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Abstract

Ovarian primordial follicles are critical for female reproduction and comprise a finite pool of gametes arrested in
development. A systems biology approach was used to identify regulatory gene networks essential for primordial follicle
development. Transcriptional responses to eight different growth factors known to influence primordial follicles were used
to construct a bionetwork of regulatory genes involved in rat primordial follicle development. Over 1,500 genes were found
to be regulated by the various growth factors and a network analysis identified critical gene modules involved in a number
of signaling pathways and cellular processes. A set of 55 genes was identified as potential critical regulators of these gene
modules, and a sub-network associated with development was determined. Within the network two previously identified
regulatory genes were confirmed (i.e., Pdgfa and Fgfr2) and a new factor was identified, connective tissue growth factor
(CTGF). CTGF was tested in ovarian organ cultures and found to stimulate primordial follicle development. Therefore, the
relevant gene network associated with primordial follicle development was validated and the critical genes and pathways
involved in this process were identified. This is one of the first applications of network analysis to a normal developmental
process. These observations provide insights into potential therapeutic targets for preventing ovarian disease and
promoting female reproduction.
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Introduction

An emerging concern in the field of biomedical research is that

the common reductionist approach to studying biological

processes may not be adequate to fully understand the complex

interplay of cellular signaling, gene expression, and other complex

molecular processes that occur within a tissue or organ. Examples

of reductionist studies that have driven much of our understanding

of biological processes associated with complex phenotypes like

disease include the knockout mouse experiments and in vitro

cytokine treatment to assess the effects of gene-specific perturba-

tions on cell or tissue biology. Results from these types of studies

provide information on candidate regulatory factors, but typically

do not elucidate the network of factors or processes required for a

normal developmental biology or pathobiology. A holistic, systems

biology, approach to studying normal developmental processes

can be a powerful tool that is complementary to the more

reductionist experiments. In the spirit of a systems-based approach

to development, the current study was designed to identify gene

networks involved in ovarian primordial follicle development and

to characterize critical regulatory factors involved in this

development process.

In mammals, all the oocytes (eggs) that will be used over a

female’s lifetime are present in the ovary at birth in a finite pool.

These oocytes are arrested in prophase of the first meiotic division

and are each surrounded by flattened pre-granulosa cells to form a

structure called a primordial follicle [1]. During the reproductive

lifespan of a female, follicles gradually leave the arrested pool to

undergo a primordial to primary follicle transition. A follicle

undergoing follicle transition has an increase in oocyte diameter

and the associated granulosa cells proliferate and change from a

flattened to cuboidal in shape. Once primordial to primary follicle

transition has occurred the follicle either continues to develop to

the point of ovulation or undergoes atresia [1,2,3,4]. Previously

cell-to-cell communication with extra-cellular growth factors has

been shown to regulate the initiation of primordial follicle

development. These studies have primarily used a reductionist

approach to test candidate growth factors one at a time for their

ability to affect follicle transition. A number of paracrine growth

factors have been identified as having a role in early follicle

development (reviews [4,5]).

To move beyond examining single gene effects on this

development process, gene network analysis can be employed to

identify groups (e.g. modules) of genes whose expression is

regulated in a coordinated manner (gene network) [6,7,8]. In this

type of analysis, a biological system is surveyed in the context of

disease (or other interesting phenotypes) with microarrays multiple

times with and without perturbations that cause the system to

change. A novel bioinformatics analysis is used to identify modules

of genes associated with biological systems (bionetwork). The great

majority of network analyses have focused on disease states and

been used to better understand the systems biology of disease

processes and identify potential therapeutic targets [9,10,11,

12,13,14,15]. The current study was designed to determine if
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network analysis can be applied to study a normal development

process.

The current study used whole rat ovaries cultured in vitro in a

manner that allowed primordial to primary follicle transition. The

ovaries were treated with one of eight different growth factors

previously shown to regulate primordial follicle transition in

comparison to untreated control cultures. The mRNA was isolated

from the ovaries and used for microarray transcriptome analysis to

globally survey gene expression under these different treatment

conditions. The effects of each growth factor on gene expression

were analyzed to determine similarities and differences in gene

expression between the different growth factor treatments. Those

genes whose mRNA expression changed with any treatment were

subjected to network analysis to identify pathways and genes with

a high degree of connectivity between other genes and pathways.

From the networks constructed from these data we identified a list

of critical modules of regulated genes forming gene sub-networks

that were used to identify regulatory genes involved in primordial

follicle development. Not only were previously identified regula-

tory factors/genes associated with this process identified from this

network analysis, but a number of putative regulators of follicle

transition not previously associated with this process were also

determined. One of the new candidate genes, connective tissue

growth factor (Ctgf) [16], was tested experimentally and found to

promote primordial to primary follicle transition. Observations

demonstrate the utility of this network analysis to be used as a

systems biology approach to study normal developmental

processes in complex systems.

Results

Primordial Follicle Transcriptome Analysis
A number of regulatory factors have been shown to affect

primordial to primary follicle transition, including Amh [17,18],

Fgf2 [19,20,21], Bmp4 [22,23], Gdnf [24], Fgf7/KGF [25], Kitlg

[19,26,27], Lif [28] and Pdgfa [29]. In order to determine the

underlying gene networks and processes involved in primordial

follicle development, microarray analysis was performed on RNA

from whole rat ovaries treated for two days in vitro with each of

the above listed growth factors independently. There were three

independent RNA samples of pooled ovaries for each growth

factor treatment (except for GDNF, which had only two sample

replicates), and corresponding control samples for a total of 38

RNA samples. These were evaluated using 38 Affymetrix Rat

Gene 1.0 ST microarrays. The array data were analyzed together

using normalization and pre-processing described in the Methods.

