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Abstract

Background: In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based
markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature
of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore,
development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as
genetic mapping and association studies.

Results: In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation
was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing
the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions.
The intronic regions were evaluated for parental polymorphisms using the single strand conformational
polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on
an integrated molecular map in the DOR364 ×G19833 recombinant inbred line (RIL) population. The new linkage
map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and
DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across
11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was
evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled
with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative
dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed
linear model (MLM). Some significant associations with yield components were identified, and were consistent with
previous findings.

Conclusions: In short, this study illustrates the power of intron-based markers for linkage and association mapping
in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the
molecular markers by excellence in this crop.
Background
Single nucleotide polymorphisms (SNPs) are the most
abundant class of polymorphic sites in any genome. They
have become a powerful tool in genetic mapping, associ-
ation studies, diversity analysis and positional cloning [1].
SNPs are usually biallelic, therefore less polymorphic than
SSRs. However, this limitation is compensated by the
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reproduction in any medium, provided the or
ability to use more markers and to build SNP haplotypes
[2]. The discovery of SNPs in candidate genes or transcript
sequences (ESTs) has been a recurrent strategy in plant
genetics mainly because gene-based SNP markers could
themselves be causative SNPs for traits. In legumes, gene-
based markers have been used to develop transcript maps
in chickpea (Cicer arietinum L.) [3] and soybean (Glycine
max L.) [4]. QTL analysis in cowpea (Vigna unguiculata
L.) [5], association mapping in Medicago truncatula [6]
and synteny analysis in common bean (Phaseolus vulgaris
L.) [7,8] have been reported as well.
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In common bean, EST libraries of the Mesoamerican
genotype Negro Jamapa 81 and the Andean genotype
G19833 were used to establish the first consolidated re-
source of SNP markers [9]. Some of these SNPs were
mapped in the population DOR364×G19833 using mis-
match cleavage nuclease CEL I [10] and single strand con-
formational polymorphism (SSCP) [7]. Other approaches
to identify SNPs using CAPS, dCAPS, or size polymorph-
ism, were developed comparing EST libraries from differ-
ent legumes [11] and selecting the ESTs that presented
homology with genes from Arabidopsis thaliana and
maize (Zea mays L.) [8]. Later, Hyten et al. [12] reported a
high-throughput SNP discovery platform using a reduced
representation library from multiple rounds of nested
digestions with sequencing carried out by 454 pyrose-
quencing and Solexa technologies. More recently, Cortés
et al. [13] reported a diversity analysis using a competitive
allele specific PCR (KASPar) to evaluate 94 SNPs derived
from ESTs and drought genes. However, low polymorph-
ism has constrained the utility of these markers. Neverthe-
less, this constraint can be avoided by means of a deeper
exploration of the intronic regions.
A medium-throughput technique for testing candidate

genes with modest multiplexing and minimal assay setup
costs is the Sequenom MassARRAY system [14]. In this
approach, a region is amplified and then a single-base
primer extension is performed using modified deoxyri-
bonucleoside triphosphates that increase the discrimin-
ating resolution by means of a mass spectrometer. The
Sequenom platform has been used for SNP validation in
sugarcane (Saccharum officinarum L.) [15], diversity
studies in castor bean (Ricinus communis) [16] and mar-
ker assisted selection in soybean [17]. In common bean,
the Sequenom platform has recently been used to evalu-
ate 132 SNPs for association with common bacterial
blight resistance [18].
Because of marker abundance, one of the most com-

mon applications of SNPs is association mapping (AM).
In this approach, the correlation between markers, genes
and traits is statistically accessed in unrelated genotypes.
Ancestral recombination and natural genetic diversity
within populations constitute the basis for the identifica-
tion of non-random co-segregation of alleles between
loci and traits [19]. The extent of this non-random asso-
ciation, also known as linkage disequilibrium (LD),
depends on the mating system, the mutation, recombin-
ation, and migration rates, the patterns of selection and
the degree of population structure [20]. For instance, the
natural decay of LD with physical distance occurs in
inbreeding species at a considerably slower rate than in
outbreeding species because the effective recombination
rate in inbreeding species is severely reduced. This
means that within few generations a self-fertilizing
population is expected to be a collection of homozygous
lines [21]. Therefore, much of the theory and practice of
AM has been established in heterozygous outbreeding
species such as maize [22,23]. Efforts to apply AM in
inbreeding species have been relatively restricted. Some
outstanding cases are found in Arabidopsis [24], barley
(Hordeum vulgare L.) [25] and rice (Oryza sativa L.)
[26]. Nevertheless, a thorough and well-designed explor-
ation of AM is missing in common bean, especially with
gene-based SNP markers.
The objectives of this study were to: 1) develop a set

