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ABSTRACT

Genes are the functional units in most organisms. Compared to genetic variants located

outside genes, genic variants are more likely to affect disease risk. The development of

the human HapMap project provides an unprecedented opportunity for genetic association

studies at the genomewide level for elucidating disease etiology. Currently, most association

studies at the single-nucleotide-polymorphism (SNP) or the haplotype level rely on the link-

age information between SNP markers and disease variants, with which association findings

are difficult to replicate. Moreover, variants in genes might not be sufficiently covered by

currently available methods. In this article, we present a gene-centric approach via entropy

statistics for genomewide association study to identify disease genes. The new entropy-based

approach considers genic variants within one gene simultaneously and is developed based on

a joint genotype distribution among genetic variants for an association test. A grouping

algorithm based on a penalized entropy measure is proposed to reduce the dimension of

the test statistic. Type I error rates and power of the entropy test are evaluated through

extensive simulation studies. The results indicate that the entropy test has stable power

under different disease models with reasonable sample size. Compared to single SNP-based

analysis, the gene-centric approach has greater power, especially when there is more than

one disease variant in a gene. As the genomewide genic SNPs become available, our entropy-

based gene-centric approach would provide a robust and computationally efficient way for

gene-based genomewide association study.

INTRODUCTION

The family-based linkage study has been the traditional means of disease gene discovery

followed by a variety of fine mapping techniques. For finer resolution, larger pedigrees are

required, which largely restricts its utility, especially for identifying multiple low-penetrance

variants involved in common diseases (Boehnke 1994). In the past decade, population-based

association mapping, as an alternative for disease gene discovery, has been rapidly developed

either at the single variant or candidate gene level. Risch and Merkangas (1996) first showed
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that an association study has comparatively greater power than the linkage analysis in de-

tecting disease variants with minor or modest effect size. Therefore genomewide association

studies (GWAS) are feasible. With the development of recent high throughput genotyping

technologies, it is now possible to conduct disease gene search with millions of SNP mark-

ers covering the whole human genome (The International HapMap Consortium 2005). This

rapid escalation in disease gene search from family-based linkage scan to population-based

association study has greatly facilitated the process of disease gene discovery.

The analysis of association has been historically focused on alleles and the association has

been primarily referred to as allelic association. With the high density SNP marker generated

by human HapMap and the availability of empirical LD information across the genome,

haplotype-based association study is gaining popularity. However, both type of association

studies at the SNP or haplotype level have potential pitfalls in the context of replication

(Neale and Sham 2004). Due to population histories and evolutionary forces, there has been

inconsistency between different studies caused by aberrant LD patterns across marker loci,

different allele frequencies and LD patterns across populations (Morton and Collins 1998;

Pritchard and Przeworsk 2001; Stephens et al. 2001; Freedman et al. 2004). There also

has been controversy concerning statistical analysis and interpretation of association findings

(Neale and Sham 2004). In a recent comprehensive review, Neale and Sham (2004) pointed

out common problems associated with the single SNP and the haplotype-based analysis, and

proposed the prospects of gene-based association study. To reduce reproducebility error, a

shift to a gene-based analysis is necessary (Neale and Sham 2004).

With reduced genotyping costs, recent GWA studies have produced promising results

(Ozaki et al. 2002; Klein et al. 2005; Maraganore et al. 2005; Skol et al. 2006; Yeager et

al. 2007; Hunter et al. 2007). With limited prior knowledge of genomic regions harboring

disease genes, a genomewide blind search for an association signal appears to be the most

powerful approach in disease gene hunting. Most association mapping approaches based on

either single SNP or haplotype can be applied in a GWA study with appropriate genomewide

multiple testing adjustment. However, in a recent investigation of the HapMap ENCODE
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data, Jorgenson and Witte (2006) found that variants in genes are not sufficiently covered

by existing GWA approach. The authors raised their concerns about the coverage of current

GWA study. Some functionally important variants in genes might be missed due to the

limitation of the existing SNP genotyping technology. Results in an age-related macular

degeneration study also indicated that some genetic risk factors identified through candidate

gene-based approach were missed by GWA approach (Conley et al. 2005; Rivera et al.

2005). Apparently, there is a lack of efficient coverage of functional variants by the current

GWA approach, which could consequently result in missing association signals. With limited

resources, a gene-centric GWA approach by focusing only on those SNPs located within a

gene should be preferred as an alternative to current GWA approach (Jorgenson and Witte

2006).

It is well known that genes are the functional units in most organisms. Genic variants

are more likely to alter gene function and affect disease risk than those that occur outside

genes (Jorgenson and Witte 2006). The sequence information and function of genes are

highly consistent across diverse populations, which makes the gene-based association study

more robust in terms of replication compared to the single SNP analysis (Neale and Sham

2004). Moreover, multiple testing has been a major statistical issue for the single SNP-based

analysis. While haplotype tagging can potentially reduce the dimension of multiple testing,

there are potential risks of missing association signals due to the limitation of SNP tagging.

In contrast, the multiple-testing problem can be greatly alleviated with a gene-based analysis

by conveniently dividing it into two stages, dealing first with the multiple variants within a

gene and then with the multiple genes in the genome (Neale and Sham 2004).

Given the feasibility for a gene-centric genomewide association study, there are pressing

needs for developing appropriate statistical approaches under this framework. By treating

genes as testing units, any approach developed should consider the multilocus LD informa-

tion simultaneously in a gene to produce sufficient association signals to be detected by a

powerful statistical test. Recently, Zhao et al. (2005) showed the power of a nonlinear trans-

formation of haplotype frequencies through an entropy-based haplotype scoring approach for
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a genomewide association study. This approach can be extended for a gene-centric GWA

study. However, since their approach relies on the information of haplotype frequencies, it

needs an extra step to estimate haplotype phases and frequencies beyond the association test-

ing step. Given the potentially large numbers of ‘genic’ SNPs involved, the haplotype-scoring

approach is computationally infeasible, especially for a large scale genomewide study.

Relaxing the assumption of phase information for a haplotyping scoring approach, in this

article, we propose an alternative approach by directly utilizing joint genotype information of

‘genic’ SNPs in a gene. The joint genotypes within one gene could be considered as ‘pseudo’

alleles. Following the argument of Zhao et al. (2005), we propose a nonlinear transformation

of joint genotype frequencies through an entropy measure to amplify the genotype frequencies

between cases and controls. The functional information for a gene is then compared between

cases and controls through the entropy measure. To reduce the degrees of freedom of the

entropy-based test and increase the efficiency and power of an association test, we propose a

grouping algorithm to cluster rare joint genotypes to common ones with maximum similarity.