Each growth factor treatment resulted in 79 to 349 genes with

altered expression compared to controls (Figure 1). The lists of the

genes affected by each treatment are presented in Table S1. There

were relatively few genes with altered expression in common

between the different treatments (Figure 1). Less than 10% of the

genes changed by any one growth factor treatment were found to

be changed in any other treatment. The exception was Fgf7/KGF,

which had a more than 30% overlap of altered genes with Amh.

There were no individual genes that changed expression levels

in response to more than three of the eight original treatments

(Table S1).

The complete list of genes whose expression levels changed with

any of the treatments was compared to curated lists of genes from

the KEGG database to identify processes that may be important

for primordial follicle development. Automated unbiased match-

ing of lists of affected genes to KEGG pathways was performed

with Pathway Express (Intelligent Systems and Bioinformatics

Laboratory; http://vortex.cs.wayne.edu/ontoexpress/). Pathways

heavily impacted by genes whose expression altered in response to

the growth factor treatments (Table 1) included pathways involved

in cell surface and extracellular matrix regulation (cell adhesion

molecules, adherens junction, focal adhesion, tight junction, gap

junction, regulation of actin cytoskeleton), known signaling

pathways (MAPK, notch, B-cell receptor, adipocytokine, toll-like

receptor, ErbB, GnRH, Wnt, hedgehog, VEGF, Jak-STAT, TGF-

beta, p53, insulin, PPAR), the complement cascade, axon

guidance, glycan structure biosynthesis and pathways listing cell

communication ligand-receptor interactions (cytokine-cytokine

receptor, neuroactive ligand-receptor, ECM-receptor). There

was a high degree of overlap of affected pathways between

different growth factor treatments (Figure 1). For the list of

pathways containing altered genes, from 70% to 82% of those

pathways are shared with at least one other treatment. Application

of the hypergeometrical Fisher Exact Test to assess whether the

number of overlapped pathways was significantly greater than

expected by chance, revealed that the majority were statistically

significant. The pathways containing altered genes from several

growth factor treatments are presented in Table 1. Although few

altered genes were found to overlap between different treatments

(Figure 1), each growth factor treatment influenced similar

pathways, Table 1 and Table S1. Therefore, each growth factor

affects similar pathways via different genes.

Bionetwork Analysis
The complete list of genes whose expression levels changed with

any growth factor treatment was subjected to a network analysis as

described in Methods. Potential batch effects for culture date,

RNA processing data and microarray performance date were

corrected during the analysis, with no major effect on the analysis.

The data were fit using a robust linear regression model (rim

function from R statistical package), and then the residuals with

respect to the model fit were carried forward in all subsequent

analysis. The network analysis scores each gene according to how

Figure 1. Number of genes and pathways overlapped between
signature (growth factor treatment group) lists. Total number of
differentially expressed genes for each growth factor is shown in dark
yellow column, number of genes overlapped between each pair of
signature lists – in light yellow columns. Total number of KEGG
pathways affected by each growth factor is shown in dark green row;
number of KEGG pathways overlapped for each pair of growth factors is
shown in light green row. CTGF analysis separate from the network
analysis.
doi:10.1371/journal.pone.0011637.g001
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well, under different treatments, its changes in gene expression are

correlated with the changes in expression of every other gene. This

gives a connectivity score for each gene. High connectivity scores

indicate that expression of this gene changes in concert with that of

many other genes. In addition, the network analysis identifies gene

modules in which the member genes have similar changes in

expression in response to the various growth factor treatments.

Gene modules are functional components of the network that are

often associated with specific biological processes. To identify

modules comprised of highly interconnected expression traits

within the co-expression network, we examined the topological

overlap matrix [30] associated with this network. The topological

overlap between two genes not only reflects their more proximal

interactions (e.g., two genes physically interacting or having

correlated expression values), but also reflects the higher order

interactions that these two genes may have with other genes in the

network. Figure 2 depicts a hierarchically clustered topological

overlap map in which the most highly interconnected modules in

the network are readily identified. The specific details of the gene

co-expression network analysis (Figure 2) are presented in the

Methods section. To identify gene modules (sub-networks)

formally from the topological overlap map, we employed a

previously described dynamic cut-tree algorithm with near optimal

performance on complicated dendrograms [31] (see Methods for

details). Figure 2 shows the topological overlap map of the co-

expression network with gene modules color-coded for the 16

modules identified. The membership of each module can be found

in Table S1. The sixteen modules contained 1,383 genes with the

remaining 157 genes (colored as gray) not failing into any module.

The pathways containing genes whose expression changed with

growth factor treatment were compared to the genes from each

module that were associated with specific pathways (Table 1 and

Table S1 for full list). For most pathways genes from several

network modules were present. However, several pathways were

associated with selected modules. For example, out of 19 altered

genes present in the focal adhesion pathway, seven were from the

turquoise module and seven from the brown. Similarly, of the five

altered genes in the Wnt signaling pathway three were from the

turquoise module. For the fifteen changed genes in the cell

adhesion molecule pathways three were from blue and three from

magenta modules. Those genes whose expression changed with

specific growth factor treatments were cross-matched with the

genes assigned to each network module to determine if specific

modules were heavily influenced by particular growth factors.

Interestingly, each module was biased toward having many genes

in common with selected growth factors (Table S1). In contrast,

some growth factor treatments induced changes in genes that were

distributed among several different modules.