of intron-based SNP markers at target genes in common
bean; 2) map these genes in the core linkage map
DOR364 ×G19833 and in the consensus map; 3) evalu-
ate the utility of the corresponding intron-based SNP
markers in relation with SSRs; and 4) explore the feasi-
bility of the AM approach using the gene-based SNP
markers in a self-fertilizing, non-model crop.

Results
Gene-based marker evaluation
A total of 313 pairs of primers were designed flanking
the intronic regions of 271 common bean target genes.
Introns were putatively identified based on the soybean
genome (Additional file 1). In addition, 55 pairs of pri-
mers were designed over 33 genes involved in the nodu-
lation process in model legumes [27,28]; 63 pairs of
primers were designed over 48 transcription factors
identified under phosphorus stress [29]; and 195 pairs of
primers were designed over 190 putative soybean genes
involved in nodule development [30]. Pilot amplification
on these 313 intronic regions using the control geno-
types DOR364, BAT477 and G19833 was successful in
77% of the cases. The 23% failure may be due to the
presence of larger introns. The average size of the ampli-
con was 700 bp, ranging from 140 bp (BSn1) to 2000 bp
(BSn311). The amplicons were evaluated on SSCPs and
8.3% were polymorphic for the parents of the inter-gene-
pool population DOR364×G19833. A set of 65 of these
regions were sequenced and aligned in the control geno-
types. In most cases the intron region was detected and a
total of 178 SNPs were found. Allele specific primers were
designed in the flanking regions of these SNPs to be used
on the Sequenom platform (Additional file 2).

Linkage mapping
The polymorphic markers were evaluated in the DOR364×
G19833 mapping population using SSCP and Sequenom
techniques. A total of 53 new intron-based markers (19
markers identified by SSCP and 34 markers based on the
Sequenom technique) were successfully placed in the base
linkage map that was previously developed [31] (Figure 1).
As expected, the SNPs within the same gene mapped to-
gether (i.e. SNPs in the locus BSn37 on Pv6 and Bsn109 on
Pv8). The new gene-based markers were well distributed in
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Figure 1 Linkage map of the DOR364×G19833 population. A total of 53 new gene based markers were placed in the linkage map,
including 19 markers by SSCP (red) and 34 markers evaluated by Sequenom (red and underlined).

Table 1 Diversity index of SNP and SSR in the Andean
diversity panel

SNP

N Na Ne I Ho He UHe F

Mean 81.664 1.993 1.251 0.296 0.085 0.172 0.173 0.656

SE 0.350 0.007 0.022 0.014 0.017 0.011 0.011 0.038

SSR

Mean 75.000 7.865 3.877 1.079 0.018 0.445 0.448 0.904

SE 0.958 1.296 0.684 0.165 0.008 0.060 0.060 0.042

Na=No. of Different Alleles, Ne =No. of Effective Alleles, I = Shannon's
Information Index, Ho =Observed Heterozygosity, He = Expected
Heterozygosity, UHe =Unbiased Expected Heterozygosity, F = Fixation Index.

Galeano et al. BMC Genetics 2012, 13:48 Page 3 of 11
http://www.biomedcentral.com/1471-2156/13/48
the genome, with an average of 5 markers per linkage
group, ranging from two markers on Pv3 and Pv7, to 13
markers on the Pv2 and Pv8. The final genetic map had
534 marker loci with a full map length of 2,400 cM. Linkage
group sizes ranged from 133 cM (Pv10) to 300 cM (Pv8)
with an average of 120 cM per linkage group. The number
of marker loci per linkage group ranged from 27 on Pv5 to
83 on Pv2. Finally, this new linkage map version of the
population DOR364×G19833 was merged with the previ-
ously existing linkage maps of the populations DOR364×
BAT477 and BAT93× JALO EEP 558 to produce a new
consensus map of 1060 markers, thereby increasing the
total number of functional markers previously reported by
Galeano et al. [31] (Additional file 3).

