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s.umn.eduJuly 23, 2001Abstra
tAs various genome sequen
ing proje
ts have already been 
ompleted or are near 
ompletion, genomeresear
hers are shifting their fo
us from stru
tural genomi
s to fun
tional genomi
s. Fun
tional genomi
srepresents the next phase, that expands the biologi
al investigation to studying the fun
tionality of genesof a single organism as well as studying and 
orrelating the fun
tionality of genes a
ross many di�erentorganisms. Re
ently developed methods for monitoring genome-wide mRNA expression 
hanges hold thepromise of allowing us to inexpensively gain insights into the fun
tion of unknown genes. In this paperwe fo
us on evaluating the feasibility of using supervised ma
hine learning methods for determining thefun
tion of genes based solely on their expression pro�les. We experimentally evaluate the performan
eof traditional 
lassi�
ation algorithms su
h as support ve
tor ma
hines and k-nearest neighbors on theyeast genome, and present new approa
hes for 
lassi�
ation that improve the overall re
all with moderateredu
tions in pre
ision. Our experiments show that the a

ura
ies a
hieved for di�erent 
lasses variesdramati
ally. In analyzing these results we show that the a
hieved a

ura
y is highly dependent onwhether or not the genes of that 
lass were signi�
antly a
tive during the various experimental 
onditions,suggesting that gene expression pro�les 
an be
ome a viable alternative to sequen
e similarity sear
hesprovided that the genes are observed under a wide range of experimental 
onditions.1 Introdu
tionAs various genome sequen
ing proje
ts have been re
ently 
ompleted or are near 
ompletion (e.g., mi
robial,human, Arabidopsis), genome resear
hers are shifting their fo
us from stru
tural genomi
s to fun
tionalgenomi
s [15℄. Stru
tural genomi
s represents an initial phase of genome analysis, whose goal is to 
onstru
thigh resolution geneti
 and physi
al maps as well as 
omplete sequen
e information of the 
hromosoms.Fun
tional genomi
s represents the next phase, that expands the biologi
al investigation to studying thefun
tionality of genes of a single organism as well as studying and 
orrelating the fun
tionality of genesa
ross many di�erent organisms.Traditionally, resear
hers have been using sequen
e data (either nu
leotide sequen
e in the 
ase of genes,or amino a
id sequen
es in the 
ase of proteins) to determine the fun
tion of genes and/or the 
orrespondingproteins. This approa
h relies on the fa
t that a set of genes that have suÆ
iently similar sequen
es also�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Resear
h OÆ
e 
ontra
tDA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performan
e Computing Resear
h Center 
ontra
tnumber DAAH04-95-C-0008. A

ess to 
omputing fa
ilities was provided by the Minnesota Super
omputing Institute.1



perform the same fun
tion. The explosive growth of the amount of sequen
e information available in publi
databases has made su
h an approa
h parti
ularly a

urate and an indispensable tool towards fun
tionalgenomi
s. Despite the fa
t that fun
tional genomi
 te
hniques based on sequen
e data 
an provide a wealthof information about the fun
tionality of entire genomes; they also have two inherent limitations. First, insome 
ases the fun
tional similarity 
annot be inferred by sequen
e information alone as sequen
e 
omparisons
an be uninformative and even misleading. Se
ond, even though there are many proje
ts for sequen
ing entiregenomes of di�erent spe
ies, there will be a lot of spe
ies for whi
h we don't and will never have 
ompletesequen
e information (at least in the next several de
ades). This is a fun
tion of both the 
ost asso
iatedwith sequen
ing as well as the fa
t that there are a lot of spe
ies.Re
ently developed methods for monitoring genome-wide mRNA expression 
hanges su
h as oligonu-
leotide 
hips [12℄, SAGE [33℄, and 
DNA mi
roarrays [30℄, are espe
ially powerful as they allow us toqui
kly and inexpensively observe the 
hanges at the di�erential expression levels of the entire 
omplement ofthe genome under many di�erent indu
ed 
onditions. Knowing when and under what 
onditions a gene or aset of genes is expressed often provides strong 
lues as to their biologi
al role and fun
tion. Already, numeroussu
h experiments involving relatively small genomes are performed at various sites worldwide. In the 
omingyear the number of this type of experiments involving mi
roarrays is expe
ted to in
rease signi�
antly.One way of using the data produ
ed by mi
roarray experiments to determine the fun
tion of unknowngenes is to use 
lustering algorithms to group together genes that have similar expression pro�les. Based onthe distribution of known and unknown genes in su
h 
lusters, then some information about the fun
tionof previously unknown genes 
an be inferred. In fa
t a large number of studies have already taken pla
e inwhi
h putative fun
tions of unknown genes have been identi�ed in this way. However, 
lustering being anunsupervised learning method is not ideally suited for this parti
ular task as it has no me
hanism by whi
hto perform feature sele
tion. A better approa
h of inferring the fun
tion of unknown genes based on theirexpression pro�les is to use ma
hine learning te
hniques based on supervised learning [24℄.This has been re
ently re
ognized by a number of resear
hers and a few attempts have been made touse su
h algorithms. In parti
ular, Golub et al. [14℄, by looking at expression pro�les of a subset of humangenes, a parti
ular type of leukemia 
an be distinguished from another type of the disease. Brown et al. [2, 3℄used several 
lassi�
ation algorithms to predi
t if a gene has a parti
ular fun
tion based on expressionpro�les and obtain en
ouraging results. Hvidsten et al. [16℄ applied rule-based indu
tion to predi
t humangene fun
tionality based on the gene ontology database [6℄ from expression pro�les of the �broblast serumresponse [17℄ and showed high predi
tion a

