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Abstract

Whole-exome sequencing using family data has identified rare coding variants in Mendelian 

diseases or complex diseases with Mendelian subtypes, using filters based on variant novelty, 

functionality, and segregation with the phenotype within families. However, formal statistical 

approaches are limited. We propose a GEne-based SEgregation Test (GESE) that quantifies the 

uncertainty of the filtering approach. It is constructed using the probability of segregation events 

under the null hypothesis of Mendelian transmission. This test takes into account different degrees 

of relatedness in families, the number of functional rare variants in the gene, and their minor allele 

frequencies in the corresponding population. In addition, a weighted version of this test allows 

incorporating additional subject phenotypes to improve statistical power. We show via simulations 

that the GESE and weighted GESE tests maintain appropriate type I error rate, and have greater 

power than several commonly used region-based methods. We apply our method to whole-exome 

sequencing data from 49 extended pedigrees with severe, early-onset chronic obstructive 
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pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD) and identify 

several promising candidate genes. Our proposed methods show great potential for identifying rare 

coding variants of large effect and high penetrance for family-based sequencing data. The 

proposed tests are implemented in an R package that is available on CRAN (https://cran.r-

project.org/web/packages/GESE/).
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Introduction

Advancements in sequencing technology have allowed examination of rare coding variants 

associated with disease. In contrast to large studies in complex disease, a “filtering”-based 

approach focusing on variant segregation with phenotype, predicted variant functionality and 

novelty has been used to identify causal variants/genes for Mendelian diseases[Bamshad, et 

al. 2011; Chong, et al. 2015; Ionita-Laza, et al. 2011; Ng, et al. 2010]. Some complex 

diseases are also known to have Mendelian or near-Mendelian variants, such as alpha-1 

antitrypsin deficiency in Chronic Obstructive Pulmonary disease (COPD)[Dahl, et al. 2001], 

BRCA1 and BRCA2 for breast and ovarian cancer[Aida, et al. 1998; Miki, et al. 1994; 

Szabo and King 1995], and TARDBP for Amyotrophic Lateral Sclerosis (ALS)[Daoud, et 

al. 2009]. Therefore, filtering-based methodologies for exome-sequencing data may also be 

applicable to identify disease genes in subsets of complex disease with Mendelian features.

However, the number of families recruited for these studies are generally small, which 

creates challenges for traditional variant-based or gene-based association methods. Typical 

filtering-based methods do not quantify the uncertainty of the results, nor do they account 

for different degrees of relatedness or background variations in the gene. To overcome these 

limitations, several other solutions have been proposed. MendelScan [Koboldt, et al. 2014] is 

a ranking scheme that incorporates segregation information, variant rarity and predicted 

functionality. However, it does not differentiate between family structures, and it gives only 

a variant-based ranking without providing confidence statements. A variant-based approach 

is likely to be less powerful due to the rarity of the causal variants and the potential for 

different variants in the gene to contribute to disease susceptibility in different families. 

Collapsing the information from multiple variants within a gene may be more likely to 

capture key genes[Dering, et al. 2011; Price, et al. 2010; Sun, et al. 2011]. This is one of the 

advantages of the methods described in Ionita-Laza et al [Ionita-Laza, et al. 2011], in which 

the authors designed a gene-based test for segregation events in pairs of affected relatives. It 

considers background variation in the gene and degrees of relatedness between the affected 

relatives. However, only pairs of the same relationship can be incorporated in this test, 

whereas many studies include different family structures. A method based on the exact 

probability of sharing between affected relatives proposed by Bureau et al [Bureau, et al. 

2014] has the advantage of relying on a formal statistical approach that can incorporate 

different family structures. It computes the sharing probability of each variant in the affected 

subjects conditioning on the presence of the variant in the family and gives an exact test 
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based on the segregation events across families. However, it is also variant-based and cannot 

collapse information across a gene. Our method is motivated by this approach, but computes 

the marginal probability of segregation events within a gene, in the case where a reference 

database or control set from the same population exists, with the following goals: (1) the 

method should collapse segregation information of all selected variants in the gene; (2) it 

should also take into account background variations in the gene, such as the number of 

variants and variant frequencies in the gene; and (3) it should differentiate different degrees 

of relatedness in the families. Our method differs from traditional haplotype sharing 

methods[Allen and Satten 2007; Beckmann, et al. 2001] as we utilize reference database to 

combine population-based signal with segregation information and consider each rare 

variant separately.