Diversity analysis
In order to evaluate the utility of the corresponding
intron-based SNP markers in relation with SSRs and to
develop the basis for the AM approach, a diversity ana-
lysis was carried out. The diversity panel was mainly
formed by Andean genotypes; six Mesoamerican geno-
types were included as an out-group to verify the effi-
ciency of the markers to differentiate between gene
pools (Additional file 4). A total of 173 new intron-based
SNPs were evaluated in the diversity panel using the
Sequenom platform. Of these, 22 were monomorphic
and six presented a minor allele frequency lower than
0.05. The remaining SNPs had an average polymorphism
information content (PIC) of 0.23. Some 17 SNPs pre-
sented PIC value less than 0.2 and 18 SNPs had PIC
value higher than 0.4. The same genotypes were previ-
ously evaluated with 37 SSRs by Blair et al. [32]. In this
case, two SSRs were monomorphic, the average number
of alleles and PIC were 8.3 and 0.4, respectively. The di-
versity indexes for the evaluations carried out with SSRs
and SNPs are summarized in the Table 1. The fixation
index (Fst) between populations was 0.38 and 0.54 for
SSRs and SNPs, respectively. The phenetic analysis
based on the dissimilarity matrix showed that SSRs pro-
vided more resolution, and therefore dispersion, between
the accessions (Figure 2a,b). In both cases, the
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Figure 2 Genetic Diversity and population structure of the diversity panel. a and b Neighbor-joining trees for the results of 149 SNP
and 36 SSR, repectively. The branches were colored by races: NG Nueva Granada, P1 Peru, and M Mesoamerica. c and d Principal component
analysis for SNP and SSR, respectively. e and f structure analysis from K= 2 to K = 5 for SNP and SSR, repectively.
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Mesoamerican genotypes could be clearly distinguished
from the pool of the Andean genotypes. Consequently,
in order to avoid strong population structure effects, the
subsequent analyses were constrained to the Andean
genotypes.
Principal component analysis revealed two and three

distinguished groups for the SNP and SSR datasets, re-
spectively (Figure 2c,d). The division between the three
groups with SSRs was more than for the groups based
on the SNP dataset, where one of the groups could pos-
sibly correspond to outliers. Similar results were obtained
with a Bayesian approach implemented in Structure
(Figure 2e,f). In this case, SNPs did not reveal substruc-
ture within our Andean panel, but SSRs perfectly matched
the expectations for the three different Andean races. The
most plausible number of populations was calculated
using the method of Evanno et al. [33], and confirmed the
previous observation (Additional file 5). In short, the gen-
etic variation that is captured by the SSRs is mostly driven
by the race structure of the gene pool. This is not the case
for the SNP markers.
A subsequent linkage disequilibrium analysis and asso-

ciation study only included the 110 SNPs and 24 SSRs
that had a minor allele frequency higher than 0.05. The
mean r2 value between SNPs and SSRs was 0.18 and
0.025, respectively. Linkage disequilibrium was lower be-
tween SSRs than between SNPs, mainly because of the
number of markers that were considered. Finally, haplo-
type blocks were clearly identified based on the linkage
disequilibrium between neighbor SNPs (Additional file
6). For this purpose, SNPs were arranged according to
loci and the recombination distance (cM) between them.
The SNP markers revealed extended linkage disequilib-
rium within linkage groups Pv2 and Pv4, and between
linkage groups Pv1 and Pv2, and Pv2 and Pv8.

