
Gene-Boosted Assembly of a Novel Bacterial Genome
from Very Short Reads
Steven L. Salzberg1*, Daniel D. Sommer1, Daniela Puiu1, Vincent T. Lee2

1 Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America, 2 Department of Cell Biology and

Molecular Genetics, University of Maryland, College Park, Maryland, United States of America

Abstract

Recent improvements in technology have made DNA sequencing dramatically faster and more efficient than ever before.
The new technologies produce highly accurate sequences, but one drawback is that the most efficient technology produces
the shortest read lengths. Short-read sequencing has been applied successfully to resequence the human genome and
those of other species but not to whole-genome sequencing of novel organisms. Here we describe the sequencing and
assembly of a novel clinical isolate of Pseudomonas aeruginosa, strain PAb1, using very short read technology. From
8,627,900 reads, each 33 nucleotides in length, we assembled the genome into one scaffold of 76 ordered contiguous
sequences containing 6,290,005 nucleotides, including one contig spanning 512,638 nucleotides, plus an additional 436
unordered contigs containing 416,897 nucleotides. Our method includes a novel gene-boosting algorithm that uses amino
acid sequences from predicted proteins to build a better assembly. This study demonstrates the feasibility of very short read
sequencing for the sequencing of bacterial genomes, particularly those for which a related species has been sequenced
previously, and expands the potential application of this new technology to most known prokaryotic species.
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Introduction

Genome sequencing technology has moved into a new era with

the introduction of extremely fast sequencing technologies that can

produce over one billion base pairs (bp) of DNA in a single run.

Some of the fastest methods today, based on strategies such as

cyclic reversible termination [1] and ligation-based sequencing [2],

produce the shortest read lengths, ranging from 15–50 bp. These

lengths are sufficient for resequencing projects, including efforts to

sample the human population, but they have yet to prove as useful

for sequencing of novel species. The difficulty is that no existing

assembly algorithms can accurately reconstruct a genome from

such short reads [3].

The first published report of a bacterial genome sequence from

‘‘short’’ reads used pyrosequencing technology, which was able to

generate reads averaging 110 bp. That study [4] demonstrated the

feasibility of assembling the small bacterial genome of Mycoplasma

genitalium (580,069 bp) from reads that covered the genome 40-fold.

This combination of coverage and read length allowed Margulies et

al. to generate contiguous stretchs of DNA (contigs) averaging 22.4

kilobases (kb). Results using pyrosequencing have improved steadily

as read lengths have increased to 250 bp and longer, but the

difficulty of de novo assembly has raised questions about the utility of

alternative sequencing technologies—those that produce reads

shorter than 50 bp—for genome sequencing projects.

Assembly of novel strains and species—where the genome has not

previously been sequenced—from very short reads has proven more

difficult, although simulation studies have indicated that it should be

possible [5]. A recent study showed that a combination of

pyrosequencing reads (average length 102 bp) and paired-end

sequencing could be used to assemble a 4 million base pair (Mbp)

genome into just 139 contigs, linked together in 22 scaffolds [6].

Another recent effort used a hybrid strategy that mixed pyrosequen-

cing (110 bp reads) and traditional Sanger sequencing to produce

draft assemblies of marine microbes [7]. In contrast, the very short

reads generated by the Solexa Sequence Analyzer have thus far been

useful primarily for polymorphism discovery in the human genome,

for resequencing and polymorphism discovery in Caernohabditis elegans

[8], and for other applications such as ChIP-seq [9], which identifies

genomic regions bound by transcription factors.

The very short reads—currently 30–35 bp—produced by CRT

technologies such as Solexa present a far more difficult assembly

problem. Standard assembly algorithms such as Arachne [10,11]

and Celera Assembler [12] cannot process such short reads at all,

spurring the development of several new algorithms designed for

short reads, including SSAKE [13], Velvet [14], Edena [15], and

ALLPATHS [16]. These latter methods can handle Solexa data

(though ALLPATHS has the additional requirement that the

sequences must be paired-end reads), but they produce highly

fragmented assemblies when provided with whole-genome data

from a bacterial genome. The inherent problem with very short

reads is that every repetitive sequence longer than the read length

causes breaks in the assembly.