In this paper, we propose a GEne-based SEgregation test named GESE, which quantifies the 

uncertainty of segregation events for rare variants and is designed to identify genetic variants 

of high penetrance in sequencing studies using multiple pedigrees of any family structure 

with at least one affected individual. It is constructed using estimated segregation 

probabilities of the gene in the families under the null hypothesis that no variant in the gene 

is associated with disease status. It achieves the goals listed above, and it gives statistically 

valid p-values. Our method also allows weighting of families, for example, higher weights 

for families with more severe cases. We show using simulations that our gene-based tests are 

valid under the null hypothesis and perform better than other methods for identifying causal 

variants of large effect and high penetrance. We apply our methods to whole-exome 

sequencing data from pedigrees in the Boston Early-Onset Chronic Obstructive Pulmonary 

Disease study (BECOPD) [Aida, et al. 1998; Qiao, et al. 2016a; Silverman, et al. 1998]. Our 

approaches are implemented in an R package GESE that is publicly available on CRAN 

(https://cran.r-project.org/web/packages/GESE/). We also implemented a Python pipeline for 

the preprocessing of data and application of the GESE package using the annotations 

provided by WGS Annotator[Liu, et al. 2016] (Supplemental Material). It is publicly 

available at http://scholar.harvard.edu/dqiao/gese. Some of the results of this study have been 

previously reported in the form of abstracts[Qiao, et al. 2016b].

Materials and Methods

The Gene-based segregation test

Our gene-based segregation test (GESE) is based on segregation events in sequenced 

pedigrees. A segregation event of a variant in a pedigree refers to the scenario where among 

all of the sequenced subjects in the family, all those affected carry the variant and all those 

unaffected subjects do not carry the variant. By obtaining the probability of segregation 

events across a gene for multiple families, we can compute the p-value of such events 

considering the entire sample space of segregation events for all families in the data. Since 

we are looking for rare variants with large effects, we assume that only one founder in the 

family introduced a causal variant in the gene (as shown below) into the family. We can 

further limit the test variants to a single class of variants, e.g. variants with high functional 

impact.
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For a gene of interest, say gene G, assume that Xf represents the event that at least one 

variant in gene G segregates in family f. Then Xf follows a Bernoulli distribution with 

parameter pf, where pf is the probability that at least one variant in gene G segregates in 

family f, for families f = 1, …, F This probability is computed under the assumption of no 

association between any variant in the gene and affection status, and is based only on the 

allele frequencies of the variants in the gene, and the family relatedness. Then GESE is 

based on computing the probability of segregation events of families, assuming 

independence, using the formula:

(1)

With the estimates of the segregating probabilities pf, we can compute the p-value of this 

test, which is the sum of the probability of events that are as or more extreme (less likely) 

than the observed events. The probabilities can be estimated using simulations from the 

Bernoulli distribution.

To estimate pf – the probability that at least one variant in gene G segregates in family f, we 

extend the calculation of variant-sharing probabilities by affected relatives described in 

Bureau et al[Bureau, et al. 2014] and compute the marginal probability of segregation events 

for the gene. Let indicator variable Vif, i = 1, …, m indicate whether variant i in gene G 

segregates in family f. Then:

(2)

Eq. 2 is valid with equality under the assumption of marginally independent segregation 

events between these rare variants within the gene. Since we are considering only rare 

variants, the linkage disequilibrium (LD) between these variants is likely to be small. 