In order to identify genes that could be key regulators of

primordial follicle development, a shorter list of candidate genes

was generated from the results of the network analysis. Six

modules were chosen for having the highest numbers of known

Figure 2. The ovary gene co-expression network and corresponding gene modules. A topological overlap matrix of the gene co-
expression network consisting of the 1540 genes regulated by the various growth factors. Genes in the rows and columns are sorted by an
agglomerative hierarchical clustering algorithm (see Methods). The different shades of color signify the strength of the connections between the
nodes (from white signifying not significantly correlated to red signifying highly significantly correlated). The hierarchical clustering (top) and the
topological overlap matrix strongly indicate highly interconnected subsets of genes (modules). Modules identified are colored along both column
and row and are boxed. The number of genes in each module is listed as size of module.
doi:10.1371/journal.pone.0011637.g002
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regulatory genes and pathways (yellow, turquoise, blue, brown,

red, purple). The top 10% of most connected transcripts in each of

the six modules were identified as potential important regulators

[13,15], except for the blue module for which the top 20% were

chosen since so many of that module’s most highly connected

transcripts were not annotated as genes. The compiled list

included 55 transcripts annotated as genes (Table 2), and these

genes were subjected to more intensive investigation.

An automated unbiased analysis of published scientific literature

was applied to the lists of differentially expressed genes described

above using Genomatix/BiblioSphere software, as described in the

Methods. Figure 3 shows a small integrated gene network among

the short list of the 55 candidate regulators (Table 2). These

relationships in literature raise the possibility that physiological

interactions exist between these genes. The gene Ctgf (Connective

tissue growth factor) was seen to relate to several other genes with

high connectivity, Figure 3. Interestingly, two of the identified

genes were previously shown to influence primordial follicle

development, Pdgfa [29] and Fgfr2 [19,20,21].

The entire set of 1540 transcripts differentially expressed with

growth factor treatment was also subjected to analysis using

BiblioSphere. Only 632 were recognized by BiblioSphere and 613

were connected. A diagram of literature relationships between

these genes is presented in Figure S1. Five major gene clusters

were identified as associated with Nfkb1, Vegfa, Gadd45a, Esr1

and Egfr1. This analysis is useful to compare with the expression

network analysis, but is biased toward the literature and finding

relationships among more heavily studied factors.

Analysis of CTGF Actions
Critical regulatory candidates for primordial follicle develop-

ment were selected due to their being differentially expressed in

response to treatment with growth factors, having a high

connectivity score, and being related in literature to other highly

connected genes. For the purpose of the current study, candidate

regulatory genes that were also extracellular growth factors were

considered. Therefore, CTGF was selected based on all these

criteria for further analysis. Experiments were performed to see if

CTGF could regulate primordial to primary follicle transition.

Ovaries from four-day old rats were treated with 50ng/ml CTGF

protein for ten days in an organ culture system as described in the

Methods (Figure 4A and 4B). Transforming growth factor beta 1

(TGFB1), which is known to interact with CTGF [32,33], was also

tested. Untreated cultured ovaries were used as a negative control,

and ovaries treated with 50ng/ml each of Kit ligand (KITL) and

Fibroblast growth factor 2 (FGF2) were used as a positive control.

CTGF treatment resulted in a significant (p,0.05) increase in

developing follicles compared to untreated controls, as did

treatment with the combination of KITL and FGF2 (Figure 4C).

TGFB1 had no effect, either alone or in combination with CTGF.

RNA was collected from CTGF and control cultured ovaries as

described in the Methods from three replicate experiments. The

RNA was used for microarray analysis using the same criteria as

for the other growth factors used in the network analysis. One

hundred fifty-five transcripts were differentially expressed in

CTGF-treated ovaries, Table S1. As was seen for the other

growth factors used in the network analysis, there was little overlap

of these changed genes with the genes showing changed expression

in response to any other growth factor treatment, Figure 1.

However, as seen among the other growth factors, there was a

high degree of overlap between the pathways impacted by CTGF

treatment and treatment with other growth factors (Figure 1).

Therefore, a critical regulatory gene predicted from the network

analysis was confirmed to regulate primordial follicle development.

Discussion

A systems biology approach was used to elucidate the changes in

gene expression that are important for ovarian primordial to

primary follicle transition. A gene network analysis was performed

on the ovarian transcriptomes following treatment with 8 different

growth factors. The rat ovary was used as a model system to test

the utility of this approach in investigating a normal developmen-

tal process. This is one of the first applications of network analysis

to a normal developmental process. The objective was to identify

critical regulatory factors and pathways in primordial follicle

development following a bionetwork analysis.

Microarray analysis determined the alterations in the ovarian

transcriptome that occurred in response to treatment of ovaries with

AMH, FGF2, BMP4, GDNF, FGF7, KITL, LIF, and PDGFB. All of

these have previously been shown to effect follicle transition

[17,18,19,20,21,22,23,24,25,26,27,28,29,34]. All these factors stimu-

late primordial follicle development except AMH that inhibits follicle

development. The presence of both positive and negative factors

provides a wider diversity of gene regulation to facilitate the network

analysis. As expected the AMH regulated gene set is more distinct

from the others. Surprisingly, there were few altered genes in

common between all these growth factors and there were no genes

that significantly changed in expression level in response to more than

three of the eight growth factors. In contrast, the physiological

processes impacted by these altered genes were found to have a

higher level of overlap. Since a pathway includes groups of genes, it is

expected that the overlap of pathways between growth factor

treatments will be higher. The overlap of pathways was markedly

high (70% to 82%) and statistically different, suggesting pathway

associations provide a predicted capacity to identify regulatory

factors. Certain pathways were significantly over-represented in the

pool of genes with changed expression. This suggests that there are

selected physiological pathways that are influenced by all the different

growth factors (Figure 5), but that each growth factor affects different

genes at different points in these pathways (Table 1). Multiple input

points into these physiological pathways could allow for more precise

regulation and more effective compensation between the growth

factors. Since many growth factors are acting in parallel to regulate

these pathways, any one pathway system is robust and maintains

function if one growth factor becomes inoperative. Since primordial

follicle development is essential for female reproduction, a complex

network of regulatory factors influencing different aspects of critical

signaling pathways has evolved.