An information-based penalized entropy measure is proposed to determine the clustering

threshold. Extensive simulation studies are conducted to demonstrate the performance of

this new entropy-based statistic. Type I error rate and power of the entropy-based nonlinear

test are compared with the single SNP analysis considering different data generation schemes.

The entropy test is then extended to the genomewide level and the performance of the gene-

centric GWA approach is compared with the single SNP-based GWA study. Both real data

and simulations confirm the powerfulness of the proposed approach.

METHODS

Entropy-based statistic: In information theory, entropy measures the uncertainty of a

random variable (Cover and Thomas 1991). One commonly used entropy measure is Shannon

entropy (Shannon 1948). It can be used to measure the genetic diversity in DNA variation

and has been applied to extract the maximal amount of information for a set of genetic

loci (Hampe et al. 2003). Therefore, Shannon entropy provides a natural way to quantify

6



relevant information gain or loss for a set of SNP markers within a gene related to certain

diseases. The entropy of a discrete random variable or a system X is defined in general as:

S(X) = −
∑

t

p(xt) log p(xt),

where p(xt) = Prob(X = xt), xt denotes the tth individual element in a system. The system

X represents a gene with joint genotype xt as individual element in the following model

derivation.

As a functional unit, a gene contains one or more functional variants which jointly func-

tion in a coordinated manner to develop a disease phenotype. A gene can thus be defined as

a genetic locus-system with jointly acting networks of functional units to maintain human

homeostasis. Any systematic deviations from the homeostasis due to the perturbations of

the underlying genetic variants could result in potential disease signals representing a change

of the underlying locus information. This information change, when measured in genotype

frequency in cases and controls, can be amplified and captured by a properly defined entropy

measure.

Assume a sample of n unrelated individuals collected from a population with n1 affected

and n2 unaffected. In this sample, a large number of genes across the genome are selected

for genotyping. Within each gene, a number of SNPs are genotyped, which are defined as

the ‘genic’ SNPs. The goal of the study is to identify which genes are associated with the

genetic disease of interest in a genomewide scale. For simplicity, we start with one gene.

An extension to genomewide is given later. Consider Ni ‘genic’ SNPs each with two alleles

for the ith gene. Following the definition of Jorgenson and Witte (2006), ‘genic’ SNPs

include those that are synonymous and non-synonymous coding SNPs and SNPs in 5’ and

3’ untranslated regions. At each locus, there are three possible genotypes coded as 0, 1, or

2 with 0 and 2 representing homozygote and 1 representing heterozygote. For the ith gene

with Ni ‘genic’ SNPs, there are total 3Ni possible genotype combinations. In reality, there

are fewer joint genotypes at one gene because of LD among SNPs within a gene. We define

the combination of multilocus genotypes as a genetic locus-system with each joint genotype
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as one single element within the system.

We denote the number of observed joint genotypes for the ith gene as mi (mi < 3Ni). Let

cij be the jth joint genotype out of mi observed joint genotypes at the ith gene. We deal with

each joint genotype as one element within the locus-system and each joint genotype captures

the underlying multilocus LD information. Let pA
cij

and pU
cij

be the frequency of the joint

genotype cij in cases and controls, respectively. The entropies of the joint genotype cij in cases

and controls are then defined as SA
cij

= −pA
cij

log pA
cij

and SU
cij

= −pU
cij

log pU
cij

, respectively.

Through this nonlinear transformation of the entropy measure, the joint genotype frequencies

between cases and controls are amplified and the frequency difference is easier to detect than

that in the original scale (Zhao et al., 2005).

Let SA
i = [SA

ci1
SA

ci2
· · · SA

cimi
] and SU

i = [SU
ci1

SU
ci2

· · · SU
cimi

] be vectors of the

entropy measure for the observed joint genotypes in cases and controls, respectively. As-

suming independence among individuals, the number of joint genotypes at one gene follows

a multinomial distribution. It can be shown that the variance-covariance matrix of joint

genotypes in cases and controls are nA
i ΣA

i and nU
i ΣU

i , where nA
i and nU

i are the number of

cases and controls for the ith gene, respectively, and Σ
A/U
i = (σ

A/U
i|jk )mi×mi

with

σ
A/U
i|jk =

{
p

A/U
cij (1− p

A/U
cij ) for j = k

−p
A/U
cij p

A/U
cik for j 6= k

where j and k (j, k = 1, · · · ,mi) denote the jth column and the kth row of the covariance

matrix Σ
A/U
i .

Denote the first partial derivatives of the joint genotype entropy Scij
with respect to the

joint genotype frequency pcij
for the ith gene in cases and controls as DA

i = (dA
i|jk)mi×mi

and

DU
i = (dU

i|jk)mi×mi
, where

d
A/U
i|jk =

{
−1− log(p

A/U
cij ) for j = k

0, for j 6= k

Then, the entropy-based statistic for an association test between the ith gene and the disease,

is defined as

T gene
i = (Ŝi

A − Ŝi
U
)Ŵi

−1
(Ŝi

A − Ŝi
U
)T , (1)
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where Ŵi =
D̂A

i Σ̂A
i D̂A

i

nA
i

+
D̂U

i Σ̂U
i D̂U

i

nU
i

, and the “∧” sign refers to estimated values.

When the frequencies of joint genotypes are not zeros, it can be shown that T gene
i has an

asymptotical central χ2
mi−1 distribution under the null hypothesis of no association between

the ith gene and disease (Lehmann 1983; Zhao et al. 2005). When the matrix Ŵi is not

invertible, we use the spectral decomposition to get Ŵi = Pdiag{λ1, · · · , λmi
}P T , where

λ1 ≥ λ2 ≥ · · · ≥ λmi
are eigenvalues of Ŵi and P is an orthogonal matrix. In the singular

case, assume the rank of Ŵi is ` (` < mi), then we use the following matrix

Pdiag(
1

λ1

, · · · ,
1

λ`

, 0, · · · , 0)P T

to replace Ŵi
−1

in Eq. (1). Under the alterative hypothesis that there is an association

between the ith gene and disease, T gene
i follows a noncentral χ2

mi−1 distribution with the

noncentrality parameter given as

(SA
i − SU

i )W−1
i (SA

i − SU
i )T

When dealing with genotypes, the computation burden for estimating haplotype frequen-

cies for a haplotype-based approach such as the one proposed by Zhao et al. (2005) can be

alleviated. However, the large number of observable joint genotypes and hence the large

degrees of freedom (df) for an association test could affect the power of test. To overcome

this difficulty, we propose an information-based grouping algorithm to cluster rare genotypes

into common ones.