Therefore, the probability of finding multiple rare variants (RVs) with a MAF < 0.001 in the 

same gene in the same family is also small. From our simulation, the average number of RVs 

in the same gene with 100 variants is about 1.1 in our simulated dataset of 50 families of 

approximately 200 samples under the null (Supplemental Table S7). With the small 

probability of observing multiple RVs in the same gene in the same family, the marginal 

gene-based segregation probability can be approximated under the assumption of 

independent segregation events between the variants within the gene. We performed gene-

dropping algorithm assuming no recombination within genes in the simulation, and 

evaluated the effect of LD using simulated data.

To obtain the probability that variant i segregates in family f, which is P(Vif = 1), let Rif 

indicates whether variant i is present in any founders in family f. Then:

(3)
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The probabilities in (Eq. 3) can be computed analytically assuming that only one founder 

introduced the rare variant into the family, with equal probability for any founder 

(Supplemental Material). The conditional probability in (Eq. 3) distinguishes different 

degrees of relatedness between different families. In P(Rif = 1), we assume that all founders 

are unrelated with the same probability of introducing the variant to the pedigree under the 

null hypothesis. This probability can be estimated using unrelated controls from a large 

sample, or a reference genome database with a matching population. Therefore, pf 

summarizes the different genetic background variations based on the number of variants in 

the gene and their minor allele frequencies (MAFs) in the population. With the estimation of 

these segregating probabilities pf under the null overall families, we can compute the 

marginal probability of any segregation events, and obtain the p-value for the GESE test by 

summarizing the probability of any segregating events with probability less than the 

probability of the observed segregating event. Using the definition of the test statistic S 

defined in (Eq. 1), we can obtain the p-value using:

Weighted GESE test

Individual families may not have equal probability of harboring the same causal rare variant; 

for example, one may choose to increase the contribution of more extreme phenotypes. 

Therefore, we propose a weighted GESE test by weighting the families on additional 

information with the goal of maximizing the power to detect the causal genes:

(4)

where wf indicates the weight of family f for one gene, which can be a function of the 

phenotypes or covariates of subjects in the family, with constraint . For example, 

for the application to the BEOCOPD exome data, we gave higher weights to families with 

more severe cases (severity defined using the residuals obtained by regressing lung function 

to other covariates, including age, sex, pack-years, and height). Note that wf should be 

independent of the genetic data to maintain the correct type I error rate for the weighted test. 

We can again compute the p-value for this test using simulations based on the estimated 

segregating probabilities pf

Results

We investigated via simulations the performance of the tests proposed here. We also applied 

GESE to whole exome sequencing data from 49 pedigrees ascertained through severe, early-

onset chronic obstructive pulmonary disease (COPD) patients from the Boston Early-Onset 

COPD study, with a goal of identifying candidate genes with rare variants of large effect on 

risk to COPD.
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Simulating sequencing data for ascertained families

To simulate a phenotype due to a rare, highly penetrant variant, we simulated sequencing 

data for 50 families ascertained on a value of an extreme quantitative trait with different 

family structures. We generated families with structure shown in Supplemental Figure S1, 

and generated a quantitative phenotype. We defined affecteds to be subjects with phenotype 

above 99th percentile under the null, and unaffecteds to be subjects with phenotype below 

the 30th percentile. We selected only families with at least two affected subjects. All of the 

affected subjects and a randomly generated number of unaffected subjects (between 0 and 3) 

in these families were ascertained to be in the simulated dataset. This resembles the 

ascertainment process for selecting subjects to undergo sequencing in real projects. For the 

founders of the families, we generated haplotypes using a multivariate normal 

distribution[Schaid, et al. 2013] for genes of size 10, 100, or 1000 variants with MAFs from 

the Beta(1, 25) distribution between 0 and 0.001 (Supplemental Material). The multivariate 

normal distribution allows us to change the linkage disequilibrium (LD) between variants to 

examine the effect of LD on the performance of the test. We consider ρ (specified 

correlation structure[Schaid, et al. 2013]) of 0, 0.3, and 0.7 between adjacent variants, and 

let the LD decay with an autoregressive model of order 1 between further variants. The 

genotypes of the non-founders were generated using gene-dropping algorithms under 

Mendelian transmission, where we assumed no recombination or mutation events during the 

transmission of the haplotypes from the parents to the offspring.