For the eight growth factors evaluated the cellular processes

affected in common (Figure 5) included changes in cell contact,

morphogenesis, and cell proliferation and differentiation. These

are processes that are necessary for the morphological changes

that occur with primordial to primary follicle transition. During

follicle transition granulosa cells change from squamous to

cuboidal and the oocyte starts to grow in diameter (Figure 4B).

Unexpectedly, what was also seen as an important affected cellular

process was regulation of several key components of the

complement and coagulation cascades (Figure S2). These genes

are not known for having roles in ovary or follicle development,

and merit further investigation.

Gene networks provide a convenient framework for exploring the

context within which single genes operate. For gene networks

associated with biological systems, the nodes in the network typically

represent genes, and edges (links) between any two nodes indicate a

relationship between the two corresponding genes. An important

end product from the gene co-expression network analysis is a set of

gene modules which member genes are more highly correlated with

each other than with genes outside a module. It has been
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Table 2. List of 55 Candidate Regulatory Genes.

Function GeneSymbol GeneBank Probeset k.in* Module
Regulation by
Growth Factor GeneTitle

Apoptosis Bcl2l10 NM_053733 10911690 10.0 red KL-dwn BCL2-like 10

Cell Cycle Cdkn2c NM_131902 10878705 7.6 red KL-dwn CDK4 inhibitor 2C

ECM Cdh3 NC_005118 10807525 28.0 turq AMH-dwn cadherin 3, type 1, P-cadherin

Col11a1 AJ005396 10818502 20.6 brown KL-dwn collagen, type XI, alpha 1

Krt19 NM_199498 10747262 25.2 turq AMH-dwn keratin 19

Lama5 NC_005102 10852270 30.9 turq AMH-dwn laminin, alpha 5

Development Bnc2 NM_001106666 10877880 26.5 turq AMH-dwn basonuclin 2

Emx2 NM_001109169 10716454 27.5 turq KGF-dwn empty spiracles homeobox 2

Usmg5 NM_133544 10730633 13.5 blue AMH, GDNF-dwn muscle growth 5 homolog (mouse)

Epigenetics Dnmt1 NM_053354 10915437 22.9 brown KL-dwn DNA (cytosine-5-)-methyltransferase 1

Golgi B4galt6 NM_031740 10803394 11.7 blue AMH-dwn, KGF-dwn galactosyltransferase, polypeptide 6

Growth Factors Ctgf NM_022266 10717233 8.2 blue KGF-up, LIF-dwn connective tissue growth factor

Il16 NM_001105749 10723351 31.9 turq AMH-dwn, KGF-dwn interleukin 16

Pdgfa NM_012801 10757129 27.0 turq AMH-dwn, KGF-dwn platelet-derived growth factor

Immune LOC287167 NM_001013853 10741765 21.6 brown KL-dwn globin, alpha

Metabolism Cacna2d3 NM_175595 10789819 19.9 brown KL-dwn calcium channel

Hbq1 XM_001061675 10741761 24.0 brown KL-dwn hemoglobin, theta 1

Hhatl NM_001106868 10914424 15.7 yellow PDGF-up hedgehog acyltransferase-like

Hmgcs2 NM_173094 10817759 19.5 brown KL-dwn Coenzyme A synthase 2

Hsd11b1 NM_017080 10770795 17.0 yellow BMP4-dwn hydroxysteroid 11-beta dehydro

Kirrel NM_207606 10824123 14.1 yellow AMH-dwn kin of IRRE like (Drosophila)

Plod2 NM_175869 10912255 18.3 brown KL-dwn procollagen lysine, 2-oxoglutarate

Podxl NM_138848 10861662 26.6 turq AMH-dwn, KGF-dwn podocalyxin-like

Scn3a NM_013119 10845809 17.4 brown KL-dwn sodium channel, type III, alpha

Slc4a4 NM_053424 10775997 29.0 turq AMH-dwn, KGF-dwn solute carrier family 4

Slc7a5 NM_017353 10811531 15.6 yellow PDGF-up solute carrier family 7

Slc29a1 NM_031684 10921833 15.4 yellow PDGF-up solute carrier family 29

Eno1 NM_012554 10874152 9.0 purple PDGF-up enolase 1, (alpha)

Receptors Axl NM_031794 10719900 15.4 yellow BMP4-dwn Axl receptor tyrosine kinase

Ednrb NM_017333 10785724 20.7 brown KL-dwn endothelin receptor type B

Fgfr2 NM_012712 10726172 30.8 turq AMH-dwn, KGF-dwn fibroblueast growth factor receptor 2

Itgb3bp NM_001013213 10878272 11.0 blue GDNF-dwn integrin beta 3 binding protein

Plxna4a NM_001107852 10861678 30.9 turq AMH-dwn, KGF-dwn plexin A4, A

Tmem151a NM_001107570 10727725 26.2 turq AMH-dwn, KGF-dwn transmembrane protein 151A