Association analysis
GLM generally presented lower p values than MLM. Add-
itionally, GLM revealed more than 100 associations with
significance above 95% (data not shown). Therefore a Bon-
ferroni correction was done to reduce the number of false
positives. According to the GLM, 16 loci presented 53 asso-
ciations with the evaluated traits. A total of 30 associations
were identified across both environments, and 8 and 15
associations were unique for the irrigation and drought
treatments, respectively. The markers specifically associated
with one of the conditions are being evaluated in relation
with other physiological traits and in different drought
conditions (G. Makunde, et al. in preparation). On the
other hand, this study has focused on markers that pre-
sented associations in both environments to minimize the
environmental effects on the associations. Interestingly, 10
of the 12 loci that presented associations in both environ-
ments were SSRs. The other two were genes. Some markers
presented associations with more than one trait. For in-
stance, the marker BM143 at Pv2 was associated with DF,
DM, EP, PP and SPL; and the marker BM160 at Pv7 was
associated with DM, EP, PP, SP and SPL (Additional file 7).
On the other hand, according to the MLM, 28 loci

showed 66 associations. Of them, 28 were found in both
environments and 22 and 16 associations were only sig-
nificant for irrigation and drought, respectively (Additional
file 8). A total of 10 loci presented associations in both
environments, and contrary to the GLM results, seven
were target genes and three were SSRs (Table 2). Some
markers presented associations with more than one trait,
as well. Specifically, BSn66_SNP2 at Pv2 was associated
with DM, EP, PP, SP, SPL and yield; and BSn44_2 at Pv3
was associated with DF, DM, P100, PLA, SP, SPL and
yield. Additionally, comparing the results of GLM and
MLM models, two markers BM143 and BSn244_2, pre-
sented significant associations in both analyses. For the
remaining comparisons, GLM was omitted because it does
not consider co-ancestry as a co-factor, and therefore the
rate of false-positives is inflated when using this method.
Genes that were associated with some of the previous

traits were submitted to a Blastx search. Four putative
proteins were of particular interest. Acyl acp-thioesterase
is associated with DF, PLA and SPL, auxin response factor
2 is associated with DM, PP, SPL and yield, transcription
factor bhlh96-like is associated with DM and yield, and
oxygen-evolving enhancer protein chloroplastic-like is
associated with EP and SP.

Discussion
In this study we reported on a set of 313 intron-flanking
gene based markers, specifically based on genes mainly
involved in the nodulation pathway in legumes. These
markers were evaluated using SSCPs and an allele specific
high throughput Sequenom platform. This means that the
marker assisted selection community now has two differ-
ent technologies to further exploit our new resource of
molecular markers available. Similar intron-flanking mar-
kers have been designed for comparative genomics in
other legumes, based on conserved orthologous sequences
(COS) [11,34]. In grasses, intron-flanking markers have



Table 2 Association analysis based on MLM

Trait Marker LG Environment R2 p value Putative function

DF BM143a 2 drought 0.4643 0.0315 * -

DF BM143a 2 irrigation 0.4747 0.0302 * -

DF BSn109_SNP4 8 drought 0.2035 0.0023 ** -

DF BSn109_SNP4 8 irrigation 0.2016 0.0024 ** -

DF BSn244_2a 3 drought 0.1383 0.0015 ** acyl acp-thioesterase

DF BSn244_2a 3 irrigation 0.1457 0.0011 ** acyl acp-thioesterase

DM BSn66_SNP2 2 drought 0.1883 0.0039 ** auxin response factor 2

DM BSn66_SNP2 2 irrigation 0.2420 0.0010 *** auxin response factor 2

DM BSn85_SNP2 8 drought 0.1017 0.0239 * transcription factor bhlh96-like

DM BSn85_SNP2 8 irrigation 0.1073 0.0218 * transcription factor bhlh96-like

EP BSNPK18 8 drought 0.1204 0.0337 * oxygen-evolving enhancer protein
chloroplastic-like

EP BSNPK18 8 irrigation 0.1235 0.0323 * oxygen-evolving enhancer protein
chloroplastic-like

PLA BSn244_2 3 drought 0.0527 0.0461 * acyl acp-thioesterase

PLA BSn244_2 3 irrigation 0.0694 0.0235 * acyl acp-thioesterase

PP BSn14_SNP3 9 drought 0.0918 0.0310 * -

PP BSn14_SNP3 9 irrigation 0.0839 0.0484 * -

PP BSn66_SNP2 2 drought 0.1552 0.0094 ** auxin response factor 2

PP BSn66_SNP2 2 irrigation 0.1524 0.0133 * auxin response factor 2

SP BSNPK18 8 drought 0.1385 0.0206 * oxygen-evolving enhancer protein
chloroplastic-like