ura
y for 16 gene fun
tional 
lasses. Nevertheless, most of thesestudies were limited as they fo
used on only a small set of spe
i�
 fun
tions and/or did not provide anyinsights on the overall feasibility of this type of approa
h for determining the fun
tion of the genes.The fo
us of this paper is to perform a study on the suitability of supervised learning te
hniques fordetermining the fun
tion of genes using solely gene expression data and attempts to identify the requirementsunder whi
h su
h an approa
h will lead to a

urate predi
tions. Our work fo
uses on the yeast genome anduses publi
ly available mi
roarray datasets [11, 10℄ and 
overs a large number of gene fun
tions de�nedin the Muni
h Information Centre for Protein Sequen
es (MIPS) database [21, 20, 22, 23℄. We present adetailed experimental study using two popular 
lassi�
ation algorithms, support ve
tor ma
hines and k-nearest neighbors for predi
ting the fun
tions of the genes, and present �xed-size predi
tion algorithms thatallow us to trade re
all for pre
ision. Our experimental results show that the a

ura
y a
hieved by theproposed approa
hes varies widely depending on the fun
tion that we try to predi
t. For 
ertain 
lasses we
an a
hieve high a

ura
ies and for some 
lasses the a

ura
ies are quite poor. Our analysis shows that thea

ura
y a
hieved for a parti
ular 
lass is highly dependent on whether or not the genes of that 
lass weresigni�
antly a
tive during the various experimental 
onditions. This suggests that gene expression pro�les
an be
ome a viable alternative to sequen
e similarity sear
hes provided that the genes are observed undera wide range of experimental 
onditions that exer
ise the various 
ellular fun
tions.The rest of this paper is organized as follows. Se
tion 2 des
ribes the sour
e and the stru
ture of twodatasets we use in our study, expression pro�les and gene fun
tional 
lass assignment. Se
tion 3 explainsthe detail of binary 
lassi�
ation algorithms, support ve
tor ma
hines and the k-nearest neighbors. Wewill also propose two di�erent types of �xed-size predi
tion algorithms. The results and the evaluation ofthe experiments are shown in Se
tion 4 and we dis
uss the relationship between those predi
tion a

ura
yresults and statisti
al measure of expression pro�les in Se
tion 5. Finally, Se
tion 6 provides some 
on
luding2



remarks.2 Datasets Des
riptionAs dis
ussed in the introdu
tion our goal is to develop algorithms for determining the fun
tion of the yeastgenes using supervised learning methods that are based entirely on gene expression data. In order to a
hievethat we need to have a

ess to two key pie
es of information: (i) the a
tual expression pro�les, and (ii) thedi�erent fun
tional 
lasses that the various genes belong to. These are des
ribed in the rest of this se
tion.2.1 Expression Pro�lesIn our study we used the publi
ly available expression pro�les from Brown's group at Stanford University [10,11℄. The sour
e of these pro�les were 8 di�erent mi
roarray experiments under di�erent 
onditions. They 
anbe 
ategorized into the following 4 types, (i) the mitoti
 
ell division 
y
le, (ii) sporulation, (iii) temperatureand redu
ing sho
ks, (iv) gene expression in the the budding yeast during the diauxi
 shift. These experimentsresulted in a total of 79 measurements, however, not all genes have the entire set of the 79 measurementsbe
ause ea
h experiment was performed on a di�erent subset of genes. We treat those missing values as zero.The 79 measures are base 2 logarithms of ratios of intensities s
anned from two separate 
uores
en
e dyeimages, whi
h were obtained after hybridization. Even though the whole yeast genome 
ontains 6275 genes,the arrays used in the above experiments 
ontained only 2467 genes. Out of expression pro�les for those2467 genes, we used 2462 pro�les by dis
arding pro�les for genes that do not appear in the MIPS database.Se
tion 2.2 des
ribes the database in detail.2.2 Gene Fun
tional Class AssignmentDetermining the fun
tional 
lass of the di�erent genes is very mu
h an ongoing pro
ess and to a large extentone of the key steps in understanding the genomes of the various spe
ies. Fortunately, in the 
ase of theyeast genome, there exist extensive annotations for a large fra
tion of the genes. For our study we used thefun
tional annotations that are available in the MIPS database [21, 20, 22, 23℄. As of the time of this writing,the MIPS database de�nes a total of 249 gene fun
tion 
lasses, organized in a tree stru
ture.Based on the amount of information that is known for ea
h gene, the MIPS database assigns it to oneor more nodes of the tree of fun
tion 
lasses. Genes for whi
h detailed fun
tional information is knowntend to be assigned towards the leaves of the tree (i.e., more spe
i�
 
