

recent GWAS on biochemical traits, BCAT1 is shown to be signifi-

cantly associated with serum albumin concentration.18 As albumin is

correlated with HDL,22 it is possible that CETP and BCAT1 interact in

modulating the level of HDL-C.

Figures 3 and 4 display the LD structures of CETP and BCAT1

estimated using the HDL data set. We downloaded genotype data at

these two genes for the CEU samples from the HapMap website. For

CETP, there are 31 common SNPs in the HapMap, whereas the HDL

data set has 57, with 27 common SNPs in both data sets. As the

HapMap data set does not provide much additional LD information,

for ATOM-based tests, we calculated the weighted genotype scores

using the LD information provided by the 57 SNPs in the HDL

controls. For BCAT1, 164 common SNPs are in the HapMap and 79

are in the HDL data set, with 56 in both. For the 164 SNPs in the

HapMap, we calculated their weighted genotype scores using the LD

information provided by the HapMap; for the 23 SNPs in the HDL

data set but not in the HapMap, we used their observed genotypes in

the HDL data set.

The BCAT1 SNPs are in several LD blocks with weak LD between

some of the blocks, requiring 23 PCs to explain 90% of the variance.

Testing interaction using all SNPs in BCAT1 may have low power due

to the large number of degrees of freedom. To reduce the dimension-

ality, we divided the SNPs in BCAT1 into four blocks (Figure 4) and

tested interaction between CETP and each of the four blocks. We

found significant interaction between CETP and the third block of

BCAT1. The P-value of TATOM-AVG-global is 0.0034. In comparison, the

P-values of TATOM-MAX-global, TMACH-global and TPCA-global are 0.22, 0.25

and 0.072, respectively. The P-values of the pairwise versions of the

four tests are 0.035, 0.062, 0.38 and 0.029, respectively. The P-value of

TSNP-pairwise is 0.078. Compared with other gene-based interaction tests,

TATOM-AVG-global clearly revealed stronger evidence of association.

DISCUSSION

We have proposed a PC framework for gene-based interaction

analysis. Our tests are based on the aggregation of information from

weighted genotype scores using pairwise LD information or impu-

tation dosage scores using multilocus LD information in a gene.

Table 3 Type I error rates (%) under a four-locus interaction model in which two loci in CHI3L2 interact with two loci in PTPN22

Disease loci in CHI3L2 Disease loci in PTPN22 Interaction tests

SNP PCA ATOM-AVG ATOM-MAX MACH

LD Category SNPs LD Category SNPs Pairwise Global Pairwise Global Pairwise Global Pairwise Global Pairwise

G, G G, G

W, W 4, 14 M, S 16, 27 0.83 1.10 0.91 1.12 1.01 1.18 1.08 1.05 1.00

W, S 4, 24 W, M 1, 16 0.76 0.99 0.92 1.06 0.98 0.98 0.94 0.97 1.03

G, U G, U

W, W 2, 4 W, M 1, 3 0.73 1.05 1.00 1.03 0.92 1.04 0.77 1.17 1.03

W, S 4, 7 M, M 3, 18 0.62 1.28 0.92 1.21 1.05 1.13 0.94 1.08 1.09

U, U U, U

W, S 15, 1 W, W 7, 20 0.82 1.15 0.98 1.18 1.05 1.13 0.97 1.19 1.06

W, S 15, 11 M, S 23, 19 0.73 0.87 0.97 0.96 0.99 0.88 0.95 1.07 1.01

Abbreviations: G/U, genotyped/imputed; S/M/W, strong/moderate/weak LD category.
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To reduce dimensionality, the scores within a gene are further

summarized into PCs and then used in a regression framework for

interaction analysis. By extensive simulations under various settings

and the analysis of a real data set, we demonstrated that gene-based

interaction tests are a powerful alternative to the conventional

SNP-based interaction test and to approaches that do not incorporate

external LD information.

The gene-based interaction tests consider each gene as a testing

unit and tests for interaction at the gene level. Compared

with methods that operate at the marker level, a key advantage of

gene-based interaction tests lies in their ability to capture all

potential risk conferring variants in a gene. This makes gene-based

interaction tests particularly attractive when multiple disease

loci in a gene interact with multiple disease loci in another gene.

We note that when a single locus in a gene interacts with a single

locus in another gene, or when some of the interaction effects

are weak when more than two loci interact, the SNP-based

interaction test may perform well, as such a simple test can

capture the interaction effect more effectively than the gene-based

interaction tests.

Another advantage of gene-based interaction analysis over the

conventional SNP-based interaction analysis is that it requires much

less number of tests. For example, for the IBC data with 50 000 SNPs

genotyped in 2000 candidate genes, the conventional SNP pairwise

interaction analysis will involve B1.25 billion tests. In contrast, using

gene-based interaction analysis, the number of tests is reduced to

2 million. For large-scale candidate gene and GWAS data sets, gene-

based interaction tests can be used as a screening tool. After a pair of

significant interacting genes is identified, one can then conduct further

investigation to evaluate which SNPs within the genes significantly

interact.

Our method concerns with gene-based tests of interaction effect.