To demonstrate the feasibility of assembling a bacterial genome

from 33 bp reads, using related genomes to assist the process, we

chose Pseudomonas aeruginosa strain PAb1, a highly virulent strain

isolated from a frostbite patient. P. aeruginosa is a ubiquitous

environmental bacteria of clinical importance as the leading cause

of gram-negative nosocomial infections [17,18]. Several P. aeruginosa

genomes have been sequenced previously, including two laboratory
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strains: PAO1 (6,264,404 bp), originally isolated from a wound, and

PA14 (6,537,648 bp) isolated from a burn [19,20]. PA14 and PAO1

are ,99% identical across the 6.05 Mbp shared by both genomes,

and their similarity to PAb1 allowed us to improve the assembly and

provided a means to check its accuracy. One of our goals in

sequencing PAb1 was to identify genomic differences that contribute

to its altered pathogenicity.

Here we report the assembly of P. aeruginosa PAb1 entirely from

33 bp reads, using a novel assembly strategy that takes advantage of

related genomes and homologous protein sequences. The assembly

is of very high quality, comparable to or better than draft assemblies

produced using earlier sequencing technologies. This study shows

that a novel bacterial genome can be sequenced entirely with very

short read technology, without the use of paired-end sequences

(which are not available from some short-read sequencers), and

assembled into a high-quality genome. Even at 40-fold coverage, the

amount of sequence represents just one-quarter of a single

sequencing run on a Solexa instrument, which brings the sequencing

cost easily within the reach of most scientists. By making all of our

assembly software free and open source, we hope to further bring

down the barriers to desktop whole-genome sequencing.

Algorithm for Assembly of Very Short Reads
We generated 8,627,900 random shotgun reads from P.

aeruginosa PAb1 using Solexa technology. All reads were exactly

33 bp in length.

We used four distinct computational steps to assemble the genome

of PAb1. For the initial step, we used the comparative assembly

algorithm AMOScmp [21], which aligns all reads to a reference

genome, and then builds contigs based on these alignments. The

algorithm gains efficiency by avoiding the costly all-versus-all

overlapping step, which is particularly difficult with very short reads

due to the high incidence of false overlaps [13]. We modified

AMOSCmp by tuning the MUMmer software [22], which is run

within AMOScmp, to look for exact matches to the reference

genome of at least 17 bp, allowing at most two mismatches in each

read. We found that careful trimming of the reads based on their

matches to the reference produced better assemblies than un-

trimmed reads. The initial assembly used 7,500,501 reads, leaving

1,127,399 as singletons (Table 1). The PAb1 genome is closer to

PA14 (99.4% identical for 92% of the PAb1 genome) than to PAO1

(99.0% identical for 90% of the PAb1 genome), and we therefore

used PA14 as the primary reference for orienting the contigs.

Our second step was a novel enhancement to the comparative

assembly strategy, in which we used multiple reference genomes

(Figure 1). We used the complete genomes of both PAO1 [19] and

PA14 [20] separately to build multiple comparative assemblies,

and found that PA14 produced the better assembly, comprising

2,053 contigs containing 6,206,284 bp. (We also used the PA7

strain, but its greater evolutionary distance made it less useful.)

The bulk of the sequence was contained in 157 contigs longer than

10 Kbp, which collectively covered 5,568,616 bp. There were

331,364 bp in the PA14 genome that were not covered by the

initial assembly, due to divergence between the two strains.

However, the gaps in the comparative assembly based on PAO1

occurred in different locations due to differences between the

strains. The best assembly based on PAO1 comprised 2797 contigs

covering 6,043,652 bp.

We aligned the two assemblies to one another to identify

locations where a contig in the PAO1-based assembly might span

two or more contigs in the PA14-based assembly (Figure 1). For

each such case, we filled the gap with the sequence from the PAO1

assembly using the Minimus assembler [23] to stitch together the

contigs. This algorithm closed 203 gaps, reducing the number of

contigs to 1850, of which all but 305 were ,200 bp. The bulk of

the genome, 5,949,162 bp, was contained in just 113 contigs of

10,000 bp or longer. Note that the overlapping contigs between

the two assemblies did not agree perfectly. In order to produce a

clean merged assembly, we re-mapped the reads to the contigs

using AMOScmp to create consistent multi-alignments.