lasses), whereas genes for whi
h theinformation is more limited tend to be assigned at the higher-level nodes of the tree, (i.e., more abstra
t
lasses). Out of the total number of 6275 genes of the yeast genome, MIPS provides at least one annotationfor 3902 genes. For example, a gene YBR069C is assigned a fun
tion named amino-a
id transport. Be
auseamino-a
id transport is a sub-fun
tion of amino-a
id metabolism whi
h is also a sub-fun
tion of the top-levelfun
tion METABOLISM , YBR069C has all those fun
tions, famino-a
id transport, amino-a
id metabolism,METABOLISMg, i.e., a fun
tion at a node and all the fun
tions of its path to the top-level node. A genealso may have fun
tions assigned from multiple bran
hes. For the 
ase of YBR069C, it has fun
tions fromthe top level 
ategory METABOLISM and its sub
ategories as well as ones from other top level 
lassesTRANSPORT FACILITATION , CELLULAR TRANSPORT AND TRANSPORTMECHANISMS and CELLULARORGANIZATION and their sub
ategories. As a result of this fun
tional 
lass assignment, ea
h gene has 3.4fun
tions assigned on the average. All the 2462 genes in the expression pro�le dataset des
ribed in Se
tion 2.1do have at least one fun
tional annotation. The distribution of the number of 
lasses at the di�erent levelsof the tree is shown in Table 1.Figure 1(a) shows the size of the di�erent gene fun
tions in the MIPS 
lass assignment. By \size", wemean the number of genes assigned to the 
orresponding fun
tion. Most of the fun
tions are small in theirsize, whi
h makes fun
tionality predi
tion diÆ
ult. For this reason, we fo
us only on the 50 largest fun
tional
lasses whose size distribution is shown in Figure 1(b). The name of those fun
tion 
ategories are shown inTable 2. Parenthesized numbers in ea
h fun
tion 
lass show the number of genes assigned to the 
ategory inthe pro�le dataset, and indentation 
orresponds to the depth of ea
h fun
tion 
ategory. On the average, agene has 4.6 gene fun
tions. 3



Table 1: Number of de�ned fun
tion 
ategories at ea
h level in the tree stru
tureLevel Fun
tions1 162 1073 854 395 2
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(b) The 50 largest fun
tionsFigure 1: Distribution of the size of gene fun
tions3 MethodsThe goal of supervised learning methods, also known as 
lassi�
ation methods, is to build a set of models that
an 
orre
tly predi
t the 
lass of the di�erent obje
ts. The input to these methods is a set of obje
ts (trainingset), the 
lasses that these obje
ts belong to (dependent variable), and a set of variables des
ribing di�erent
hara
teristi
s of the obje
ts (independent variables). On
e su
h a predi
tive model is built, then it 
an beused to predi
t the 
lass of the obje
ts for whi
h 
lass information is not known a priori. For the problemof 
lassifying genes based on their expression pro�les, the independent variables are the 79 gene expressionlevels obtained during the eight di�erent experiments, and the dependent variable is the fun
tion of the gene.The key advantages of supervised learning methods over unsupervised methods su
h as 
lustering, is that byhaving an expli
it knowledge of the 
lasses the di�erent obje
ts belong to, these algorithms 
an perform ane�e
tive feature sele
tion (e.g., ignoring some of the independent variables) if that leads to better predi
tiona

ura
y.Over the years a variety of di�erent 
lassi�
ation algorithms have been developed by the ma
hine learning
ommunity. Examples of su
h algorithms are de
ision tree based [1, 26, 25℄, rule-based [4, 5℄, probabilisti
 [19℄,neural networks [8, 34℄, geneti
 [13℄, instan
e-based [9, 35℄, and support ve
tor ma
hines [31, 32℄. Dependingon the 
hara
teristi
s of the data sets being 
lassi�ed 
ertain algorithms tend to perform better than others.In re
ent years, algorithms based on the support ve
tor ma
hines and the k-nearest neighbors have beenshown to produ
e reasonably good results for problems in whi
h the independent variables are 
ontinuousand homogeneous (e.g., they measure a similar quantity). For this reason, our study uses primarily thesetwo 
lassi�
ation algorithms. 4



Table 2: The 50 largest fun
tions in the expression pro�le dataset1. METABOLISM (1061)(a) amino-a
idmetabolism (204)i. amino-a
id biosynthesis (118)(b) nu
leotide metabolism (144)(
) C-
ompound and 
arbohydrate metabolism (414)i. C-
ompound and 
arbohydrate utilization (261)ii. regulation of C-
ompound and 
arbohydrate utiliza-tion (120)(d) lipid, fatty-a
id and isoprenoid metabolism (213)i. lipid, fatty-a
id and isoprenoid biosynthesis (118)2. ENERGY (247)3. CELL GROWTH, CELL DIVISION AND DNA SYNTHESIS (832)(a) budding, 
ell polarity and �lament formation (172)(b) pheromone response, mating-type determination, sex-spe
i�
 proteins (161)(
) DNA synthesis and repli
ation (91)(d) re
ombination and DNA repair (99)(e) 
ell 
y
le 
ontrol and mitosis (347)4. TRANSCRIPTION (787)(a) rRNA trans
ription (106)(b) tRNA trans
ription (83)(
) mRNA trans
ription (575)i. mRNA synthesis (422)A. trans
riptional 
ontrol (333)ii. mRNA pro
essing (spli
ing) (106)5. PROTEIN SYNTHESIS (351)(a) ribosomal proteins (208)