Type I error rate of the GESE test

To evaluate the validity of our test, we randomly generated a quantitative response variable 

independently from the simulated genotypes, with heritability equal to 50%. Suppose there 

are n individuals in the simulated dataset, the phenotype vector of size n × 1 follows

(4)

where δ is a n × 1 vector from  representing the familial correlation, and ε is a n × 

1 vector from  representing the independent random error. Here Φ is twice the 

kinship matrix of size n × n, and I is the identify matrix of size n × n. At least 100,000 

simulations were ran to estimate the type I error rates in each scenario.

Table 1 shows the type I error rate of our GESE methods when all variants in the gene are 

transmitted together without recombination or mutation events, from the parents to the 

offspring. We assume that we have complete information about all the variants in the gene 

and their true MAFs in the population. For genes with a small number of variants, this test is 

conservative due to the rarity of the events. As the number of variants increases, the 

probabilities of no segregation events computed under independent segregation becomes 

smaller than the real probabilities due to inequality (Eq. 1); therefore, the type I error rate 

becomes less conservative as the number of variants increases. As the LD between variants 

increases, the type I error rate does not vary much. Table 2 shows the type I error is well 

maintained at different significance levels for both the GESE and weighted GESE test.
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Evaluating the effect of the reference genome database

In reality, since we do not have complete information about the variants and their true 

MAFs, the approach requires estimates of MAFs of the variants in the gene, which could be 

obtained from reference genome database. However, reference databases consist of limited 

numbers of genomes, and variants with small MAFs are likely to be missed. Therefore, the 

calculation of the probability of observing a variant in a given gene for the family using the 

reference database is only an approximation. In our implementation, we included variants 

that are present in the study but absent in the reference database in the calculation, and 

assigned an estimated MAF based on the size of the reference database (Supplemental 

Material). This ensures that the probabilities of observing the genes present in the study but 

absent in the reference genome database are nonzero. We evaluated the effect of the size of 

the reference database in our method using the same simulation procedure as above, 

assuming that only a subset of variants in a gene could be found in the reference database.

Specifically, we assume that the reference database contains N subjects (N=10, 100, 500, 

1,000, 5,000, 10,000, 30,000) randomly selected from the population. The type I error rate 

for different sizes of the reference database is shown in Figure 1. We observed that when the 

reference database is small, the test is conservative and approaches the type I error rate of 

the test using the true population MAF. Therefore, we recommend using a population-

appropriate reference database (as large as possible) to obtain accurate estimates of 

background variations in the gene; but a population-appropriate reference database of at 

least 5,000 subjects will give an appropriate type I error rate.

Power of the GESE tests

To assess the power of our test, we considered different levels of genetic heterogeneity by 

simulating 2 or 10 causal genes; 10% of the rare variants in the causal genes were assumed 

to be functional and all of these were assumed to be deleterious.

We generated a quantitative phenotype based on the same model in (Eq. 4), with an 

additional genotype term:

where X is an n × m genotype matrix with m variants and n subjects, We set the coefficients 

β to be fixed for the causal variants under the alternative hypothesis. Few methods are 

directly comparable to our tests. While our method is fundamentally different from 

association tests, such methods are often applied for identifying causal genes in family-

based exome sequencing studies. We compared GESE with two association tests, 

famSKAT[Chen, et al. 2013] and PedGene[Schaid, et al. 2013] burden-based test. Both tests 

were designed to collapse variants to identify causal genes. In our simulation, the weighted 

GESE test used the average of the underlying quantitative phenotype of the cases in the 

family (i.e. families with more severe cases were weighted higher). 2,000 simulations were 

ran to obtain the power estimates for the tests using the true MAF population for each 

scenario, and 10,000 simulations were ran to obtain the power estimates for the tests using 

reference genome database.
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One important note is that since GESE considers all possible genes in the genome, the p-

value of the GESE test should be corrected using the total number of genes in the reference 

genome database instead of the genes in the study. Since we compute the marginal 

probability of segregation event using the MAFs in the population and not the conditional 

probability given at least one rare variant is present, we cannot consider only the genes 

present in the study. For a fair comparison, we utilized significance levels of 2.5 × 10−6 for 