The third step used a novel algorithm, gene-boosted assembly. For

this step, we took the contigs from the previous step and identified

protein-coding genes using our annotation pipeline, which is based

on Glimmer [24] and Blast [25]. Because amino acid sequences

Author Summary

In this paper we demonstrate that a bacterial genome,
Pseudomonas aeruginosa, can be decoded using very short
DNA sequences, namely, those produced by the newest
generation of DNA sequencers such as the Solexa
sequencer from Illumina. Our method includes a novel
algorithm that uses the protein sequences from other
species to assist the assembly of the new genome. This
algorithm breaks up the genome into gene-sized chunks
that can be put back together relatively easily, even from
sequence fragments as short as 30 bases of DNA. We also
take advantage of the genomes of related species, using
them as reference strains to assist the assembly. By
combining these and other techniques, we were able to
assemble 94% of the 6.7 million bases of P. aeruginosa into
just 76 large pieces. The remaining 6% is contained in 436
smaller fragments. We have made all of our software
available for free under open-source licenses, and we have
deposited the newly assembled genome in the public
GenBank database.

Table 1. Major steps in the assembly of P. aeruginosa from 33 bp Solexa reads.

Assembly Step Input Number of Contigs Contigs .200 bp Largest Contig Singletons

AMOScmp with PA14 8,627,900 reads 2,053 428 170,485 1,127,399

AMOScmp with PAO1 8,627,900 reads 2,797 865 75,626 1,592,525

Merged comparative assemblies 4,850 contigs 1,850 306 236,472 1,066,226

Gene-boosted assembly 306 contigs 120 120 512,638 NA

De novo assembly by Velvet 8,627,900 reads 10,684 7382 16,239 1,241,079

Merged gene-boosted and Velvet assemblies 120 contigs, 7382 contigs 76 76 512,638 822,210

The first column indicates the assembly strategies described in the text. Singletons refers to the number of reads that were not used to produce the contigs generated
by each method.
doi:10.1371/journal.pcbi.1000186.t001

Gene-Boosted Assembly from Short Reads
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are much more conserved than nucleotide sequences, we were

able to use the predicted protein sequences (primarily but not

exclusively from other Pseudomonas species) to fill gaps even where

the DNA sequences diverged. The annotation pipeline identified

5,769 proteins in the 305 longest contigs.

From the initial annotation, we identified those genes that

extended beyond the ends of contigs or that spanned the gaps

between contigs. We extracted the amino acid sequences

corresponding to these gap positions, with a small buffer sequence

included on each side of each gap. Next we used tblastn [25] to

align each protein sequence to all the unused reads translated in all

6 frames (Figure 2). This step identified, for each gap, a small set of

reads that would fill in the missing protein sequence, and the

tblastn results provided initial locations for a multiple alignment.

We then used a new program, ABBA (Assembly Boosted By

Amino acids), to assemble the reads together with the flanking

contigs and close the gaps. This gene-boosted assembly protocol

extended many contigs and closed 185 gaps, ranging in length

from 14–1095 bp, reducing the number of long contigs to 120.

As a separate test, we conducted a gene-boosted assembly of

PAb1 using only the annotated proteins from PA14—without any

reference genomic sequence. For this experiment, we aligned all

the translated reads to each protein and used ABBA to assemble

each one. For 4,572 of the proteins, ABBA produced a single

contig that covered the entire reference protein, and another 831

proteins assembled into a few contigs. Thus 5,403 out of 5,602

(96%) of the PAb1 proteins can be assembled using a pure gene-

boosting approach, and additional proteins would likely be

assembled if we used a large set of proteins for boosting. This

demonstrates that in the absence of a closely related genome

sequence, gene-boosted assembly can use protein sequences—

which diverge much more slowly than genomic DNA—to

assemble most of the genes of a new bacterial strain, although

the results will lack global genome structure information.