Genotype grouping via penalized entropy: When the number of SNPs is large,

the high dimensionality of the parameter space could reduce the power and efficiency of

the proposed entropy approach. For a haplotype-based analysis, the same dimensionality

problem also exists (Zhao et al. 2005). Dimension reduction is essential before conducting an

association test. A number of studies have been focusing on haplotype dimension reduction

either through excess haplotype sharing (Yu et al. 2004) or through haplotype grouping

(Durrant et al. 2004; Tzeng 2005). To ensure the parameter space (G) containing an

appropriate set of joint genotypes, a pre-determined frequency cut-off, termed hard threshold
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can be set intuitively. Genotypes with frequency less than the threshold will be excluded.

The so called truncated method could result in a low dimensional space G that consists of

high-frequency components which can reduce the degrees of freedom and increase the test

efficiency. The risk is lose of detailed local information leading to a consequence of power

loss in detecting the difference between two distributions (Fan 1996).

To achieve optimal balance between information and dimensionality, instead of discarding

rare genotypes by setting a hard threshold, a more objective way is to group rare joint

genotypes with the most similar ones by choosing a soft threshold based on data. By soft

threshold, we mean a threshold determined by data itself according to certain selection

criterion, not based on a pre-determined value. Here we introduce an information criterion

based on the Shannon entropy to select the cut-off point with the goal to find a set of common

joint genotypes that are parsimonious enough yet containing maximal amount of information

for the tested gene. The selected soft threshold is gene dependent and is more objective. The

underlying rationale is that genotypes associated with disease should share close evolutionary

character states. By assigning rare genotypes to a common cluster or group, one expects that

genotypes within a cluster will preserve the original multilocus LD information and contain

as much as possible the polymorphisms information and, hence, might have similar effects

on disease predisposition. From the evolutionary point of view, common genotypes reflect

more of the history, and hence, should be preserved in the new clustered genotype space (G).

From the statistics point of view, common genotypes represent nonsparse components which

reveals the majority of information of a multinomial distribution (Zhao et al. 2005).

To incorporate both case and control information into the entropy measure, we combine

cases and controls with the same joint genotype together before grouping. Consider a set of

joint genotypes G = {c1, c2, · · · } for gene i. For simplicity, we drop the gene index subscript

i. Each category cj contains ncj
joint genotypes with frequency pcj

, and cj represents the

joint genotype after combining cases and controls together. The Shannon entropy of each

genotype category cj is defined as −pcj
log2pcj

(Shannon 1948). The base 2 logrithm is for

information measurement in binary units (Tzeng 2005). The overall entropy is the sum over
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all categories, −∑
j pcj

log2pcj
. As the number of joint genotype categories increases, this

information measure monotonically increases. Maximum information is achieved when all

joint genotype categories are included. However, this does not serve our purpose of dimension

reduction. To balance between information and dimension, we introduce a penalty function

following Tzeng (2005) to penalize the information increase caused by adding more genotype

categories in the parameter space G. The penalized entropy measure (PEM) is given as

I(Gk) = −
( k∑

j=1

pcj
log2pcj

)
− 2log2k/nck

(2)

where log2k is the total number of bits needed to describe the outcome (MacKay 2003). The

AIC-like penalty term 2log2k is divided by the sample size of ck to reflect the marginal cost

for including the ck category (Tzeng 2005). The penalty term 2log2k
nck

penalizes the monotone

increase of the entropy measure by adding new terms. Thus the one with maximum PEM

measure (I(Gk)) corresponds to the optimal parameter space. To do so, we first sort all

joint genotypes according to their frequencies. Then for each truncated genotype set Gk,

k = 1, 2, · · · ,G∗, we calculate the PEM measure (I(Gk)). The optimal dimension G∗ that

maximizes the PEM (I(Gk)) contains k joint genotypes.

Once the grouping threshold is determined, we can proceed to group those with frequency

less than the threshold with common ones. To preserve the maximum information for those

rare joint genotypes after grouping, we first calculate the similarity (Eq. (3)) between those

rare joint genotypes and those with frequencies larger than the grouping threshold. Each rare

joint genotype is then grouped together with the common one having the largest similarity.

To illustrate the idea, we consider one gene with 10 SNPs. Denote the genotype vector at the

10 SNP loci for one rare joint genotype with frequency less than the grouping threshold as

c0 =
[

g0
1 g0

2 · · · g0
10

]
, and denote the genotype vector for any one of the joint genotypes

with frequency greater than the grouping threshold as cj =
[

gj
1 gj

2 · · · gj
10

]
, where

g`
s = 0, 1, 2, s = 1, 2, · · · , 10, and ` ∈ {0, j(j ≥ 1)}. We define a similarity measure between

these two joint genotypes as

ψ(0,j) =
10∑

s=1

I(g0
s = gj

s) (3)
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where I(g0
s = gj

s) =

{
1, if g0

s = gj
s;

0, if g0
s 6= gj

s

is an indicator function. For each rare joint genotype

to be grouped, a similarity score will be calculated against all common joint genotypes. This

rare joint genotype will be grouped with the common one with the largest similarity.

The penalized entropy measure accommodates the increase of the joint genotype dimen-

sion, and maintains the parsimony of the grouping parameter space. Fig. 1 illustrates how

the information measure PEM changes as the number of joint genotype changes. Fig. 1(A)

shows the bar plot of the sorted joint genotype frequencies with a case-control combined

sample. The solid horizontal line indicates the grouping threshold. Fig. 1(D) displays the

PEM for each truncated distribution Gk, k = 1, 2, · · · ,. We can clearly see a concave curve

with the peak indicating that 6 is the optimal number of dimension, i.e., 6 common joint

genotypes after grouping. As sample size increases gradually, we see the same concave pat-

tern for the PEM and the grouped dimension gradually increases (data not shown). Fig.

1(B) and 1(C) show the bar plots of the joint genotype distribution before grouping for cases

and control, respectively. The corresponding joint genotype distributions after grouping are

shown in Fig. 1(E) and 1(F), resepectively. The data are simulated under the null hypothe-

sis of no disease-gene association. We can see that the joint genotype distributions in cases

and controls are very similar before and after grouping. The common distribution pattern

is preserved in both cases and controls after grouping.