6. PROTEIN DESTINATION (579)(a) protein targeting, sorting and translo
ation (139)(b) protein modi�
ation (187)(
) assembly of protein 
omplexes (93)(d) proteolysis (154)i. 
ytoplasmi
 and nu
lear degradation (98)7. TRANSPORT FACILITATION (310)8. CELLULAR TRANSPORT AND TRANSPORTMECHANISMS(495)(a) vesi
ular transport (Golgi network, et
.) (125)(b) 
ellular import (101)9. CELLULAR BIOGENESIS (205)(a) biogenesis of 
ell wall (
ell envelope) (107)10. CELL RESCUE, DEFENSE, CELL DEATH AND AGEING (363)(a) stress response (170)(b) DNA repair (88)11. IONIC HOMEOSTASIS (123)(a) homeostasis of 
ations (113)12. CELLULAR ORGANIZATION (2254)(a) organization of plasma membrane (144)(b) organization of 
ytoplasm (556)(
) organization of 
ytoskeleton (106)(d) organization of endoplasmati
 reti
ulum (155)(e) organization of Golgi (79)(f) nu
lear organization (764)(g) mito
hondrial organization (364)Support Ve
tor Ma
hines Support ve
tor ma
hines (SVM) is a relatively new learning algorithm pro-posed by Vapnik [31, 32℄. This algorithm is introdu
ed to solve two-
lass pattern re
ognition problems usingthe Stru
tural Risk Minimization prin
iple [31, 7℄. Given a training set in a ve
tor spa
e, this method �ndsthe best de
ision hyperplane that separates two 
lasses. The quality of a de
ision hyperplane is determinedby the distan
e (referred as margin) between two hyperplanes that are parallel to the de
ision hyperplaneand tou
h the 
losest data points of ea
h 
lass. The best de
ision hyperplane is the one with the maximummargin. By de�ning the hyperplane in this fashion, SVM is able to generalize to unseen instan
es quite ef-fe
tively. The SVM problem 
an be solved using quadrati
 programming te
hniques [31, 7℄. SVM extends itsappli
ability on the linearly non-separable data sets by either using soft margin hyperplanes, or by mappingthe original data ve
tors into a higher dimensional spa
e in whi
h the data points are linearly separable.The mapping to higher dimensional spa
es is done using appropriate kernel fun
tions, resulting in eÆ
ientalgorithms. A new test obje
t is 
lassi�ed by looking on whi
h side of the separating hyperplane it falls andhow far away it is from it.k-Nearest Neighbors k-nearest neighbors (kNN) is a well-known and widely used instan
e-based 
lassi-�
ation algorithm. The basi
 idea behind this 
lassi�
ation paradigm is to 
ompute the similarity between atest obje
t and all the obje
ts in the training set, sele
t the k most similar training set obje
ts, and determinethe 
lass of the test obje
t based on the 
lasses of these k nearest neighbors. One of the advantages of kNN isthat it is well suited for multi-modal 
lasses as its 
lassi�
ation de
ision is based on a small neighborhood ofsimilar obje
ts. As a result, even if the target 
lass is multi-modal (i.e., 
onsists of obje
ts whose independentvariables have di�erent 
hara
teristi
s for di�erent subsets), it 
an still lead to good 
lassi�
ation a

ura
y.Two steps are 
riti
al to the performan
e of the kNN 
lassi�
ation algorithm. The �rst is the methodused to 
ompute the similarity between the test obje
t and the obje
ts in the training set, and the se
ond is5



the method used to determine the 
lass of the test obje
t based on the 
lasses of the nearest neighbors. Fordata sets in whi
h the obje
ts are represented by multi-dimensional ve
tors, like the gene expression dataused in this study, two approa
hes are 
ommonly used to 
ompute the similarity. The �rst approa
h is basedon using a Eu
lidean distan
e (or any other norm-based distan
e) between the test obje
t and the trainingobje
ts, whereas the se
ond approa
h is based on using the 
osine of the angle between the two ve
tors. Theprimary di�eren
e between these two distan
e measures, is that the Eu
lidean distan
e approa
h is a�e
tedby the length of the test obje
ts whereas the 
osine-based approa
h is length invariant and only fo
uses inthe angles of the two ve
tors. Re
ent studies using gene expression data [2℄ have shown that 
osine-basedsimilarity fun
tions are better as they fo
us on the relative shape of the pro�le and not its magnitude. Forthis reason, in our experiments the similarity between two genes was 
omputed using the 
osine fun
tionwhi
h is de�ned as follows. If vi and vj are the two ve
tors, then their 
osine similarity is given by
os(vi;vj) = vi � vj=kvik kvjk;where \�" denotes the dot-produ
t between two ve
tors, and kvk denotes the 2-norm (i.e., length) of theve
tor.The simplest way to determine the 
lass of the test obje
t based on the 
lasses of its k-nearest neighborsis to assign it to the majority 
lass, i.e., the 
lass in whi
h most of the k-nearest obje
ts belong to. Thisapproa
h 
an be easily extended to weighting di�erently the di�erent neighbors based on the a
tual similarity.In this 
ase, instead of simply adding the frequen
ies of the individual 
lasses we do so in a weighted fashionbased on how similar a parti
ular neighbor is to the test obje
t. If the training set 
ontains only two 
lasses,the positive and negative 
lass, then this 
an be done by looking at the value of the measure q that is de�nedas: q = kXi=1 
os(vi;v)
(vi); (1)where 
(vi) = (1 if vi belongs to the positive 
lass;�1 if vi belongs to the negative 
lass:If q is positive, then it is assigned to the positive 
lass, otherwise it is assigned to the negative 
lass.3.1 Binary Classi�
ationTraditional 
lassi�
ation algorithms are primarily suited for learning 
lassi�
ation models in whi
h ea
h obje
tbelongs to only a single 
lass. Nevertheless, in our data set ea
h gene has more than one 
lasses asso
iatedwith it. A 
ommon way of solving this type of 
lassi�
ation problems is to build a set of binary 
lassi�ers,ea
h distinguishing the genes of one fun
tional 
lass from the genes that do not belong to this 
lass. We willrefer to the parti
ular fun
tional 
lass as the positive 
lass, and the rest of the genes as the negative 
lass.For our problem this leads to 50 di�erent binary 
lassi�ers, one for ea
h gene fun
tion. On
e the 
lassi�ershave been built, a new gene is 
lassi�ed by testing it against ea
h one of the 50 binary 
lassi�ers. Ea
h geneis then assigned to all the 
lasses for whi
h the parti
ular 
lassi�er determined that it was part of the positive
lass.Given a set of genes for whi
h we already know their 
lasses and where not used during training we 
anuse a parti
ular binary 
lassi�er to predi
t their 
lasses. By 
omparing how many of them are predi
tedto be in the positive 
lass we 
an then evaluate its predi
tive performan
e. By 
ombining the predi
tionswith the a
tual 
lasses we 
an partition the test genes into four 
lasses. The true positives and the truenegatives whi
h are the set of genes that were 
orre
tly predi
ted to be part of the positive or negative 
lass,respe
tively; and the false positives and false negatives whi
h are the sets of genes that were in
orre
tlypredi
ted as positives or negatives, respe
tively. A 
ommon way of measuring that performan
e is to use twomeasures 
alled the pre
ision and re
all. The pre
ision p of a binary 
lassi�er is de�ned asp = Ntrue positivesNtrue positives +Nfalse positives ;6