The fourth step of our method identified any remaining DNA

sequences that were (a) unique to PAb1 and (b) outside predicted

gene regions. We separately constructed pure de novo assemblies of

the 8.6 million Solexa reads using SSAKE, Edena, and Velvet.

The Velvet assembly was the best of the three, creating 10,684

contigs, the longest being 16,239 bp (Table 1). We used MUMmer

to align these contigs to the 120 long contigs in our scaffold from

the previous step, and identified cases where de novo contigs

spanned gaps or extended contigs. This step allowed us to close 46

gaps, reducing the number of contigs in our main scaffold to 74.

After removing Velvet contigs that were already contained in our

scaffold, we had 436 unplaced de novo contigs spanning

416,897 bp. The longest unplaced contig was 10,493 bp.

Results/Discussion

Our final assembly contains one large scaffold with 76 contigs

whose total length is 6,290,005 bp, with the longest contig at

512,638 bp. The 436 unplaced contigs, which should fit into the

remaining gaps, represent sequence that is unique to PAb1. Our

annotation shows that most of these contigs contain genes that are

homologous to other Pseudomonas species. Several contigs contain

bacteriophage genes, pointing to recent phage insertion events in

PAb1. The final assembly thus consists of 512 contigs covering

6,706,902 bp, with 94% of the bases in a single large scaffold.

Approximately 9% of the reads were not used in the assembly

(Table 1); many of these can be mapped to contigs if we use relaxed

matching criteria, indicating that they represent low-quality data.

Our annotation of the PAb1 genome identified 5,602 protein-coding

genes, as compared to 5,568 for PAO1 and 5,892 for PA14.

All Solexa reads have been deposited in the Short Read Archive

at NCBI, and the final genome sequence and annotation have

been deposited in GenBank as sccession ABKZ01000000.

We have demonstrated that it is possible to sequence and

assemble a bacterial genome from deep sequencing using 33 bp

reads. The final assembly has 40.36 coverage, with very high

agreement among the individual reads at the vast majority of

positions in the genome. To measure the accuracy of individual

reads, we examined all positions in the assembly with .206
coverage, which yielded 5.9 million positions. If we count as errors

any bases that disagree with the consensus at those positions, we

get an estimate based on internal consistency that the error rate

per read is 1.04%. Based on this estimate, the expected number of

errors for regions of the genome with coverage of .206 is close to

zero, except for systematic errors such as difficult-to-sequence

regions. This illustrates how the great depth of sequencing possible

with short-read technology produces higher quality assemblies—in

regions with deep coverage—than would conventional Sanger

sequencing at a typical 86 coverage depth.

Figure 1. Comparative assembly using multiple genomes. The target genome is shown in the center, aligned to two related genomes, A and
B. The DNA sequence of the target diverges from the reference genomes in distinct loci, labeled X, Y, and Z. The comparative assembly based on
genome A contains a gap corresponding to region Y, while the assembly based on genome B contains two gaps, corresponding to X and Z. The
merged assembly will cover all of the target genome with no gaps.
doi:10.1371/journal.pcbi.1000186.g001

Gene-Boosted Assembly from Short Reads
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We evaluated the coverage to determine if the Solexa sequences

were biased towards any portion of the genome, and found a small

bias towards high-GC regions, which comprise most of the

genome. In particular, regions with 60–70% GC, which comprised

79% of the genome, had 406 coverage. In contrast, regions with

50–55% GC (1.5% of the genome) had 146coverage, and regions

with ,50% GC (1.1% of the genome) had just 56 coverage.