Signaling Nrgn NM_024140 10916228 16.1 yellow AMH, KGF-dwn, PDGF-up neurogranin

Dusp4 NM_022199 10792035 17.3 yellow AMH-dwn dual specificity phosphatase 4

Dusp6 NM_053883 10895144 16.6 yellow BMP4-dwn dual specificity phosphatase 6

Efna5 NM_053903 10930204 15.0 yellow AMH, GDNF-dwn ephrin A5

Map3k1 NM_053887 10821276 26.8 turq KGF-dwn mitogen activated protein kinase

Pde7b NM_080894 10717069 17.8 brown KL-dwn phosphodiesterase 7B

Rem1 NM_001025753 10840861 14.5 yellow PDGF-up RAS (RAD and GEM)-like

Shc4 NC_005102 10849423 17.0 yellow AMH-dwn SHC family, member 4

Ubash3b AC_000076 10916476 16.9 yellow PDGF-up ubiquitin associated

Transcription Btg4 NM_001013176 10909937 7.4 red KL-dwn B-cell translocation gene 4

Etv5 NM_001107082 10752034 14.4 yellow AMH-dwn ets variant 5

Fbxo15 NM_001108436 10803025 11.9 red KL-dwn F-box protein 15

Misc. & Unknown Depdc2 NM_001107899 10875023 29.5 brown KL-dwn DEP domain containing 2

Fam154a AC_000073 10877890 11.4 red KL-dwn similarity 154, member A

LOC686725 AC_000076 10915208 25.9 turq AMH-dwn hypothetical protein LOC686725
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demonstrate that these types of modules are enriched for known

biological pathways for genes that associate with disease traits and

for genes that are linked to common genetic loci [6,35].

The current study employed a weighted gene co-expression

network approach that has been extensively used for uncovering

biologically meaningful gene modules [7,13,15] to explore novel

pathways involved in primordial follicle development. An unsuper-

vised and unbiased approach was used to nominate potential

regulatory candidates for these modules based on gene network

connectivity. The connectivity score shows how well under different

treatments the changes in gene expression for a gene are correlated

with the changes in expression for every other gene. In the current

study, the gene co-expression network analysis helped select 55

highly connected genes for further functional analysis. An

automated literature search of these 55 genes revealed a sub-

network relationship among them as presented in Figure 3. This

sub-network suggested regulatory roles for Pdgfa and Fgfr2 (the

receptor) for Fgf2 and Fgf7 (KGF). PDGF, KGF/FGF7 and FGF2

proteins have previously been shown to regulate primordial to

primary follicle transition [29,34]. Therefore, the bionetwork

predicted to be involved in the regulation of primordial follicle

development identified two previously known regulatory factors

which validated the utility of the network analysis for identifying

candidate regulatory genes, consistent with previous network studies

[13,15]. This sub-network also identified connective tissue growth

factor (Ctgf) [16,36] as a putative regulator of primordial follicle

development. An ovarian organ culture experiment confirmed that

CTGF promotes primordial to primary follicle transition. There-

fore, a regulatory factor predicted to be important for primordial

follicle development was confirmed to be involved which further

validated the bionetwork approach. A microarray analysis of

CTGF-treated ovaries showed an altered gene set similar to those of

the other growth factors known to regulate follicle transition. These

observations validate the network-based systems biology approach

to elucidate the regulation of a complex developmental process.

Consideration of the 55 intra-module hub genes from critical

regulatory modules revealed a number of signaling and cellular

processes were influenced, Figure 5 and Figure S3. In the growth

factor/chemokine family Pdgfa and Ctgf were confirmed to be

involved. The IL16 identified is currently being investigated as a

potential regulatory candidate. The specific genes identified in

Table 2 and associated regulatory processes provide potential

therapeutic targets to regulate primordial follicle development.

The ability to inhibit or stimulate primordial follicle development

with a therapeutic treatment has a number of clinical applications.

A delay in primordial follicle development and maintenance of the

primordial pool could delay the onset of menopause and extend

the reproductive life span of a female. In addition, the ability to

therapeutically inhibit primordial follicle development would

provide a treatment for premature ovarian failure, a disease when

the primordial pool is lost early in life causing female infertility. In

contrast, the therapeutic stimulation of primordial follicle

development could treat forms of female infertility [4]. The

induction of primordial follicle development also could promote

the loss of the primordial pool and induce female sterility. The

bionetwork identified in the current study produced a number of

potential therapeutic targets to manipulate primordial follicle

development and female reproductive capacity.

The systems biology approach taken with this network analysis

of primordial follicle development identified clusters and modules

of genes involved in this critical development process. A number of

the growth factors previously shown to be involved (e.g. PDGF

and bFGF) were identified, but other factors known to be

important for ovarian development were not identified. Often a

reductionist approach such as a knockout mouse model can

Function GeneSymbol GeneBank Probeset k.in* Module
Regulation by
Growth Factor GeneTitle

RGD1306186 BC090317 10881318 9.2 red KL-dwn similar to RIKEN cDNA 4930569K13

RGD1306622 XM_001074493 10728647 32.6 turq AMH-dwn, KGF-dwn similar to KIAA0954 protein

RGD1308023 XR_006437 10850490 17.6 brown KL-dwn, LIF-dwn similar to CG5521-PA

RGD1566021 AC_000086 10800122 19.6 brown KL-dwn similar to KIAA1772

Short list of 55 genes that are the most connected genes with known functions in the modules of interest.
Selected from the top 10% most connected genes in each module (except blue module for which considered top 20% as many hubs are not annotated. Abbreviations
used: dwn - down-regulated; up - up-regulated; (*)- k in. is connectivity coefficient obtained/calculated in network analysis.
doi:10.1371/journal.pone.0011637.t002

Table 2. Cont.