Gene-centric genomewide significance: For the single SNP based GWA study, the

significance level for multiple testings is adjusted in the order of 105 or higher. Traditional

Bonferroni adjustment is too conservative to detect the true effects. In the past decades, a

false discovery rate (FDR) controlling approach has been widely used for multiple testing

adjustment (e.g., Benjamini and Hochberg 1995). As several studies have reported the

problem of replicating certain genetic findings (reviewed by Neale and Sham 2004), people

tend to use more stringent criteria to avoid false discoveries. This, however, could potentially

result in false negatives too. The trade-off between false discovery and false negative has not

been well established in a GWA study.
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While the single SNP based analysis has potential multiple testing problem, a gene-based

approach can greatly alleviate the multiple testing burden by dealing with multiple variants

within a gene as a testing unit and then dealing with multiple genes across the genome

(Neale and Sham 2004). We know that the total number of genes in whole human genome

is estimated at ∼ 30, 000 and these genes are likely to represent largely functional units.

By focusing on each gene as a unit, we can potentially reduce the false positives and false

negatives without suffering too much from power loss due to stringent criteria. Given the

large number of tested genes, the Bonferroni or FDR adjustment procedure could still be

too stringent to test moderate effects. Actually, for most common diseases, even though a

search for disease factors is running with thousands of genes, we know that only a small

proportion of genes will trigger true effects. The large number of association tests therefore

confers a considerable risk of false discoveries. In reality, if the appropriate genotyping

approach is used, scientists are more interested in detecting the proportion of true effects

than controlling the false discovery rate. Incorporating certain prior knowledge about the

proportion of true effects, therefore, would certainly leads to a more efficient error control.

From a Bayesian point of view, this prior information can be updated in a multiple testing

adjustment approach. Van den Oord and Sullivan (2003) proposed an optimizing approach by

eliminating and controlling false discoveries to achieve a balance of true- and false positives.

Following van den Oord and Sullivan (2003), for a gene to be significant at the genomewide

significant level, we have

αgene = P0(a gene is significant)

= P0(T
gene > Cgene)

=
(1− p0)PTD

p0

FDR
− p0

(4)

where PTD is the expected proportion of genes with true effects to be detected, i.e., the

average power of an association test; p0 is the expected proportion of genes with no effect;

and FDR is the false discovery rate. This approach can be applied for either a dependent

or independent test. A prior knowledge of 0.5% true effective genes and an average 85%

association test power would lead to αgene ≈ 2.2 × 10−4 with an FDR of 0.05. Therefore, a
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genewide significance of ∼ 2.2× 10−4 would be considered to be genomewide significant.

The power of the gene-centric GWA approach can be calculated accordingly. If we know

the genomewide significant threshold value Cgene, then the probability of selecting a disease

gene under the alternative hypothesis is given by

Power = PA(T gene > Cgene)

where Cgene value can be found through solving Equation (4).

SIMULATION STUDY

Simulation design: Monte Carlo simulations are performed to evaluate the statistical

property of the proposed approach. We use two methods to simulate the genotype data.

The first method is based on the MS program developed by Hudson (2002) which simulates

SNP haplotypes under a coalescent model where the recombination rate varies across the

SNP sequence. This method cannot control the pairwise LD pattern across multiple SNPs

within a gene. The second method generates SNP genotype data based on a conditional

distribution of current gentoype data given on the distribution of previous genotype data.

Thus the pairwise LD pattern can be easily controlled. We call the 2nd method LD-based

simulation. The details for the two methods are given as follows.

MS program. We use the MS program developed by Hudson (2002) to simulate hap-

lotypes for each individual to form individual genotype data. The main parameters under

the coalescent model for generating haplotypes are set as follows: 1) the effective diploid

population size ne is 1 × 104; 2) the scaled recombination rate for the whole region of in-

terest, ρ = 4neγ/bp, is 4 × 10−3, where the parameter γ is the probability of cross-over per

generation between the ends of the haplotype locus being simulated; 3) the scaled mutation

rate for the simulated haplotype region, 4neµ/bp, is set to be 5.6 × 10−4 for the region of

simulated haplotypes; and 4) the length of sequence within the region of simulated hap-

lotypes, n sites, is 10kb. Similar parameter settings can be found in other studies (e.g.,

Hudson 2002; Tzeng 2005). We set the number of SNP sequences in the simulated sample
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as 100 for each gene and run the MS program to generate the haplotype sample based on

these parameter settings. Then we randomly select a segment of ten adjacent SNPs as a

haplotype. Next two haplotypes are randomly drawn from the simulated sample containing

100 10-SNP haplotypes and are paired to form an individual genotype.

LD-based simulation. Under this scenario, SNP genotypes are generated according to the

conditional distribution of current genotype given on the previous genotype data. Suppose

the frequencies of two adjacent SNPs with risk alleles A and B are p and q and the linkage

disequilibrium between them is δ. Then the frequencies of four haplotypes are pab = (1 −
p)(1− q)+ δ, pAb = p(1− q)− δ, paB = (1−p)q− δ, pAB = pq + δ. Given the allele frequency

for A at locus 1 and assume HWE, the SNP genotype data can be obtained at that locus

assuming a multinomial distribution with genotype frequencies of p2, 2p(1− p) and (1− p)2

for genotype AA, Aa and aa, respectively. To simulate genotype data for SNP2 conditional

on SNP1, we need to derive the conditional distribution P (SNP2|SNP1). To illustrate the

idea, consider the simple case P (BB|AA). By Bayes theorem,

P (BB|AA) =
P (AABB)

P (AA)
=

p2
AB

p2
=

(pq + δ)2

p2

Similarly, we can get the conditional distribution of other gentoypes at SNP2 given on the

genotype data at SNP1. A detailed conditional distribution is tabulated in Table 1. The

pairwise LD pattern between adjacent SNPs can be easily controlled with this simulation

method.

Phenotype simulation. Given the nature of the difficulty to know the true functional

mechanism for a given gene, it is difficult to simulate the true functional variants and the

true functional mechanism within a gene. Thus, we evaluate the performance of the entropy

approach by considering different scenarios to mimic the situation of a complex disease for

a given gene. Three situations are considered in the simulation study. The first scenario

considers only one functional disease variant within a gene. The second one considers two

disease variants where there are interactions between these two variants. The third one con-

siders three disease variants and there are complex interactions among these three variants.
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The simulated data are then subject to the entropy test and single SNP analysis.