and the re
all is de�ned as r = Ntrue positivesNtrue positives +Nfalse negatives :The pre
ision measures what fra
tion of the genes that are predi
ted positive are a
tually positive, and there
all measures what fra
tion of the positive genes were a
tually predi
ted as positive. An alternate way ofevaluating the performan
e of a 
lassi�er is to look at its a

ura
y, whi
h is de�ned as the fra
tion of 
orre
tpredi
tions. However, when the di�erent 
lasses are of signi�
antly di�erent sizes, the a

ura
y measure 
anbe misleading, and looking at pre
ision and re
all provides more meaningful information.In the SVM algorithm the 
lassi�
ation de
ision is made by looking at how far a test obje
t is fromthe de
ision hyperplane, whereas in the 
ase of the kNN algorithm, the 
lassi�
ation is made by looking atthe q measure de�ned in equation (1). If the distan
e to the hyperplane or the value of q is positive thealgorithms assign an obje
t to the positive 
lass. Essentially, in both of these algorithms the value zeroa
ts as a threshold in determining the 
lass of the obje
t. However, in many 
ases a threshold value that isgreater or smaller than zero may be more appropriate. To avoid the arbitrariness of this parti
ular thresholdsetting, we set a threshold for 
lassi�ers at a value 
alled the break-even point where the pre
ision and there
all be
omes equal. In general, if the value of the de
ision threshold in
reases (i.e., it be
omes harder toassign something to the positive 
lass) the pre
ision in
reases and the re
all de
reases. On the other hand,if the de
ision threshold de
reases the pre
ision will tend to de
rease and the re
all will tend to in
rease. By
hanging the value of the de
ision threshold we 
an then �nd the point at whi
h the pre
ision be
omes thesame as the re
all.3.1.1 Fixed-size Predi
tionsAs dis
ussed in the previous se
tion the approa
h based on binary 
lassi�ers 
an be used to address theproblem of 
lassifying genes into multiple 
lasses. Nevertheless one limitation of that approa
h is that it doesnot allow us to dire
tly 
ontrol the number of 
lasses that ea
h gene is assigned to. In some 
ases we maywant to determine for ea
h gene a set of m 
lasses that it will most likely belong to. This is parti
ularlyimportant if expression pro�le based gene 
lassi�
ation is used to identify a set of genes that we may wantto study further, for example to obtain their sequen
es.In this study we explored two di�erent approa
hes for determining the m most likely fun
tions of a gene.The �rst approa
h is based on obtaining the list of 
andidate fun
tions by utilizing the results of the 50binary 
lassi�ers, whereas the se
ond approa
h is based on �nding these 
andidate 
lasses dire
tly.As dis
ussed in Se
tion 3.1, for ea
h of the binary 
lasses, both the SVM and the kNN 
lassi�ers 
omputea quantity that essentially measures how strong a parti
ular genes belongs to a parti
ular 
lass. Our �rstapproa
h for identifying the m most likely fun
tions is based on using these strength measures of the di�erentbinary 
lassi�ers. In the 
ase of SVM, for a gene we 
ompute its distan
e to the 50 de
ision hyperplanes, andassign it to 
lasses that 
orrespond to the m largest values (i.e., strongest predi
tions). Similarly, in the 
aseof kNN we 
ompute the q measure for ea
h of the 50 
lassi�ers and assign it to the 
lasses that 
orrespondto the m largest values. We will refer to these two approa
hes as the SVM-indu
ed and the kNN-indu
edmethods, respe
tively.Our dire
t approa
h for determining the m most likely 
andidate fun
tions is based on the kNN approa
h.In parti
ular, for ea
h gene gi we identify a set of its k most similar genes, Ngi . We then 
ompute thesimilarity-weighted frequen
y of the various 
lasses that the genes in Ngi belong to, and sele
t the m mostfrequent 
lasses as the predi
ted 
lasses. This approa
h was motivated by similar algorithms developed by theinformation retrieval 
ommunity for building re
ommender agents [28, 27, 29℄. We will refer to this approa
has the dire
t kNN method.4 Experimental ResultsAs dis
ussed in Se
tion 2, be
ause some of the 249 gene fun
tion 
lasses de�ned in the MIPS database 
overa very small number of genes, our experimental evaluation was fo
used only on the 50 largest 
lasses shownin Table 2, using the 
lassi�
ations and datasets des
ribed in Se
tion 2. In the rest of this se
tion we presentthe results for binary 
lassi�
ation and �xed-sized 
lassi�
ation.7