SP BSNPK18 8 irrigation 0.1114 0.0460 * oxygen-evolving enhancer protein
chloroplastic-like

SPL BSn244_2 3 drought 0.0568 0.0390 * acyl acp-thioesterase

SPL BSn244_2 3 irrigation 0.0667 0.0283 * acyl acp-thioesterase

SPL BSn66_SNP2 2 drought 0.1359 0.0192 * auxin response factor 2

SPL BSn66_SNP2 2 irrigation 0.1173 0.0391 * auxin response factor 2

Yield BSn66_SNP2 2 drought 0.1205 0.0352 * auxin response factor 2

Yield BSn66_SNP2 2 irrigation 0.1157 0.0406 * auxin response factor 2

Yield BSn85_SNP2 8 drought 0.1050 0.0235 * transcription factor bhlh96-like

Yield BSn85_SNP2 8 irrigation 0.0879 0.0421 * transcription factor bhlh96-like

Trait abbreviations: Days to flowering (DF), days to maturity (DM), pods per plant (PP), seed per pod (SP), seed per plant (SPL), empty pod% (EP), pod length
average (PLA)
a Significant association with Bonferroni correction based on GLM.
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been evaluated in relation with inter-species diversity and
candidate genes within QTLs [35,36].
In terms of linkage analysis, 17% of the SNP markers

were placed in the inter gene pool population DOR364×
G19833. In order to identify the putative position of the
other SNPs, the linkage map was merged on a consensus
map following the methodology reported by Galeano et al.
[31]. The synteny analysis allowed in silico mapping of the
rest of the markers. The consensus map traditionally pre-
sents high degree of co-linearity and synteny, and there-
fore it has become a popular alternative for in silico
mapping and for association studies in other species, like
Eucalyptus [37] and wheat (Triticum spp.) [38].
The diversity analysis using intron-based SNPs revealed
different patterns of diversity compared with the ones
described by Blair et al. [32] using SSRs. This may be a
consequence of the dissimilar mutation processes that are
associated with each type of marker [39]. Therefore,
according to Laval et al. [40], (k-1) times more biallelic
markers are needed to achieve the same genetic distance
accuracy as a set of SSR with k alleles. In our case, the
average number of alleles per SSR locus was about 10.
Therefore, we would require [(10–1) * 37] = 333 SNP mar-
kers to achieve the same accuracy. In addition, the poly-
morphism within the intron-based markers could be
constrained more extensively than the polymorphism
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within non-genic regions. Similar results were reported by
Cortes et al. [13], where the SNPs were able to differenti-
ate between the Mesoamerican and the Andean gene
pools, but the SSRs were more powerful for the identifica-
tion of races within gene pools. Therefore, it was proposed
to use SNP markers at the inter-gene pool level and SSR
markers at the intra-gene pool scale in order to explore
the diversification and domestication history of the spe-
cies. In maize, Hamblin et al. [41] reported that SSRs per-
formed better at clustering germplasm and provided more
resolution than SNPs, something that has been observed
in this study for the case of common bean, as well. Add-
itionally, Jones et al. [42] compared SSRs and SNPs in
maize and showed that SNPs can provide more high-
quality markers. They suggested that the relative loss in
polymorphism compared with SSRs may be compensated
by increasing the numbers of SNPs and using SNP haplo-
types. Our combination of multiple markers from the
same gene and from different genes allowed us to detect
the corresponding haplotype blocks, and therefore sup-
port this thesis. In short, our results are in line with previ-
ous evidence that supports the hypothesis according to
which SNPs and SSRs are complementary, non-mutually
exclusive, markers that must be chosen based on the ul-
timate practical purpose. In this sense, we emphasize that
the use of one or the other marker does not only depend
on the level at which the comparisons will be made, but
also on the nature of the comparisons.
Population structure analysis is a key factor for associ-

ation analysis in plants, in order to minimize type I and
II errors between candidate molecular markers and traits
of interest [19]. In common bean, the diversification
across the Americas and the independent domestication
of the wild relatives in two distinct centers gave origin to
two main gene pools, the Andean and the Mesoameri-
can, with extensive race sub-division. Several studies
have reported that the Andean beans are more diverse
than the Mesoamerican ones [13,32].
Similar trends are theoretically expected in terms of