Here we briefly illustrate how the disease phenotypes are simulated. Consider the first

scenario in which there is only one disease variant. Let fi be the penetrance function, which

is defined as the probability of being affected given possessing i copies of disease alleles

(i = 0, 1, 2). Denote λ = f1/f0 as the genotype relative risk (GRR). Let p be the disease

allele frequency. Then the penetrance function for the three genotypes at a single locus,

f0, f1, f2, can be defined for an additive and a multiplicative model (Table 2). Once fi

is determined, the disease status for that particular individual is simulated according to a

bernoulli distribution with the probability of success fi. The same process is repeated until

n cases and n controls are generated.

For a disease model with two interacting disease loci, we follow the settings given in

Marchini et al. (2005). Two models are considered (Table 3). In model 1, the odds increase

multiplicatively with genotype both within and between loci. In model 2, the odds of a

disease have a baseline value (γ) and the odds increase multiplicatively both within and

between genotypes once there is at least one disease allele at each disease locus.

For the three-locus interaction disease model, we denote the three-locus genotypes as

(GA, GB, GC) ∈ 0, 1, 2 which represents the number of risk alleles at each disease locus A,

B and C. Following Table 3, we generalize the two-locus disease model to the three-locus

interaction disease model as

Model 1 : Odds(GA, GB, GC) = γ(1 + θ)GA+GB+GC (5)

Model 2 : Odds(GA, GB, GC) = γ(1 + θ)GAI(GA>0)+GBI(GB>0)+GCI(GC>0)

Once the disease loci are determined, the case-control disease status can then be simulated

according to a multinomial distribution conditional on the observed genotype data.

Property of the new statistic:

Null distribution. Under the assumption of large sample size under the null hypothesis,

the entropy-based statistic T gene has an asymptotic χ2 distribution. To examine whether
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the asymptotic results of the entropy-based statistic T gene still hold for a small sample size

under the null hypothesis of no association, we generated 200 cases and 200 controls for one

gene containing 10 SNPs with 10 joint genotypes. Figure 2 plots the histogram of the test

statistic T gene. The distribution of T gene is very similar to a χ2 distribution with 9 df.

Type I error. We evaluate the type I error rate for the new entropy statistics based on

the two genotype generating schemes, the MS program and the LD-based simulation. Data

are simulated under the null of no association with 10 SNPs for a gene. 1000 simulation runs

are conducted under different sample sizes. The pattern of LD varies among SNPs when

data are simulated using the MS program. To evaluate extreme case, we use the LD-based

simulation method to generate genotype data assuming high LD among SNPs (r2 = 0.9).

The simulated data are subject to both the entropy test and single SNP analysis to compare

their performance. The single SNP analysis is based on genotype χ2 test with 2 df. Since our

attention is focused on genes, for the single SNP analysis, a gene is declared to be significant

if it contains at least one significant SNP. The significant level for each SNP within a gene is

adjusted first with the Bonferroni correction. Results are summarized in Table 4. As we can

see, the error rates are reasonably estimated for data simulated with both approaches. The

disease allele frequency has no remarkable effect on type I error. Compared to the entropy

test, the single SNP analysis underestimates the type I error in all scenarios. Therefore,

when focused on a gene-based analysis, our approach has better error control than the single

SNP analysis.

Power analysis. Up to now the functional mechanism of most disease related genes has

not been comprehensively understood. For a gene to be associated with a disease phenotype,

there must be complex functional mechanism among multiple variants within the gene. The

physical location and alignment pattern of SNPs within a gene, the up-down stream signaling

among SNPs, and the complex functional interactions among SNPs could result in potential

functional variation and eventually lead to a disease signal. It is, therefore, difficulty to

simulate the true functional mechanism of a disease gene. To compare with the single SNP

analysis, we simulate a disease gene by assuming one, two or three disease loci within the
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gene. These scenarios represent approximations to true functional mechanism of a disease

gene.

The one-locus, two-locus and three-locus disease models are given in Tables 2, 3 and

Equation (5), respectively. The simulation results for these three models are summarized

in Tables 5, 6, and 7, respectively. We assume 10 SNPs on average for a simulated gene

and use two simulation schemes, MS program and LD-based simulation. Table 5 shows

the power results under the additive and multiplicative disease model assuming one disease

locus within a gene. The power for the single SNP analysis is given in the parenthesis. As

can be seen, the power of association test based on statistic T gene increases as sample size

increases. For data simulated with the MS program, we observe a slightly smaller power of

the entropy test than that of the single SNP analysis. As sample size increases from 200

to 400, the difference vanishes and the two approaches are comparable. For data simulated

with the LD-based approach assuming r2 = 0.9, we observe consistently higher power of

the entropy test than that of the single SNP analysis. Also, the power is affected by the

genotype relative risk. Different allele frequency has no remarkable effect on testing power

and hence is omitted.

When the number of disease loci increases within a tested gene, we observe significant

differences of the two approaches under the two data simulation schemes. For the two-locus

disease model, Table 6 shows that the power increases as the GE and sample size increase.

As we expected, Model 1 has higher power than Model 2 due to the difference of the two

models (Table 3). Noted that the entropy-based test uniformly outperforms the single SNP

analysis in all the simulation scenarios. Depending on the underlying gene action mode and

linkage information among SNPs, large sample size (> 400, say) is always preferred.

The results for the three-locus disease model are very similar to the two-locus model

under different sample sizes and different GEs (Table 7). It is worthy to note that when the

number of disease loci increases from 2 to 3, the power of the entropy test has a remarkable

increase. For example, when data are simulated assuming Model 2 using the LD-based

simulation approach, the power of the two-locus model (Table 3) is only 0.621. We observe
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a dramatic power increases from 0.621 to 0.960 when the number of functional disease loci

increase to 3 (Eq. (5)) for fixed GE and sample size. A similar trend holds in general as the

number of functional variants increase in a gene.

In summary, under different simulation scenarios, the results confirm that the entropy-

bases test outperforms the single SNP analysis in general when the unit of interest is focused

on a gene. The results also indicate the we may need large sample size (> 400, say) to

obtain reasonable power to detect the disease-gene association. As the number of functional

variants within a gene increases (i.e., the functional mechanism of a gene becomes more

complex), the power of the entropy test to detect the association also increases.