GESE and 1.0 × 10−5 for famSKAT and PedGene since we considered only the rare and 

functional set of variants. The significance levels were chosen based on our experience with 

the BEOCOPD whole exome sequencing data (shown below). The average heritability 

explained by each gene under each scenario is reported in Supplemental Table S6, and the 

average number of variants observed in each gene is reported in Supplemental Table S7.

Figure 2 shows the power of the GESE test, weighted GESE test, famSKAT, and PedGene 

burden-based test at the LD level of ρ = 0.3 for 2 and 10 causal genes. Since famSKAT was 

designed for quantitative phenotypes, we used the underlying quantitative phenotype. The 

power of these tests at other LD levels is very similar to these results (Supplemental Table 

S1 and S2). A similar trend is observed for an affected-only analysis; when no unaffected 

subjects were included in the data (Supplemental Figure S3, Supplemental Table S4 and S5), 

the power is slightly lower.

When the number of variants in the gene is 10, the power of GESE is small due to the rarity 

of the events. In this scenario, famSKAT performed well since there is only one causal 

variant and a small number of non-causal variants in the gene. However, as we increase the 

percentage of causal variants in each gene, the power of GESE increases (Figure 3a, 3c). In 

addition, if we consider more extreme ascertainment (for example, from the 99% to 99.5% 

percentile for the situation of 10 causal genes), we observe dramatic increase in the power of 

GESE (Figure 3d). With a larger number of variants in the gene (100 and 1000 variants per 

gene, Figure 2), GESE performs better than PedGene and famSKAT (which uses the 

quantitative trait). It has been shown that asymptotic tests can be conservative at extreme 

significance levels[Schneiter, et al. 2005], which may be one of the reasons that these 

association methods do not perform as well. In general, as the number of causal genes 

increases, the power to detect any of the causal genes is reduced due to increased genetic 

heterogeneity (Figure 2b). However, a similar pattern is observed where GESE tests perform 

better than the other association methods as the number of variants increases.

We also looked at the power estimates for different sizes of the reference database. Figure 4 

clearly shows that as the size of the reference database increases, the power of the GESE 

tests increases and approaches the power of the tests computed using the true population 

MAFs. More detailed results can be found in Supplemental Table S8 and S9.

Application to the BEOCOPD dataset

We selected 107 affected subjects with severe and very severe COPD, and 34 unaffected 

current or former smokers with normal lung function from the whole exome sequencing data 

of 347 subjects from 49 pedigrees ascertained through severe, early-onset COPD 

patients[Qiao, et al. 2016a; Silverman, et al. 1998]. Details on exome sequencing, including 

subject selection and quality control, have been previously described [Qiao, et al. 2016a]. 
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Compared to the previous filtering-based approach[Qiao, et al. 2016a] using ExAC r0.1 

[Lek, et al. 2016] and CADD[Kircher, et al. 2014] version 1.0) and different filtering criteria 

(including SnpEff[Cingolani, et al. 2012], Condel[Gonzalez-Perez and Lopez-Bigas 2011] 

and CADD for annotation score), here we used ExAC r0.3 and CADD 3.0 for first step 

filtering. We included variants with selected consequence categories (missense, stop gained, 

stop lost, start lost, splice acceptor and donor variants), MAF < 0.1% in Europeans in 

UK10K[Muddyman, et al. 2013] and 1000 Genomes Project[Genomes Project, et al. 2015] 

and in non-Finnish Europeans in ExAC r0.3 dataset, MAF < 1% in the controls in the 