linkage disequilibrium. In the current study, the level of
LD in the Andean panel was slightly higher than what
previous analyses revealed using AFLP screenings of wild
and domesticated accessions [43]. This difference is
mainly due to the type of markers and the sample size
that were used in each case. Rossi et al. [43] additionally
reported higher levels of LD in the Andean gene pool,
compared with the Mesoamerican, suggesting that the
former originated prior domestication. Analogous corre-
lations between population sub-division and LD decay
have been found between tropical and temperate germ-
plasm in maize [44], among O. sativa ssp. indica and O.
sativa ssp. japonica [45], and between two-row and six-
row barley [46]. In short, the Andean gene pool offers
per se an interesting spectrum to look for adaptive
variation, at the same time that the confusing effect of
sub-structure is minimized.
A recurring issue with the use of QTL data is that differ-

ent parental combinations or/and experiments conducted
in distinct environments often result in the identification
of partly or wholly non-overlapping sets of QTLs [47].
Therefore, it is important to explore constitutive QTLs
across different environments. In this sense, our field trials
offered us the possibility to identify constitutive marker-
trait associations because correlations were contrasted
across two environments, drought and irrigation. This sort
of designs is particularly useful for marker assisted selec-
tion (MAS), as was demonstrated in rice [48].
In terms of association mapping models, we used two

approaches: GLM and MLM. The GLM presented more
significant p values and therefore more associations. How-
ever, after Bonferroni correction just two markers were
detected in common with the MLM results. This finding
is in accordance with the results of previous studies
[49,50] and indicates that the GLM approach is inappro-
priate for association mapping in the examined plant spe-
cies, because the resulting proportion of spurious marker-
phenotype associations is considerably higher than the
nominal type I error rate. The MLM used here, using as
co-factors the kinship matrix (K) and STRUCTURE (Q),
revealed interesting results. However, recent studies
reported that new models combining K and the 10 princi-
pal components (Q10) were the best approaches to control
the rate of false positives [51,52]. Additionally, although
we found some significant association based on high p
value using MLM, multiple testing needs to be used to
control the genome-wide type I error rate (GWER) [53].
Interestingly, the markers BSn66_SNP2 and BM143

were near previous QTL analyses for days to flowering
and days to maturity, in different bi-parental populations
nearby or flanking the same loci in the same linkage
group [54–57]. Additionally, QTLs for yield components
such as seed weight and seed per pod have also been
reported close to these loci [55,58,59]. In terms of func-
tional genomics, the locus BSn66 is an auxin response
factor 2 (ARF2), one member of the family of transcrip-
tion factors that bind to auxin responsive elements
(AuxREs) in the promoter sequences of auxin regulated
genes [60]. The ARF gene family has been repeatedly
associated with flower and fruit maturation and develop-
ment [61–63]. For instance, the arf2 mutants presented
enlarged rosette leaves, thickened inflorescence stems,
delayed flowering and senescence, reduced fertility and
increased seed size [64,65].
In a similar way, SNP marker BSn85_SNP2 on Pv8 is

near QTLs for days to maturity and in addition seed
weight has been reported nearby this locus [55,56]. The
locus BSn85 putatively codifies a basic helix-loop-helix
(bHLH) transcription factor. Members of the bHLH gene
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family are particularly relevant because they interact with
the light-activated phytochrome, and therefore control
various facets of the photomorphogenic response, includ-
ing seed germination, seedling deetiolation, shade avoid-
ance and photoperiodic control of plant growth [66,67].
Recently, the interaction of ARF with bHLH transcription
factors has been reported in the context of plant growth
[62]. These examples of functional congruence and co-
localization of some of the associated loci with formerly
identified QTLs validate our approach. Even more inter-
esting is the fact that association studies in common bean,
specifically within the Andean gene pool, are an excellent
alternative to find QTLs based on candidate genes. Pion-
eer association results in common bean were obtained for
SNP markers associated with common bacterial blight
(CBB) resistance [18].
Although the sampling in our study was not exhaustive,