4.1 Binary Classi�
ation ResultsWe applied the SVM and the kNN algorithms to predi
t gene fun
tionality of a subset of the yeast genome.To evaluate predi
tion a

ura
y of ea
h algorithm, we performed 3-way 
ross validation. Ea
h predi
tionmeasure is obtained at the break-even point where its re
all and pre
ision are equal. The implementationof SVM we used is SVMlight, version 3.50 by Joa
hims [18℄. Among various types of kernels that SVMlightsupports, we 
hose linear, polynomial (quadrati
 and 
ubi
) and radial basis fun
tions. We also spe
i�ed atrade-o� option \-
 100" to �nish the learning program in reasonable running time. Other parameters areall used as their default settings.In the 
ase of SVM 
lassi�
ation algorithm two parameters were found to play an important role inthe overall quality of the results. The �rst is how the di�erent 79-dimensional ve
tors representing ea
hgene are normalized and the se
ond is the 
hoi
e of the kernel. To evaluate the sensitivity on the ve
tornormalization, we performed two sets of experiments. In the �rst set, we used raw log-ratios of expressionlevels whereas in the se
ond experiment expression levels were normalized so that ea
h ve
tor is of unitlength. Figures 2(a) and 2(b) show the pre
ision of the break-even point a
hieved by the two representationsfor the 
ubi
 and the radial basis fun
tions. Note that the 
lasses are displayed in de
reasing 
lass sizeorder. Looking at these graphs, we 
an see that in general, normalized representations lead to dramati
improvements for some 
lasses espe
ially with the radial basis kernel.
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(b) Radial basis kernelFigure 2: Kernel types of SVM and the e�e
t of normalizationNext we 
ompare the average pre
ision at the break-even point for di�erent types of the SVM kernels (seeFigure 3). The average pre
ision over the 50 fun
tions for the linear, the quadrati
, the 
ubi
 and the radialbasis kernels are 23.8%, 25.6%, 27.5% and 27.6% respe
tively, and the di�eren
e by the kernel type is ingeneral small. The performan
e of the 
ubi
 fun
tion is similar to that of the radial basis fun
tion and thosetwo types outperform the linear and the quadrati
 kernels. With 27 out of the 50 fun
tions, the radial basiskernel's pre
ision is better than the 
ubi
 kernel's. Both the 
ubi
 and the radial basis kernels outperformlinear and quadrati
 for more than 31 fun
tions, respe
tively.In the 
ase of kNN 
lassi�er, we performed a sequen
e of experiments in whi
h we set the number ofneighbors, k, to be 1, 2, 5, 10, 20, 30 and 40. The average pre
ision at the break-even point a
hieved in thissequen
e of experiments was 24.4%, 24.7%, 26.2%, 26.4%, 25.9%, 24.9% and 24.2% respe
tively. Thus, with10 neighbors kNN shows the best results, however, the number of neighbors has less impa
t on the break-evenpoint pre
ision 
ompared to the type of the SVM kernels.Finally, Figure 4 shows the binary 
lassi�
ation results of SVM and kNN for the 50 fun
tions. For the8
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Figure 3: Comparison of 4 di�erent SVM kernel typesSVM 
lassi�er we used normalized gene ve
tors with the radial basis kernel, whi
h a
hieved the better resultthan the other polynomial kernels. For the kNN 
lassi�ers we used 10 neighbors, be
ause again using 10neighbors a
hieved the best pre
ision at the break-even point on the average. From these results we 
an see
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Figure 4: Pre
ision at the break-even point of predi
ting gene fun
tionality with SVM and kNNthat in general SVM a
hieves slightly better pre
ision than kNN does. Nevertheless, only a few 
lasses 
anbe identi�ed with reasonably high pre
ision, regardless of the 
lassi�
ation methods. The average pre
isionfor both radial basis SVM and kNN with k = 10 was 27.6% and 26.7%, respe
tively. Note that there istenden
y that larger fun
tions are easy to get 
orre
t predi
tion than smaller ones.4.2 Fixed-size Predi
tion ResultsMotivated by the relatively poor results obtained by the binary 
lassi�
ation algorithms, we fo
used ondeveloping algorithms that for ea
h gene, predi
t a �xed number m of 
andidate 
lasses. The key goal ofthis approa
h is to try to a
hieve a higher level of re
all|i.e., to predi
t most of the 
lasses of a parti
ulargene|at the 
ost of potentially a
hieving a somewhat lower pre
ision.As dis
ussed in Se
tion 3.1.1, we developed three s
hemes: the SVM-indu
ed and the kNN-indu
eds
hemes that obtain predi
tions using the 50 individual binary 
lassi�ers, and the dire
t kNN s
heme that9