Power of genomewide association studies: To check the performance of the entropy

based test on a genomewide scale analysis, we simulate 1000 genes. Even though 1000 genes

do not represent a genomewide level (∼ 30, 000 genes), extension to a genomewide scale is

straightforward. For a gene to be significant at the genomewide scale, a genewide significant

level is caculated based on Equation (4). Assume there are 10 genes to be contributing to a

disease phenotype in 1000 genes, i.e., p0 = 0.99 and each gene contains 10 SNPs on average.

If we further assume a minimum 80% power to detect an association (PTD = .8), and an

FDR of 0.05, then αgene ≈ 0.000425. This means that a gene significant at the 4.25 × 10−4

level would be considered to be genomewidely significant.

We randomly simulate 800 cases and 800 controls using the MS program. Figs. 3,

4 and 5 plot the genomewide power analysis of the entropy test for one-locus, two-locus

and three-locus disease models, respectively. In all three figures, the solid and the dashed

lines represent the power curves for the entropy-based analysis and the single SNP analysis,

respectively. The power as a function of the GRR for the one-locus disease model is plotted

in Fig. 3A (additive model) and B (multiplicative model). We can see that the single SNP

analysis slightly dominates the entropy test with moderate GRR. As GRR increases to 1.7,

both tests converge to 100% power. The power as a function of GE is plotted in Figs. 4

and 5 for the two-locus and three-locus disease models, respectively. The entropy test has

consistently higher genomewide power than the single SNP analysis under two gene action
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modes with moderate GE. The power difference decreases as the GE increases.

Note that the power for the single SNP test is adjusted within a gene using the Bonferroni

correction, then is corrected in the genewide significant level calculated in Eq. (4) as the

familywise error rate for that gene. Therefore, in the single SNP analysis, a gene is declared

to be significant if the smallest p-value of any single SNP test is less than 4.25 × 10−4/10.

Compared to a SNP-wide significant level of 5×10−6 if we apply the genomewide Bonferroni

correction for all SNPs, this threshold is less restrictive. If we rather use the restrictive

genomewide Bonferroni correction, the power for the single SNP based analysis would be

much smaller compared to the gene-centric approach.

A CASE STUDY

Until now, a complete set of genomewide genic SNPs has not been fully developed (Jor-

genson and Witte, 2006). Hence no real data are available to test the method. To show

the utility of the proposed approach, we rather apply our method to a large scale candi-

date gene study. The data set contains 190 candidate genes in a genetic association study

of Pre-Eclampsia (PE). PE typically occurs after 20 weeks gestation with a syndrome of

hypertension and proteinuria. The disorder is a leading cause of maternal mortality, and

affects at least 5-7% of all pregnancies (Kaunitz et al., 1985). Previous study has shown

that genetic factors may contribute greater than 50% of the variability in liability to PE

(Esplin et al., 2001). In this study, subjects were recruited at the Sotero del Rio Hospital,

in Puente Alto, Chile. Eligible mothers were enrolled either in a longitudinal cohort study

designed to predict the subsequent development of PE, or the existence of PE at the time

of admission to the hospital. For a detailed data description, please refer to Goddard et al.

(2007). After elimination of SNPs with MAF less than 5%, 819 SNPs were subject to both

the single SNP and gene-centric association study. The data set contains a total of 225 cases

and 585 controls.

If we assume a prior knowledge of 19 significant genes that would be associated with PE
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based on previous studies (Goddard et al. 2007), the parameter p0 takes a value of 19/190.

If we further assume the power for a single gene test is PTD = 85%, following Equation

(4) with a false discovery rate of FDR= 0.05, a gene is significant at the 0.005 level would

be claimed to be significant at the “genomewide” level. Similarly, we can apply the same

significance criterion to the single SNP-based analysis. Based on the report in Goddard et al.

(2007), we assume a prior number of 21 significant SNPs out of total 819 SNPs and a power

of 0.85 for any single SNP test. Then a SNP is declared significant at the “genomewide”

level if the p-value for that single test is less than 0.0012. Alteratively, if we focus on a

gene-based unit, we can use the genewide significant level 0.005 as the familywise significant

level for one gene and apply the Bonferroni correction by dividing it by the number of SNPs

in that gene to get the significant threshold for that particular gene. For example, if a gene

contains 4 SNPs, then the gene is declared to be significant if the smallest p-value for any

single SNP test is less than 0.005/4 = 1.25 × 10−3. In this case, the genewide significant

level would be different for different genes.

Table 8 lists the p-values for both significant genes and SNPs. The significant genes

and SNPs are shown in bold faces. For comparison, we also listed the smallest p-values of

SNPs in which the corresponding gene is significant based on the gene-based test as well as

the p-value for gene-based analysis if that gene contains at least one significant SNP. The

test results show that the gene-based analysis detected 7 significant genes out of 190 genes.

The single SNP based test detected 3 significant SNPs, and hence 3 significant genes, even

though the significant level is much less stringent than the Bonferroni correction or FDR

based adjustment. Among the significant genes identified, only gene F13B is consistently

picked up by both the gene-based and SNP-based tests. Two polymorphisms in genes F2 and

FGF4 also show marginal significant. The fact that those genes detected by the gene-based

entropy test but missed by the single SNP analysis indicates that there might exist complex

functional interactions among SNPs in those genes. It is not surprise that the complex

systematic interactions among SNPs in those genes may not be detected by less powerful

single SNP analysis by testing each SNP separately.
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DISCUSSION

The development of human HapMap provides an unprecedented opportunity for unrav-

elling the disease etiology of complex human diseases with appropriate statistical analysis

in a genomewide scale. The advancement of whole genome genotyping technology and rela-

tively reduced genotyping cost in recent years have made it possible to detect genomewide

disease variants in thousands of individuals, with an aim to find variants with modest con-

tributions to disease risk. Traditional single SNP-based analysis approaches find regions

associated with a disease based on differences in allele or genotype frequencies of the SNPs

in regions between cases and controls. The methods find variants in LD with SNPs and

are not comprehensive in the characterization of variation in the regions. In contrast to

the SNP-based approaches, the gene-based analysis is less susceptible to erroneous findings

due to genetic differences between populations (Neale and Sham 2004). Also a gene-centric

approach should be more complete with regard to the coverage of genes, which is crucial to

detecting causal variants (Jorgenson and Witte 2006). However, a genomewide genic SNP

set has not been well established (Jorgenson and Witte 2006). Given the radical break-

through in recent biotechnology, it will be made available to public shortly. Therefore, the

proposed gene-centric GWA approach in this paper represents a timely effort to contribute

to the identification of disease genes in a genomewide scale.