Figure 3. Sub-network connection scheme for the most highly
connected 55 candidate genes obtained by global literature
analysis. Only 15 connected genes from the list of 55 are shown, while
the rest are not connected and not shown. Red and yellow colors
represent up-regulated genes, blue and turquoise colors – down-
regulated genes.
doi:10.1371/journal.pone.0011637.g003
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identify a factor as being important for the maintenance of tissue

development or function, but this does not mean the factor is

regulated during the process. In addition, critical developmental

processes such as primordial follicle development often have a set

of compensatory factors that have evolved such that loss of any one

will still allow the process to proceed. Therefore, knockout models

often do not have phenotypes for these factors. This does not mean

the factor is not important, but instead that the developmental

process is essential and thus multiple factors compensate to assure

the developmental process occurs. The current study takes a

systems biology approach to identify networks of genes involved in

the process without the bias of a reductionist model. Therefore,

novel groups of factors and cellular processes were identified that

now require further investigation.

The integrative analysis revealed a gene sub-network involved

in primordial follicle development to elucidate the basic develop-

mental biology of this process and provide potential therapeutic

targets for ovarian disease and function. This sub-network was

validated by the presence of two genes previously identified as

being important. A new gene identified, Ctgf, was tested and

found to regulate primordial follicle development. Therefore, the

network based systems biology approach was partially validated

for a normal developmental process. This type of approach will

likely be invaluable to study development on a systems biology

level in the future.

Materials and Methods

Ovarian organ culture
Four-day old female Sprague-Dawley rats (Harlan Laborato-

ries, Inc., USA) were euthanized according to the laboratories

Washington State University IACUC approved (#02568-014)

Figure 4. Analysis of the role of CTGF in primordial follicle transition. A) Hematoxylin-eosin stained ovary sections showing a representative
arrested primordial follicle (left), and a developing primary follicle after having undergone primordial to primary follicle transition (right). B) Graphic
representation of primordial and primary follicles. C) Effect of CTGF on cultured ovaries. Ovaries were cultured for 10 days with the treatments
indicated. Ovarian histological analysis determined the percentage of primordial versus developing follicles for each ovary. Bars are the mean percent
developing follicles 6 SEM. N = 5–7 per treatment from four different replicate experiments. Asterisks indicate a significant (*p,0.05 or ***p,0.01)
difference from control by Dunnet’s post-hoc test after a significant result of ANOVA.
doi:10.1371/journal.pone.0011637.g004
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protocols and the ovaries removed and cultured whole as

described previously [24]. Four-day old rat ovaries contain

almost exclusively primordial follicles. For ovary culture

experiments in which ovarian RNA was collected, 2–3 ovaries

per well were cultured with media changes every 24 hours for

two days in the absence (controls) or presence (treated) of either

AMH (human Anti-Mülerian hormone)(50ng/mL, R&D Sys-

tems Inc., USA), FGF2 (rat Fibroblast growth factor 2)(50ng/

mL, R&D Systems Inc., USA), BMP4 (human Bone morpho-

genetic protein 4)(50ng/mL, R&D Systems Inc., USA), GDNF

(rat Glial derived neurotrophic factor)(50ng/mL, Calbiochem,

USA), FGF7 (human fibroblast growth factor 7/keratinocyte

growth factor)(50ng/mL, R&D Systems Inc., USA), KITLG

(mouse Kit ligand)(50ng/mL, R&D Systems Inc., USA), LIF (rat

leukemia inhibitory factor)(50ng/mL, Chemicon/Millipore,

USA), PDGF-AB (rat platelet derived growth factor AB

heterodimer)(50ng/mL, R&D Systems Inc., USA), TGFb1

(human transforming growth factor beta 1)(50ng/mL, R&D

Systems Inc., USA) or CTGF (human connective tissue growth

factor)(50ng/mL, PeproTech Inc., NJ USA). After only two days

of culture there are no morphological differences between

control and growth factor-treated ovaries, so measurements of

whole-ovary gene expression reflect differences in RNA tran-

scription, rather than differing proportions of cell types due to

differing cell proliferation between treatments.

In order to determine the effect of CTGF on primordial to

primary follicle development, ovaries were cultured as above for

ten days in the absence or presence of CTGF (50ng/mL), alone or

in combination with TGF-beta1 (50ng/mL). After culture ovaries

were fixed with Bouin’s solution, paraffin embedded, sectioned

onto microscope slides and stained with hematoxylin and eosin as

described previously [24].

Morphometric Analysis
The number of follicles at each developmental stage was counted

and averaged in two serial sections from the largest cross-section

through the center of the ovary. Total follicle number has not been

found to change between treatment groups. Rather, only the

percentage of follicles at each developmental stage changes with

treatment [28,34]. KL was used as a positive control for the organ

culture experiments. Follicles in ovarian cross sections were

classified as primordial (stage 0), or developing (stages 1–4: early

primary, primary, transitional and preantral) as previously de-

scribed [37]. Primordial follicles consist of an oocyte arrested in

prophase I of meiosis that is partially or completely encapsulated by

flattened squamous pregranulosa cells. Early transition primary

follicles have initiated development (i.e., undergone primordial to

primary follicle transition) and contain at least two cuboidal

granulosa cells. Primary and preantral follicles exhibit one or more

complete layers of cuboidal granulosa cells. Four-day old ovaries

Figure 5. Scheme of direct connections to cellular processes for the 55 candidate regulatory genes obtained by global literature
analysis. Only 19 connected genes from the list of 55 are shown, the rest are not connected and not shown. Node shapes code: oval and circle –
protein; crescent – protein kinase and kinase; diamond – ligand; irregular polygon – phosphatase; circle/oval on tripod platform – transcription factor;
ice cream cone – receptor. Red color represents up-regulated genes, blue color – down-regulated genes, grey rectangles represent cell processes;
arrows with plus sign show positive regulation/activation, arrows with minus sign – negative regulation/inhibition.
doi:10.1371/journal.pone.0011637.g005
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contain predominately primordial follicles [26,38]. Hematoxylin/

eosin stained ovarian sections were analyzed at 4006magnification

using light microscopy. Follicles containing degenerating red eosin-

stained oocytes were not counted.