uses the kNN-type algorithm to dire
tly 
ompute these predi
tions.Figure 5 shows the results obtained in this set of experiments with all the three s
hemes, under di�erentvalues of m, and under di�erent parameters of the underlying 
lassi�
ation algorithms. In the 
ase of theSVM-indu
ed method, Figure 5(a) shows the results obtained using the linear (\p1"), the quadrati
 (\p2"),the 
ubi
 (\p3") and the radial basis (\r") kernels. In the 
ase of the kNN-indu
ed method, Figure 5(
)shows the results a
hieved for k equal to 5, 10, 20 and 30. In the 
ase of the dire
t kNN method, Figure 5(b)shows the results a
hieved by using a neighborhood of size 5, 10, 20 and 30. Also for 
omparison purposes,the results labelled \All binary predi
tions" in Figures 5(a) and 5(
) show the results obtained by only usingthe binary predi
tions at the break-even point. Note that unlike the �xed-size results, in these two sets ofresults, the number of predi
tions made for ea
h gene is not uniform.
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Figure 5: Fra
tions of genes and their re
all in the �xed-size predi
tion s
heme. For the SVM-indu
ed
lassi�er, we used the linear (\p1"), the quadrati
 (\p2"), the 
ubi
 (\p3") and the radial basis (\r") fun
tionsas their kernel. For both the kNN-indu
ed 
lassi�er and the dire
t kNN 
lassi�er, 5, 10, 20 and 30 neighborsare used.Looking at the di�erent �xed-size predi
tion results we 
an see that as expe
ted the overall re
all in
reases10



as we in
rease the number of predi
tions m. Nevertheless, as m in
reases, the overall pre
ision de
reases.Comparing the results produ
ed by the SVM-indu
ed method with those produ
ed by the kNN-indu
edmethod, we 
an see they are quite similar (at least for the radial basis kernel and the 10 nearest neighbors).On the other hand, the dire
t kNN method outperforms the other two and always produ
es at least 4%higher pre
ision and 5% higher re
all at ea
h 
orresponding experiment. This 
an be easier seen by lookingat the results in Table 3 that summarizes the overall pre
ision and re
all of the various s
hemes for theirbest set of parameters. The overall results indi
ate that relatively high levels of re
all 
an be obtained witha moderate redu
tion in pre
ision. For instan
e, for m = 6, 2.4 (' 6� 0:398) predi
tions out of 6 from thedire
t kNN 
lassi�er are likely to be 
orre
t, and by those predi
tions we 
an dis
over all fun
tions of everyin
oming gene with 51.6% probability.Table 3: Average pre
ision and re
all of 3 �xed-size predi
tion s
hemes with 4, 6, 8 and 10 predi
tions. Forthe SVM-indu
ed 
lassi�er and the kNN-indu
ed 
lassi�er, the rows with the predi
tion \all" show the resultsby 
onsidering all the predi
tion returned by ea
h of the 50 indu
ed 
lassi�ers, without limiting the numberof predi
tions. Method Predi
tions Pre
ision (%) Re
all (%)SVM-indu
ed 4 41.9 37.0(radial basis) 6 34.5 44.98 29.8 51.310 26.1 55.9all 41.8 40.3kNN-indu
ed 4 42.5 37.7(10 neighbors) 6 35.2 45.88 29.8 51.210 26.0 55.8all 43.5 40.4Dire
t kNN 4 48.6 43.4(10 neighbors) 6 39.8 51.68 33.7 56.810 30.0 61.35 Analysis of ResultsThe experimental results presented in Se
tion 4 showed that the pre
ision of the predi
tions produ
ed byeither the SVM or the kNN 
lassi�
ation algorithms varies widely for di�erent fun
tional 
lasses. For some
lasses we were able to a
hieve high pre
ision at the break-even point whereas for some of the other 
lassesthe pre
ision was extremely low. In this se
tion we attempt to analyze these results and understand boththe limitations and advantages of the proposed approa
h for gene 
lassi�
ation.Our analysis will primarily fo
us on relating the 
lassi�
ation a

ura
ies with some of the properties ofthe gene expression data sets. In parti
ular we will fo
us on the following 
hara
teristi
s: (i) 
lass size, (ii)
lass homogeneity, (iii) variability of the expression pro�les, and (iv) the level of the di�erentially expressedpro�les.As dis
ussed in Se
tion 2.2, the number of genes 
ontained in the 50 largest fun
tional 
lasses that wereused in our dataset varied signi�
antly. To see if there is a relation between the size of the 
lass and thepredi
tion quality we plotted the size versus the pre
ision at the break-even point for all the 50 
lasses a
hievedby the SVM 
lassi�er. These results are shown in Figure 6. From this plot we 
an see that, in general, ifthe size of the 
lass is large the pre
ision that was obtained is quite high. Nevertheless, the opposite is nottrue, as for some small 
lasses, SVM was able to a
hieve pre
isions that are quite high. Also, the fa
t thelarger 
lasses a
hieve better pre
ision at the break-even point should not be surprising, as they are easier to
lassify even by a random 
lassi�er. 11
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Figure 6: SVM (radial basis fun
tion) binary 
lassi�
ation pre
ision at the break-even point and 
lass sizeThe se
ond 
hara
teristi
 that we fo
used was whether or not the \tightness" of a parti
ular 
lass playedsome role in determining the overall quality of the predi
tions. In determining how tight a parti
ular 
lassis we 
omputed the average pairwise similarity between the genes in ea
h 
lass using the 
osine similarityfun
tion. Figures 7(a) and 7(b) plot the size of ea
h 
lass versus its tightness and the pre
ision a
hievedfor ea
h 
lass versus its tightness. From Figure 7(a) we 
an see that there is relatively little variation inthe tightness of the di�erent 
lasses, with the ex
eption of a few 
lasses that are parti
ularly tight. FromFigure 7(b) we 
an see that 
lass tightness does not play a signi�
ant role in determining the pre
ision of the
lassi�er. For a relatively narrow range of 
lass tightness values, the a