Increasing evidences have shown that complex interaction of genes worked in a coordi-

nated manner is essential for normal function of any organism (Hartwell 2004; Gibson 1996;

Moore 2003; Szathmary et al. 2001). The jointly acting network of functional variants,

termed the genetic locus-system, is crucial to maintain the system homeostasis. Any sys-

tematic deviations from the homeostasis could result in a potential disease signal. The overall

disease signal resulted from multiple interacting disease variants for a particular gene can be

more efficiently amplified and captured by considering all variants in a gene simultaneously

by the proposed entropy test statistic. Compared to the single SNP analysis by testing each

variant separately and hence tending to ignore the complex interaction mechanism among
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SNPs within a gene, the gene-centric approach is statistically more powerful and biologi-

cally more relevant. Moreover, the entropy approach considers the genic variants within a

gene as a testing unit, which is in align with the conception that the gene is the functional

unit of most organisms. By capturing the difference of the joint genotype distributions be-

tween cases and controls through nonlinear transformation of joint genotype frequencies, the

entropy-based test shows appropriate type I error and good power in detecting disease as-

sociated genes. Simulations also confirm the powerfulness of the gene-based test, especially

when the underlying testing gene is functionally complex, for instance, containing two or

more interacting disease variants.

The proposed entropy-based test considers the joint genotype distribution and is sim-

ple and easy to implement. The nonlinear transformation of the joint genotype frequencies

amplifies the difference between cases and controls and hence increase the testing power.

Unlike the haplotype-based entropy test (Zhao et al. 2005), the calculation of joint geno-

type frequency is much fast and simple without estimating linkage phases as the haplotype-

based approach does. The computation gain is even more significant when the number of

genic SNPs is large. Intensive computation in estimating haplotype frequencies makes the

haplotype-based approach practically infeasible to implement in a large genomewide scale.

Given the large number of possible joint genotypes compared to possible haplotypes, one

of the disadvantages of genotype-focused analysis is the large number of df. One possible

solution is to discard those rare joint genotypes with frequency less than a pre-specified

hard threshold. This, however, will largely reduce the sample size and hence the power of

the association test. Without sacrificing sample size, the problem of large df is overcome

by an efficient grouping algorithm. To balance the trade-off between informativeness and

dimensionality, we have proposed a penalized entropy measure to determine a soft threshold.

Rare joint genotypes are then grouped with common ones to reconstruct a lower dimensional

distribution from the original distribution. Simulations confirm the validity of the grouping

approach.

The powerfulness of the proposed gene-centric approach in a genomewide scale is also
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confirmed by simulations (Figs. 3, 4, 5). As revealed by the genomewide simulation studies,

the gene-based approach has more power than the single SNP test when there are more

than one functional disease variants in a gene (Figs. 4 and 5). The proposed approach is

not only restricted to a genomewide application. It also fits to a candidate gene study with

appropriated defined SNP set for a candidate gene. The real example shown in the paper

indicates that the gene-centric approach detects more genes than the single SNP analysis,

and hence is more powerful than the single SNP based analysis. Some genes identified by

the gene-based approach but missed by the single SNP analysis have been shown in the

literature. For example, genes APOB, FGF4 and F2 are detected by the gene-based analysis

but are missed by the single SNP test. These genes were previously reported to be associated

with PE (Sarandöl et al. 2004; Anteby et al. 2004; Kosmas et al. 2004). The fact that these

genes missed by the single SNP analysis but detected by the gene-based analysis may be due

to higher order complex interactions among disease variants. However, when there is only

one disease variant in a gene, the single SNP test slightly beats the gene-based approach by

simulation (Fig. 3). As little is know about the nature of the true functional mechanism of

a gene, our conservative recommendation is to report genes detected by both approaches.

By focusing on each gene as a separate module or unit, a gene-centric association study

can be designed using a “direct” or “sequence-based” approach by examining candidate

genes with known biological function, or can be studied using an “indirect” or “map-based”

approach taking advantage of LD among variants (Jorgenson and Witte 2006). Currently,

the direct approach is limited by incomplete knowledge about functional variation of a gene.

The indirect approach with reliance on the information of LD among variants is preferred

instead. The developed entropy approach consider the joint multilocus LD information for

a given gene in an association test and fits this mission well. Also, for SNPs in evolution-

arily conserved regions, once they are genotyped, can be define as a functional unit and

then perform an entropy-based test to identify possible cis enhancers to cover all function-

ally important variants. Due to reduced genotyping burden with small number of genic

SNPs, a gene-centric GWA approach would be a first choice to implement as an efficient
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initial genomewide association scan for targeting biologically plausible genomic regions with

reduced multipe-testing burden.
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Table 1: Conditional genotype probability of SNP2 given on SNP1 (P (SNP2|SNP1))

bb bB BB
aa p2

ab/(1− p)2 2pabpaB/(1− p)2 p2
aB/(1− p)2

aA pabpAb/p(1− p) 2pabpAB+2paBpAb

2p(1−p)
pABpaB/p(1− p)

AA p2
Ab/p

2 2pAbpAB/p2 p2
AB/p2
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Table 2: Single-locus disease model

f0 f1 f2

Additive prev
1−2p+2pλ

λf0 2λf0 − f0

Multiplicative prev
(1−p+λp)2

λf0 λ2f0

where prev is the population prevalence, λ is the genotype relative risk.
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Table 3: Two-locus interaction disease model

Model 1 BB Bb bb
AA γ(1 + θ)4 γ(1 + θ)3 γ(1 + θ)2

Aa γ(1 + θ)3 γ(1 + θ)3 γ(1 + θ)
aa γ(1 + θ)2 γ(1 + θ) γ

Model 2 BB Bb bb
AA γ(1 + θ)4 γ(1 + θ)2 γ
Aa γ(1 + θ)2 γ(1 + θ) γ
aa γ γ γ

where γ is the baseline effect; θ is the genotypic effect.
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Table 4: Type I error rates of the association test based on statistic T gene at the 0.05 nominal
level. Data are simulated with the MS program and the LD-based approach. The type I
error for the single SNP analysis is given in parenthesis.

n MS program
LD-based

PD = 0.1 PD = 0.3 PD = 0.5

100 0.081(0.025) 0.046(0.022) 0.061(0.025) 0.043(0.030)
200 0.073(0.038) 0.066(0.015) 0.047(0.025) 0.046(0.025)
400 0.052(0.027) 0.060(0.030) 0.046(0.027) 0.045(0.032)

PD refers to disease allele frequency.
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Table 5: Power of the association test based on statistic T gene assuming one disease locus in
a tested gene under different sample sizes and different simulation schemes. The power for
the single SNP analysis is given in parenthesis.