BEOCOPD dataset, and CADD score >15. There are 5,761 variants in 4361 genes in the 

filtered set of variants, and 14 of these genes segregate in at least 3 families. Only 4 

individual variants in 4 different genes segregate in more than one family (2 families for all 4 

variants). Applying a naive filtering approach, the top genes that segregated in 5 and 4 

families were TTN and MLL2 respectively. Since these are large genes with many variants, 

it is likely that they are false positives. Therefore, we applied GESE, which considers the 

genetic background variation and the family structures to prioritize genes. We used the 

estimated MAFs from the 33,370 non-Finnish Europeans in the ExAC r0.3 database[Lek, et 

al. 2016] in the computation of the tests. We also applied the weighted GESE test by 

incorporating additional phenotypic information. We weighted the families using wf which 

is the average residual of the cases obtained by regressing each individual’s lung function 

(forced expiratory volume in 1 second, or FEV1) on height, age, sex and number of pack-

years of smoking, to increase the contribution of the most extreme subjects. No genes were 

significant after Bonferroni correction. The top 10 genes identified using the weighted 

GESE test are shown in Table 3. Six of these genes were in the 69 segregating in more than 

one family in previous analyses using different filtering criteria[Qiao, et al. 2016a]. We also 

applied famSKAT and PedGene; the smallest p-value obtained using famSKAT was 0.016, 

using PedGene burden was 0.00024).

Comparing to simple filtering approach, the weighted GESE test takes into account the 

family structure, phenotype information, and the number of variants and their frequencies in 

the gene in the corresponding population. Our top-ranked genes, PALM, SPINT1 and 

PLCB1, all segregate in three families. For example, PALM2 segregates in one uncle-niece 

pair (CADD score for the segregating variant 26.3) and two sibling pairs (CADD 26 and 

25.8). SPINT1 segregates in one sibling pair family with a unaffected second-degree aunt 

(CADD 22.9), and two parent-offspring families with at least one unaffected subjects 

(CADD 33 and 23.9). Genes such as OR4K13, which segregates in two families, are ranked 

higher than other genes segregating in three families (14 genes segregating in at least 3 

families). In fact it is segregating in a family with a sibling pair (both in their thirties) with 

extremely low FEV1% predicted values (20 and 23). We note that among our top genes are 

several of potential biologic interest, including SPINT1, part of a pathway CFTR-dependent 

regulation of ion channels in airway epithelium; HSPA5, which encodes GRP78, 

autoantibodies to which were found in emphysema; and RXFP1, which may protect against 

airway fibrosis in murine models[Samuel, et al. 2009].

Eight of the top 10 genes (all except OR4K13 and OR6A2), showed evidence for expression 

in the lung by RNA-Seq (FPKM > 0.5 in more than 50% of samples) in the Lung Genomics 

Research Consortium (http://www.lung-genomics.org/)[Uhlen, et al. 2015] (p-value for 
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enrichment = 0.51). In lung tissue from 111 subjects with severe COPD and 40 unaffected 

subjects with normal spirometry, 1 of the top 10 genes showed significant differences in 

expression in COPD (HSPA5, also known as CRP78 [Morrow 2015]; adjusted differential 

expression p = 0.0487 for HSPA5, enrichment p-value of the top 10 genes = 0.00474).

Discussion

An approach looking for segregation of rare, deleterious variants has been utilized frequently 

in Mendelian or near-Mendelian disease studies. While a few methods have attempted to 

apply inference testing to these studies, most previous approaches lack the ability to expand 

to multiple pedigrees with more complex relationships, and they do not allow formal 

statistical testing. We propose a gene-based test constructed using the probabilities of 

variant-segregation events within the family, and aggregates variant-based information over 

a gene. We recognize the sample size for such studies could be very small; our method 

requires only sequencing extremely affected subjects and a population-appropriate reference 

database with summary statistics (MAFs). Our method also allows the incorporation of 

family-specific weights. In simulation studies, we demonstrate that our method has 

preserved type I error, and improved power compared to two previously reported family-

based methods. The power improvement of GESE comes from the fact that we combine the 

association signals (using reference data) and linkage signals (segregation probability) in 

calculating the marginal probability of segregation, and also that we assumed that the rare 

variants have only deleterious effects. In addition, for data with small sample size, GESE 

maintains the appropriate type I error rate by obtaining MAFs from the reference database 

rather than the data under study, and is not conservative at extreme significance levels (1e-05 

for example) as other asymptotic methods. We also applied our methods to whole-exome 

sequencing data from the Boston Early-Onset COPD study. Due to the nature of our 

approach, we were limited in our ability to compare our approach with other methods in 

simulations. The most applicable approaches mentioned previously[Bureau, et al. 2014; 