RNA preparation
RNA was isolated from whole rat ovaries after homogenization

in one ml TrizolTM reagent (Sigma-Aldritch, USA), according to

manufacturer’s instructions. Two or three ovaries from the same

culture well (from different rat pups out of the same litter) and

receiving the same treatment were pooled and homogenized

together. On any given day a culture experiment was performed,

the treatment groups included untreated control ovaries and one

to three different growth factor treatments. Homogenized samples

were stored at 270 C until the time of RNA isolation. After

isolation from Trizol, RNA was further purified using RNeasy

MinElute Cleanup Kits (Qiagen, USA) and stored in aqueous

solution at 270 C.

Microarray Analysis
The microarray analysis was performed by the Genomics Core

Laboratory, Center for Reproductive Biology, Washington State

University, Pullman, WA using standard Affymetrix reagents and

protocol. Briefly, mRNA was transcribed into cDNA with random

primers, cRNA was transcribed, and single-stranded sense DNA

was synthesized which was fragmented and labeled with biotin.

Biotin-labeled ssDNA was then hybridized to the Rat Gene 1.0 ST

microarrays containing 27,342 transcripts (Affymetrix, Santa

Clara, CA, USA). Hybridized chips were scanned on Affymetrix

Scanner 3000. CEL files containing raw data were then pre-

processed and analyzed with Partek Genomic Suite 6.3 software

(Partek Incorporated, St. Louis, MO) using an RMA GC-content

adjusted algorithm. Raw data pre-processing was performed in 2

groups. The first group containing 38 samples CEL files were pre-

processed in Partek all together as one experiment. Comparison of

all array histogram graphs demonstrated the data for all 38 chips

were similar and appropriate for further analysis. The second

group of samples for microarray analysis consisting of 3 CTGF-

treated and 3 corresponding control ovaries was run, pre-

processed and analyzed post factum, separately from the rest of

the samples as a result of a discovery from network analysis. Partek

pre-processing algorithm for these 6 CEL files used the same

criteria as used for the first group.

The microarray quantitative data involves over 10 different

oligonucleotides arrayed for each gene and the hybridization must

be consistent to allow a statistically significant quantitative

measure of gene expression and regulation. In contrast, a

quantitative PCR procedure only uses two oligonucleotides and

primer bias is a major factor in this type of analysis. Therefore, we

did not attempt to use PCR based approaches as we feel the

microarray analysis is more accurate and reproducible without

primer bias such as PCR based approaches.

All microarray CEL files (MIAME compliant raw data) from

this study have been deposited with the NCBI gene expression and

hybridization array data repository (GEO, http://www.ncbi.nlm.

nih.gov/geo) (GEO Accession number: GSE20324), all arrays

combined with one accession number, and can be also accessed

through www.skinner.wsu.edu. For gene annotation, Affymetrix

annotation file RaGene1_0stv1.na30.rn4.transcript.csv was used

unless otherwise specified.

Network analysis
The network analysis was restricted to genes differentially

expressed between the control and the treatment groups based on

previously established criteria: (1) fold change of group means

$1.2 or #0.83; (2) T test p-value #0.05; and (3) absolute

difference of group means $10. The union of the differentially

expressed genes from the different treatments resulted in 1,540

genes being identified and used for constructing a weighted gene

co-expression network [7,8]. Unlike traditional un-weighted gene

co-expression networks in which two genes (nodes) are either

connected or disconnected, the weighted gene co-expression

network analysis assigns a connection weight to each gene pair

using soft-thresholding and thus is robust to parameter selection.

The weighted network analysis begins with a matrix of the Pearson

correlations between all gene pairs, then converts the correlation

matrix into an adjacency matrix using a power function f(x) = xb.

The parameter b of the power function is determined in such a

way that the resulting adjacency matrix (i.e., the weighted co-

expression network), is approximately scale-free. To measure how

well a network satisfies a scale-free topology, we use the fitting

index proposed by Zhang & Horvath [7] (i.e., the model fitting

index R2 of the linear model that regresses log(p(k)) on log(k) where

k is connectivity and p(k) is the frequency distribution of

connectivity). The fitting index of a perfect scale-free network is

1. For this dataset, we select the smallest b ( = 7) which leads to an

approximately scale-free network with the truncated scale-free

fitting index R2 greater than 0.75. The distribution p(k) of the

resulting network approximates a power law: p(k),k21.29.

To explore the modular structures of the co-expression network,

the adjacency matrix is further transformed into a topological

overlap matrix [30]. As the topological overlap between two genes

reflects not only their direct interaction, but also their indirect

interactions through all the other genes in the network. Previous

studies [7,30] have shown that topological overlap leads to more

cohesive and biologically meaningful modules. To identify

modules of highly co-regulated genes, we used average linkage

hierarchical clustering to group genes based on the topological

overlap of their connectivity, followed by a dynamic cut-tree

algorithm to dynamically cut clustering dendrogram branches into

gene modules [39]. A total of sixteen modules were identified and

the module size was observed to range from 20 to 194 genes.