Disease
Model

(prev, GRR)∗
MS program

n = 200 n = 400
LD-based (r2 = 0.9)
n = 200 n = 400

Additive
(0.1, 1.4)
(0.1, 1.6)

0.370(0.255) 0.588(0.607)
0.602(0.555) 0.897(0.902)

0.438(0.305) 0.766(0.651)
0.681(0.577) 0.943(0.934)

Multiplicative
(0.1, 1.4)
(0.1, 1.6)

0.402(0.367) 0.735(0.752)
0.751(0.687) 0.960(0.953)

0.521(0.384) 0.808(0.751)
0.812(0.743) 0.970(0.974)

* prev = population prevalence; GRR= genotype relative risk. For both simulation schemes,
we set the third SNP as the disease locus. The disease allele frequency for the LD-based
simulation is set as PD = 0.3. The significant level is 0.05.

34



Table 6: Power of the association test based on statistic T gene assuming two interacting
disease loci within one gene under different sample sizes and different simulation schemes.
The power for the single SNP analysis is given in parenthesis.

Disease
Model

(BL, GE)∗
MS program

n = 200 n = 400
LD-based (r2 = 0.9)
n = 200 n = 400

Model 1
(1, 0.7)
(1, 0.9)

0.379(0.160) 0.564(0.385)
0.708(0.272) 0.874(0.595)

0.816(0.709) 0.994(0.822)
0.909(0.817) 1.000(0.827)

Model 2
(1, 0.7)
(1, 0.9)

0.269(0.152) 0.455(0.387)
0.458(0.232) 0.658(0.559)

0.468(0.349) 0.835(0.641)
0.621(0.426) 0.938(0.733)

*BL=baseline effect; GE=genotypic effect. For the MS program, we set the 4th and 9th
SNPs as the two interacting loci. For the LD-based simulation, we simulate two LD blocks,
one containing 6 SNPs and the other containing 4 SNPs, with pairwise r2 = 0.9 for SNPs
within each block. Two interacting disease loci are from each block with allele frequency
PD = 0.3. The significant level is 0.05. Models 1 and 2 are defined in Table 3.
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Table 7: Power of the association test based on statistic T gene assuming three interacting
disease loci within one gene under different sample sizes and different simulation schemes.
The power for the single SNP analysis is given in parenthesis.

Disease
Model

(BL, GE)∗
MS program

n = 200 n = 400
LD-based (r2 = 0.9)
n = 200 n = 400

Model 1
(1, 0.7)
(1, 0.9)

0.465(0.271) 0.658(0.685)
0.802(0.481) 0.925(0.918)

0.866(0.782) 0.992(0.857)
0.956(0.867) 1.000(0.861)

Model 2
(1, 0.7)
(1, 0.9)

0.471(0.299) 0.629(0.689)
0.808(0.487) 0.927(0.876)

0.858(0.774) 0.994(0.853)
0.960(0.867) 1.000(0.876)

*BL=baseline effect; GE=genotypic effect. For the MS program, we set the 1st, 5th and
9th SNPs as the three interacting loci. For the LD-based simulation, we simulate three LD
blocks, one containing 5 SNPs, one containing 3 SNPs and the other one containing 2 SNPs,
with pairwise r2 = 0.9 for SNPs within each block. Three interacting disease loci are from
each block with allele frequency PD = 0.3. The significant level is 0.05. Models 1 and 2 are
defined in Equation (5).
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Table 8: Analysis of PE data set based on the gene-based entropy test and the single SNP-
based χ2 test. The number of SNPs in each gene is given in parenthesis.

Gene Gene-based SNP-based
(SNP number) p-value SNP* p-value

APOB(9) 0.0019 rs5456814 0.0165
F13B(4) 0.0025 rs28787657 0.0010
F2(7) 0.0016 rs28886771 0.0021

FGF4(3) 0.0033 rs634043464 0.0067
IGF1R(7) 0.3600 rs40893937 0.0006
IGF2R(14) 0.0004 rs41410456 0.0330
MMP10(8) 0.0009 rs634850223 0.0280
NOS2A(10) 0.0258 rs9678181 0.0001
PDGFC(2) 0.0044 rs634820282 0.0320

* Only SNPs with smallest p-values within the corresponding genes are listed. Significant
and non-significant p-values are indicated in bold and itemized fonts, respectively.
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Legends to figures

Figure 1. Examples of joint genotype distributions of cases and controls within one gene

under the null hypothesis of no association. A, The bar plots of sorted joint genotype fre-

quencies in both cases and controls. Categories with frequencies less than the horizontal line

will be grouped. B, Joint genotype distribution in cases. C, Joint genotype distribution

in controls. D, Plot of the penalized entropy measure (PEM) against the threshold. The

horizontal line in A labels the categories to be retained when the maximal amount of PEM

is achieved. E, F, The grouped joint genotype distributions in cases and controls, respec-

tively. Here, the numbers on the x-axis represent the categories of joint genotypes. Data are

generated using the MS program with sample size 200.

Figure 2. Null distributions of the test statistic T gene from simulated 200 cases and 200

controls with 10 joint genotypes in a gene. χ2
(9) indicates a χ2 distribution with 9 degree of

freedom.

Figure 3. Power comparison of gene-based and SNP-based genomewide association studies

as a function of genotype relative risk (GRR) under two single-locus disease models, additive

model (A) and multiplicative model (B). The risk allele frequencies at both loci are 0.30,

numbers of individuals in both cases and controls are 800 genotyped on 1000 genes with a

population prevalence of 0.1.

Figure 4. Power comparison of gene-based and SNP-based genomewide association studies

as a function of genotypic effect (GE) under two two-locus disease models, Model 1 (A) and

Model 2 (B) defined in Table 3. The number of individuals in both cases and controls are

800 genotyped on 1000 genes.

Figure 5. Power comparison of gene-based and SNP-based genomewide association studies

as a function of genotypic effect (GE) under two three-locus disease models, Model 1 (A)

and Model 2 (B) defined in Equation (5). The number of individuals in both cases and

controls are 800 genotyped on 1000 genes.
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