We note that there exist gene-based methods that jointly test for the

main effect and the interaction effect.23,24 Although the goals of these

tests are slightly different from ours, they all aim to incorporate

information contributed by multiple markers in a gene. How to

Table 4 Comparison of power (%) under a four-locus interaction model in which two loci in CHI3L2 interact with two loci in PTPN22

Disease loci in CHI3L2 Disease loci in PTPN22 Interaction tests

SNP PCA ATOM-AVG ATOM-MAX MACH

LD category SNPs LD category SNPs pairwise Global Pairwise Global Pairwise Global Pairwise Global Pairwise

G, G G, G

W, W 4, 14 W, W 1, 13 25.5 44.8 30.6 51.9 22.7 47.8 22.2 53.2 25.7

W, W 4, 14 W, M 1, 16 44.8 68.5 39.5 74.1 33.7 72.5 52.3 73.3 41.2

W, W 4, 14 M, M 16, 18 59.7 71.7 50.0 75.0 56.6 74.8 61.3 75.7 65.7

W, W 4, 14 M, S 16, 27 18.8 58.0 39.7 67.3 52.3 69.5 57.7 73.3 56.7

W, W 4, 14 W, S 24, 27 39.9 60.7 37.0 67.3 36.0 66.6 32.8 68.7 39.8

W, S 4, 24 W, W 13, 28 42.8 55.5 62.1 60.5 71.8 47.7 46.7 45.4 37.5

W, S 4, 24 W, M 1, 16 77.3 66.2 62.1 72.9 60.8 72.5 56.9 75.2 46.9

W, S 4, 24 M, M 16, 18 73.8 69.7 64.3 74.4 66.7 75.4 62.8 75.1 67.8

W, S 4, 24 M, S 16, 27 42.3 60.6 68.7 68.3 80.5 73.8 66.5 73.3 64.9

W, S 4, 24 W, S 24, 27 71.2 60.6 62.1 67.7 58.1 67.7 39.4 71.7 49.9

Mean 49.6 61.6 51.6 67.9 53.9 66.8 49.9 68.5 49.6

G, U G, U

W, W 3, 15 W, W 1, 7 84.6 94.9 93.8 96.9 95.4 98.1 88.8 98.4 86.7

W, W 2, 4 W, M 1, 3 31.6 58.0 34.3 50.1 23.0 51.3 28.6 53.2 24.3

W, W 2, 4 M, M 3, 18 48.6 67.8 48.4 63.6 44.7 63.5 48.2 64.5 50.6

W, W 3, 15 M, S 16, 19 82.2 96.1 92.7 97.6 95.3 98.2 94.6 98.4 94.2

W, W 2, 4 W, S 1, 22 30.1 60.2 37.8 49.5 22.8 50.1 25.6 55.3 25.3

W, S 4, 7 W, W 1, 7 40.9 58.2 67.9 67.8 77.3 71.9 55.1 73.4 57.0

W, S 4, 7 W, M 1, 3 74.7 66.0 61.4 72.5 62.7 73.0 58.3 74.7 48.5

W, S 4, 7 M, M 3, 18 75.9 69.8 63.9 74.4 60.8 76.4 62.1 77.1 70.7

W, S 4, 7 M, S 16, 19 40.3 59.8 67.8 68.1 77.3 71.8 62.4 72.5 66.2

W, S 4, 7 W, S 1, 19 78.5 66.5 64.6 73.8 61.6 75.4 56.8 75.2 56.1

Mean 58.7 69.7 63.3 71.4 62.1 73.0 58.1 74.3 58.0

U, U U, U

W, W 1, 15 W, W 7, 20 20.8 56.8 54.1 67.0 57.9 70.0 41.5 70.8 39.3

W, W 1, 15 W, M 20, 3 46.4 66.3 49.7 72.9 45.0 71.6 43.3 71.9 31.6

W, W 1, 15 M, M 3, 8 29.0 46.1 25.5 52.2 24.9 51.8 21.2 74.3 59.2

W, W 1, 15 M, S 3, 22 18.0 54.5 51.5 61.9 54.7 63.3 45.6 63.2 41.7

W, W 1, 15 W, S 7, 19 41.8 62.4 53.9 69.1 39.3 67.6 28.4 70.8 33.2

W, S 15, 11 W, W 7, 20 41.9 59.1 68.2 65.7 75.2 70.4 53.7 74.2 56.0

W, S 15, 11 W, M 7, 15 74.7 62.7 56.0 71.1 63.8 71.6 60.3 72.0 59.6

W, S 15, 11 M, M 3, 8 76.0 68.9 63.5 75.1 64.9 75.6 62.8 76.6 71.3

W, S 12, 2 M, S 12, 19 17.7 63.0 55.4 56.3 45.9 64.9 37.6 62.2 37.6

W, S 15, 11 M, S 23, 19 45.4 65.5 71.9 74.0 80.6 76.7 66.2 76.3 67.3

Mean 41.2 60.5 55.0 66.5 55.2 68.4 65.1 71.2 49.7

Abbreviations: G/U, genotyped/imputed; S/M/W, strong/moderate/weak LD category.
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extend the proposed PC framework to jointly test for the main and

interaction effects would merit further research.
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Figure 3 LD structure of CETP on chromosome 16 in the HDL data set. Displayed is estimated r 2 for 57 SNPs with MAF Z0.05 based on the controls.

Figure 4 LD structure of BCAT1 on chromosome 12 in the HDL data set. Displayed is estimated r 2 for 79 SNPs with MAF Z0.05 based on the controls.
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