The alignment of P. aeruginosa PAb1 to strain PA14, which

matches at 99.4% identity for .90% of the genome, can be used

to provide an estimate of the sequencing accuracy. To assess the

question of whether differences between our assembly and the

PA14 genome represented true differences or sequencing errors,

we aligned the two genomes and identified all single nucleotide

polymorphisms (SNPs). Out of 5,568,550 aligned bases from the

longer PAb1 contigs, 5,537,508 agreed with PA14 and can be

presumed correct. For each of the remaining 31,042 SNPs, we

examined all reads that were assembled at that point and assessed

whether (a) the depth of coverage was adequate, and (b) the PAb1

reads agreed on the consensus base. The coverage was 10-fold or

greater for 95% of these SNPs. Using the conservative assumption

that a SNP might be in error if the inter-read agreement was less

than 80%, we found 1157 positions (out of 5,568,550) that might

be sequencing errors. We also found 1104 insertions and deletions

(indels) in the aligned regions, and our assembled reads were in

perfect agreement for 917 of these. If we assume conservatively

that the other 187 indels are errors, then considering both SNPs

and indels, the accuracy of the assembled genome is greater than

99.97%.

The assembly is sufficiently complete that we can confidently

infer that genes are missing if their expected positions fall in the

midst of contigs. Although deeper analysis will be presented in a

followup paper, we note that the PAb1 strain is known for its

hypermotility on low percentage agar media. Our sequence

contains most of the genes required for swimming motility in P.

aeruginosa [26], but is missing part of the pathway used by cyclic-di-

GMP, a secondary signaling molecule, that has been implicated in

repressing swimming motility [27,28]. By searching all of the

known P. aeruginosa genes in this pathway [29,30,31], we found

that three genes encoding diguanylate cylase and phosphodies-

terase are missing: PA2771 and PA2818 (arr) from the PAO1

strain, and PA14_59790 (pvrR) from the PA14 strain [32,33]. All

three of these genes are located in chromosomal regions

previously indicated as hyper-variable based on genomic hybrid-

izations [29]. The altered gene content of PAb1 in the regulatory

pathways repressing flagella may contribute to its observed

hypermotility.

The new algorithm described here make it possible for any

scientist to acquire the entire genome of a bacterium at high speed

and very low cost. One limitation of our method is that it depends

on the existence of related genomes (for the comparative assembly

step) and protein sequences (for the gene boosting step). However,

GenBank already contains the complete genome sequences for

.650 microbial genomes, and draft sequences for nearly 1000

more. For many of these species, much larger numbers of related

strains and species have yet to be sequenced. Our method opens

the door to the use of whole-genome sequencing to study entire

collections of bacteria, to rapidly identify genotypes from

mutagenized genetic screens, and for other analyses that were

previously too costly or technically infeasible. The gene-boosted

assembly technique applies equally well to both short and long-

read sequencing methods, and should also work for assembling the

gene-containing regions of much larger genomes.

Methods

Genomic DNA was extracted by SDS lysis, proteinase K digest,

and phenol/chloroform extraction. Sequencing was performed by

Illumina using the 1G Genome Analyzer, also known as the

Solexa sequencer. The 8.6 million reads represent 1/4 of the

current capacity of a flow cell. For sequencing trimming in step 1,

we mapped all reads to the initial assembly and then trimmed up

to three bases from the 39 end when those bases failed to match a

contig. The AMOScmp pipeline for trimming and short read

assembly is described at http://cbcb.umd.edu/research/SR-

assembly.shtml. Contig merging in step 2 of our algorithm used

the merger program from the EMBOSS package [34]. The

Edena, Velvet, and ssake assemblers were run with a wide range of

parameters in order to optimize them for the data used in this

study, with the best results coming from Velvet with a minimum

overlap requirement of 24 bases. (The other methods created more

numerous, shorter contigs.) The ABBA assembler has been added

to the free, open-source AMOS assembler package, which also

includes the AMOScmp assembler. ABBA can be found at http://

amos.sourceforge.net/docs/pipeline/abba.html. AMOS and ad-

ditional modules developed in this study are freely available from

http://cbcb.umd.edu/software, and the MUMmer system is freely

available at http://mummer.sourceforge.net.

Figure 2. Gene-boosted assembly. All contigs are aligned with predicted gene sequences to identify genes that span 2 or more contigs. The DNA
sequences of these spanning genes are cut out with a small buffer on each end. The amino acid translation of each gene fragment is then searched
against a translated database of all singleton reads that have not yet been placed in the assembly. Finally, the reads identified by this process are
assembled together with the two contigs to fill in the gap.
doi:10.1371/journal.pcbi.1000186.g002
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