similar successful studies with small sample sizes have
been reported extensively. For example, several SNP mar-
kers were associated with oleic acid using 94 genotypes of
peanut (Arachis hypogaea) from 4 botanical varieties [68],
and makers associated with malting quality where found
in barley using germplasm sets of 85 genotypes on average
[69]. The main advantage of the small, carefully chosen,
association mapping panels is the efficacy and affordability
with which plant germplasm is used. In some other cases,
like in barley, more individuals (approximately 300 lines)
are desired [46,70]. However, the final choice of the size of
the population depends on the relatedness of the indivi-
duals, the extent of linkage disequilibrium, the type of
study, and the polymorphism of the markers. We have
demonstrated that because of its self-crossing nature,
common bean is not really demanding in this aspect, and
allows working with medium size populations.
Additionally, considering the population size and low

genome coverage, the parental information of the lines will
improve the accuracy of the results. This approach has been
used particularly in livestock species, with models that inte-
grate data on phenotypes, genotypes and pedigree informa-
tion. Such information can be combined with genomic data
for greater detection power and estimation precision
through a properly scaled and augmented relationship
matrix [71]. Therefore, this parental information will be
very important for association and genome selection
approaches in common bean. Unfortunately, at this stage
parental information was not available for the materials
considered in the present study because they were landrace
genotypes collected from farmers and market places.

Conclusions
In brief, our results indicated that intron-flanking mar-
kers are a useful tool for linkage mapping, genetic diver-
sity and association analysis. As the number of genomic
sequence resources dramatically increase for major and
minor crop species, a larger number of intronic and
inter-genic markers will become available to plant
geneticists and breeders. Here we have offered a pipeline
to mine this resource. Ultimately, this initiative will con-
tribute to close the gap between structural polymorph-
ism and functional diversity.

Methods
Plant material
A diversity panel consisting of 93 genotypes was evalu-
ated in this study, mainly consisting of 80 Andean geno-
types previously characterized using SSRs [32] and 13
parental lines commonly used in breeding programs at
the International Center for Tropical Agriculture (CIAT)
(Additional file 4). DNA extraction involved the germin-
ation of ten seeds randomly selected from each acces-
sion, and pre-germinated on germination paper under
dark conditions. The first trifoliate leaves of 8-day-old
seedlings were collected and grounded in liquid nitrogen
for DNA extraction. DNA was extracted and re-
suspended in TE buffer as reported by Galeano et al.
[10]. The quality was evaluated on 0.8% agarose gel and
quantified by Hoescht H 33258 dye on a Hoefer DyNA
fluorometer (DNA Quant™ 200. San Diego, CA). DNA
was diluted to 10 ng/μl for further procedures.

Gene based markers
Four different classes of genes were used. One consisted
of genes from the nodulation pathway and involved in
Nod factor perception, signal transduction and calcium
signal interpretation as reported in legumes by Stacey
et al. [27] and Kouchi et al. [28]. Another class corre-
sponded to a sub-set of 372 root transcription factors
(TF) reported in common bean by Hernandez et al. [29].
In addition, a set of 162 soybean putative regulatory
genes, involved in root hair cell infection, was included
[30]. A set of 179 nodule-specific expressed sequences
from the common bean, listed in PhvGI Library Expres-
sion, were also included (http://compbio.dfci.harvard.
edu/cgi-bin/tgi/libtc.pl?db=phvest). All these sequences
were downloaded from the NCBI database and com-
pared with the common bean EST assembly [7]. The
selected common bean sequences were aligned with the
corresponding genome region in soybean (http://www.
phytozome.net/soybean) to identify the putative location
of exons and introns using Geneious software [72]. A
total of 313 exons-anchored primers were designed in
order to amplify the intronic regions and named with
the prefix Bsn (Additional file 2).