Ionita-Laza, et al. 2011; Koboldt, et al. 2014] do not perform gene-based tests, or do not 

allow a flexible pedigree structure. One additional method that we were unable to directly 

test against in simulations was pVAAST [Hu, et al. 2014]. Though we have applied this 

method to the BECOPD data[Qiao, et al. 2016a], since pVAAST applies its own set of 

filtering criteria to a set of individually genotyped controls and utilizes genomic annotation 

in the test, and our simulated data were based on multivariate normal distribution instead of 

haplotypes sampled from a reference database, we were unable to create a comparable 

scenario in simulations.

Our method makes several simplifying assumptions. For the calculation of segregation 

probability, we made the assumption that at most one founder introduced the rare causal 

variant into the family; however, this is a common assumption for identifying rare causal 

variants for Mendelian disease. We also assume independent transmission of deleterious and 

rare variants in the gene between generations. These assumptions limit the set of variants 

included in the analysis to rare variants predicted to be deleterious in the genes. If less rare 

variants (MAF > 1%) were included, it is likely to violate the assumption that only one 

founder introduced variant[Bureau, et al. 2014], and the assumption of independence 

between variants may also be violated. Therefore, we recommend filtering down to a set of 
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rare and predicted functional variants. Our test implicitly assumes a dominant mode of 

inheritance for the disease of interest and a shared causal variant within the family. Families 

with different causal variants would not provide additional information and would reduce the 

power of the test. Further work is needed to extend this model in these situations. One 

approach to extend the method could be to consider different sets of subjects to compute the 

segregation probabilities. Similarly, under the assumption of complete penetrance, 

unaffecteds could be included (but this is not required). Our method also relies on an 

accurate and well-matched reference database to obtain background variation for 

maintaining appropriate type I error rates. Batch effects or population structure could affect 

the validity of these tests, therefore a matching reference database and well-curated subset of 

variants need to be selected carefully. In the scenario where no reference database is present 

or only one family is present, the variant-based sharing method of Bureau et al[Bureau, et al. 

2014] would be more appropriate. Fortunately, thanks to important collaborative efforts, 

such datasets with increasingly large sample sizes are becoming publicly available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Type I error of the GESE tests
Type I error of the GESE tests using reference genome databases of various sizes (number of 

subjects = 10, 100, 500, 1000, 5000, 10000, and 30000), for genes with 10, 100, and 1000 

variants and three different LD values: 0, 0.3, and 0.7.
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Figure 2. Power comparison
Power for GESE and other tests when there are (a) two causal genes and (b) 10 causal genes, 

with 100 variants each, at the LD level of ρ = 0.3, and 10% of the variants are deleterious. 

Significance levels are set to 2.5e-06 for GESE and 1e-05 for famSKAT and PedGene.
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Figure 3. Power comparison for genes with 10 variants
Power for genes each with 10 variants of interest at the LD level of ρ = 0.3 with 2 (a and b) 

or 10 (b and d) causal genes, showing the effect of increasing the percentage of causal 

variants (a and c) and increasing the ascertainment threshold (b and d).
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Figure 4. Power estimates of the GESE tests
Power estimates of the GESE tests using reference genome databases of various sizes 

(number of subjects = 1000, 5000, 10000, and 30000) and using the true population MAF 

(indicated by symbol ∞ ), for genes with 10 (panel a), 100 (panel b), and1000 (panel c) 

variants at LD level ρ = 0.3. There are 2 casual genes in the simulation.
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