To distinguish between modules, each module was assigned a

unique color identifier, with the remaining, poorly connected

genes colored grey. The hierarchical clustering over the topolog-

ical overlap matrix (TOM) and the identified modules is shown. In

this type of map, the rows and the columns represent genes in a

symmetric fashion, and the color intensity represents the

interaction strength between genes. This connectivity map

highlights that genes in the ovary transcriptional network fall into

distinct network modules, where genes within a given module are

more interconnected with each other (blocks along the diagonal of

the matrix) than with genes in other modules. There are a couple

of network connectivity measures, but one particularly important

one is the within module connectivity (k.in). The k.in of a gene was

determined by taking the sum of its connection strengths (co-

expression similarity) with all other genes in the module which the

gene belonged.

Gene Co-expression Network Analysis Clarification
Gene networks provide a convenient framework for exploring

the context within which single genes operate. Networks are

simply graphical models comprised of nodes and edges. For gene

co-expression networks, an edge between two genes may indicate

that the corresponding expression traits are correlated in a given

population of interest. Depending on whether the interaction

strength of two genes is considered, there are two different

approaches for analyzing gene co-expression networks: 1) an
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unweighted network analysis that involves setting hard thresholds

on the significance of the interactions, and 2) a weighted approach

that avoids hard thresholds. Weighted gene co-expression

networks preserve the continuous nature of gene-gene interactions

at the transcriptional level and are robust to parameter selection.

An important end product from the gene co-expression network

analysis is a set of gene modules in which member genes are more

highly correlated with each other than with genes outside a

module. Most gene co-expression modules are enriched for GO

functional annotations and are informative for identifying the

functional components of the network that are associated with

disease [6].

This gene co-expression network analysis (GCENA) has been

increasingly used to identify gene sub-networks for prioritizing

gene targets associated with a variety of common human diseases

such as cancer and obesity [11,12,13,14,15]. One important end

product of GCENA is the construction of gene modules comprised

of highly interconnected genes. A number of studies have

demonstrated that co-expression network modules are generally

enriched for known biological pathways, for genes that are linked

to common genetic loci and for genes associated with disease

[6,7,11,13,14,15,40,41,42]. In this way, one can identify key

groups of genes that are perturbed by genetic loci that lead to

disease, and that define at the molecular level disease states.

Furthermore, these studies have also shown the importance of the

hub genes in the modules associated with various phenotypes. For

example, GCENA identified ASPM, a hub gene in the cell cycle

module, as a molecular target of glioblastoma [15] and

MGC4504, a hub gene in the unfolded protein response module,

as a target potentially involved in susceptibility to atherosclerosis

[13].

Pathway Analysis
Resulting lists of differentially expressed genes for each growth

factor treatment as well as for each module generated in the

network analysis were analyzed for KEGG (Kyoto Encyclopedia

for Genes and Genome, Kyoto University, Japan) pathway

enrichment using Pathway-Express, a web-based tool freely

available as part of the Onto-Tools (http://vortex.cs.wayne.edu)

[43]. Global literature analysis of various gene lists was performed

using BiblioSphere PathwayEdition (Genomatix Software GmbH,

Munchen, Federal Republic of Germany) software which performs

pathway and interaction analysis and labels genes which belong to

certain known metabolic and signal transduction pathways. A

program based on literature analysis Pathway Studio (Ariadne,

Genomics Inc. Rockville MD) was used to evaluate cellular

processes connected to differentially expressed genes.

Supporting Information

Figure S1 Network scheme for 1540 differentially expressed

genes obtained by global literature analysis using BiblioSphere

Pathway Edition Software (Genomatix Software GmbH,

Munchen, Federal Republic of Germany). Different node colors

represent different modules. A - the whole scheme clearly indicates

5 distinguished groups of genes (each group is shown separately on

pp. 2–6) connected to 5 central genes: Nfkb1 (B, page 2), Vegfa (C,

page 3), Egfr (D, page 4), and Gadd45a (F, page 6). Only

connected genes are shown.

Found at: doi:10.1371/journal.pone.0011637.s001 (2.07 MB

PDF)

Figure S2 KEGG Pathway ‘‘Complement and Coagulation

Cascades’’ enriched by regulated genes from 1,540 gene list. Red

nodes represent up-regulated genes, blue - down-regulated, green -

not affected genes.

Found at: doi:10.1371/journal.pone.0011637.s002 (0.07 MB

PDF)

Figure S3 Scheme of shortest connections to cellular processes

for 55 candidate regulatory genes, as obtained by global literature

analysis using Pathway Studio 7.0 (Ariadne Genomics, Inc.,

Rockville, MD; trial version). Only 22 connected genes from the

list out of 55 are shown, the rest from the list are not connected

and not shown. Node shapes code: oval and circle - protein;

crescent - protein kinase and kinase; diamond - ligand; irregular

polygon - phosphatase; circle/oval on tripod platform - transcrip-

tion factor; ice cream cone - receptor. Red color represents up-

regulated genes, blue color - down regulated genes, grey nodes

represent genes closely connected (next neighbor) to the list genes;

grey rectangles represent cell processes; arrows color: grey solid or

dotted - regulation, blue - expression, green - promoter binding;

arrows with plus sign show positive regulation/activation, arrows

with minus sign - negative regulation/inhibition.

Found at: doi:10.1371/journal.pone.0011637.s003 (0.35 MB

PDF)

Table S1 Rat Genes Expressed Differentially After Growth

Factor Treatment of Ovary. Legends: * - absolute value of

difference between means of Control and GF Treatment

expression values ** - abbreviations used for modules’ color: trq

-turquoise; brw - brown; blu- blue; ylw- yellow; prp - purple; gr -

grey; grn - green; grlw - green-yellow; blc- black; mbl - midnight-

blue; slm - salmon; lcn - light cyan; ***- k in. is connectivity

coefficient determined in network analysis.

Found at: doi:10.1371/journal.pone.0011637.s004 (1.37 MB

PDF)
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