Genotyping
The gene based markers listed above were evaluated in
the genotypes DOR364, BAT477, and G19833. The PCR
conditions, agarose gel electrophoresis and SSCP

http://compbio.dfci.harvard.edu/cgi-bin/tgi/libtc.pl?db=phvest
http://compbio.dfci.harvard.edu/cgi-bin/tgi/libtc.pl?db=phvest
http://www.phytozome.net/soybean
http://www.phytozome.net/soybean
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technique were carried out as reported by Galeano et al.
[7]. The PCR amplicons were sequenced using BigDye
Terminator chemistry with AmpliTaq-FS DNA polymer-
ase (Applied Biosystems) and resolved on an Applied Bio-
systems Automated 3730 DNA Analyzer at the Cornell
University Biotechnology Resource Center. The sequences
were aligned and SNPs were detected.
The 93 genotypes (diversity panel) were evaluated for

SNPs using the MassARRAY platform of Sequenom (San
Diego, USA) at the VIB Vesalius Research Center, Leuven,
Belgium. Sequences of minimum 50 bp up and down-
stream from the SNP were used for primer design using
Sequenom MassARRAY Assay Design 3.1 software with
default parameters. The markers were named as men-
tioned above, plus an indication of the SNP within the
amplicon (i.e. Bsn4_SNP1). The primer information for
Sequenom genotyping is provided in Additional file 3. The
genotyping was performed according to the iPLEX proto-
col from Sequenom (available at http://www.sequenom.
com/) in the diversity panel of 93 genotypes. Quality con-
trol criteria were adopted using water as negative control
and inter-plate duplicates. Additionally, 24 SNPs designed
by Cortés et al. [13] were evaluated in the same diversity
panel using KASPar technology (markers BSNK).

Linkage analysis
The SNPs detected between the genotypes DOR364 and
G19833 were evaluated in the corresponding mapping
population using the SSCP and MassARRAY methodolo-
gies described above. The segregation data was used to
place the new markers on the established genetic map for
the DOR364×G19833 population (87 RILs) reported by
Galeano et al. [31]. The linkage analysis and the consensus
map were done following the methodology reported by
Galeano et al. [31]. The putative position of markers eval-
uated in the diversity panel that were not placed in the
linkage map, was inferred by in silico mapping using the
synteny analysis reported by Galeano et al. [7,31]. Briefly,
the common bean sequences were aligned against the
chromosome based assembly of soybean using local blastn,
and based on the closest mapped markers, the genetic dis-
tance was inferred.

Genetic diversity and association analysis
The SNPs data generated in the diversity panel were
used to estimate population genetics parameters and
Hardy Weinberg equilibrium (HWE) using software
GenAlEx [73]. Minor allele frequency, allele number,
gene diversity, heterozygosity and PIC parameters were
determined with PowerMarker 2.25 [74]. Population
structure analysis was conducted with STRUCTURE
2.3.2 [75] as described in Cortés et al. [13]. In addition,
Evanno test was carried out in order to estimate the op-
timal K for the structure analysis [33]. A similar
analytical pipeline was performed with the genotypic
data from 37 microsatellite markers previously evaluated
in the diversity panel by Blair et al. [32]. Diversity para-
meters were compared between both datasets in order
to assess how well each type of marker recovered the
genetic signals. Finally, linkage disequilibrium standard
statistics were calculated for the SNP dataset using the
software TASSEL version 3.0 [76].
On the other hand, phenotypic data of 80 Andean geno-

types from the core collection was considered (G.
Makunde, unpublished data). The trials were carried out
at the International Center for Tropical Agriculture
(CIAT) in Palmira, Valle de Cauca, Colombia. The experi-
mental design consisted of 9 × 9 lattice with three repeti-
tions each and two environments (drought and irrigated)
evaluated in 2009 following the same methodology
reported by Blair et al. [54]. The traits evaluated were days
to flowering (DF), days to maturity (DM), pods per plant
(PP), seed per pod (SP), seed per plant (SPL), empty pod%
(EP), average pod length (PLA), 100 seeds weight (P100),
and grain yield. Kinship matrix was calculated as the pro-
portion of allele shared between each pair of lines. Both,
general linear model (GLM) and mixed linear model
(MLM) were used in the association analysis. In the GLM,
the Q matrix was integrated as a co-variable to correct for
the effects of population substructure while both Q and K
matrices were used in the MLM to correct for both popu-
lation and family structure. These analyses were carried
out with TASSEL and Bonferroni corrections were done
to account for multiple comparisons. Finally, the putative
functions and ontology of the significantly associated
genes were evaluated with Blas2GO software version 2.5.0
[77]. The sequence alignments and editions were done
with Genious software version 5.5.6.
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