ura
ies obtained di�er dramati
allyand there are 
lasses that a
hieve high pre
ision whi
h are not tight and vi
e versa.
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(b) Break-even point pre
ision and 
lass tightnessFigure 7: Tightness and 
lass size of the 50 largest fun
tional 
ategoriesThe last set of 
hara
teristi
s that we fo
used has to do with whether or not the magnitude or thevariability of the di�erential expression of the genes in a 
lass was 
riti
al for a
hieving high pre
isions.Figures 8(a) and 8(b) plot the pre
ision versus the average standard deviation of the expression pro�les12
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(b) Break-even point pre
ision and average sum of ab-solute values in pro�lesFigure 8: SVM binary 
lassi�
ation pre
ision at the break-even point and fun
tion 
lass statisti
al propertiesof ea
h 
lass, and the average sum of the absolute expression levels, respe
tively. In 
omputing both thestandard deviation and the sum of the expression levels we used the log-ratios of the intensities of targetversus 
ontrol, without the unit-length normalization that we used for the 
lassi�
ation experiments. Lookingat these results we 
an see that there is a relation between the pre
isions a
hieved by SVM and the variabilityof the pro�les or their overall di�erential expression level. The higher the variability of overall expressionlevels the higher the pre
ision that was obtained. We 
omputed the 
orrelation 
oeÆ
ient for the two plotsand we found that they are 0.51 for Figure 8(a) and 0.47 for Figure 8(b).Table 4: Classes with high pre
ision at the break-even pointFun
tion SVM Size Tightness Standard Absolute
lass Pre
ision (%) deviation sumribosomal proteins 80.9 173 0.721 0.710 40.7CELLULAR ORGANIZATION 75.4 1803 0.295 0.526 32.4PROTEIN SYNTHESIS 62.8 298 0.591 0.619 36.7mito
hondrial organization 59.4 296 0.382 0.495 30.5organization of 
ytoplasm 52.1 463 0.438 0.626 37.0METABOLISM 47.3 702 0.281 0.541 33.0ENERGY 47.1 157 0.415 0.636 37.0nu
lear organization 45.7 643 0.361 0.469 30.0The 
orrelation between the variability or the absolute levels of expression 
hange and whether or notwe 
an a

urately predi
t them should not be surprising as in these type of 
lasses the genes tend to exhibita distin
tly di�erent behavior that 
an be used by the 
lassi�
ation algorithms to build a

urate modelsfor predi
ting them. On the other hand, if a 
lass 
ontains genes that either have not been turned onduring the experiments or they have a relative 
onstant pro�le, the 
lassi�
ation algorithms 
annot reliablydistinguish them from genes of similarly behaving 
lasses. Our analysis indi
ates that in order for the genes ofa parti
ular 
lass to be predi
ted a

urately, the mi
roarray experiments that are performed must have eithera
tivated or surpassed them. Unfortunately, the eight di�erent mi
roarray experiments used in deriving our13



data set were primarily fo
uses on a small set of 
ellular fun
tions so do not provide a suÆ
ient breadth.We believe, however, that as additional and more diverse experiments are performed, supervised learning isa viable method for determining the fun
tions(s) of a gene. To further illustrate this point, Table 4 showsthe eight 
lasses that a
hieved the highest pre
ision along with the values of their di�erent 
hara
teristi
s.From the des
ription of the experiments that used in obtaining the mi
roarray data (Se
tion 2.1) and thestudies reported in [11, 3, 2℄ the genes in these fun
tional 
lasses were shown to be a
tive in the 
ourse ofthe experiments.6 Con
lusionsIn this paper we explored the possibility of using mi
roarray expression pro�les to �nd the fun
tions of genes.We applied two representative binary 
lassi�
ation algorithms, SVM and kNN for the 2462 annotated genesout of all the 6275 identi�ed genes from the yeast genome. The goal of the 
lassi�
ation was to predi
tfun
tional 
ategories of genes de�ned in the MIPS database. Be
ause of nonuniform distribution of genesover fun
tional 
lasses, we fo
used on the 50 largest gene fun
tional 
ategories out of 249. The results showedthat the overall predi
tion a

ura
y was poor ex
ept a few fun
tional 
ategories whi
h are 
losely relatedwith the nature of the experimental 
onditions for obtaining expression pro�les.Provided that the binary 
lassi�ers produ
ed the low predi
tion pre
ision, using SVM and kNN as theunderlying modules we developed three di�erent s
hemes, the SVM-indu
ed, the kNN-indu
ed and the dire
tkNN methods that 
an predi
t a spe
i�ed number of 
andidate fun
tions in order to a
hieve high re
all, andevaluated their predi
tion performan
e in terms of pre
ision and re
all. It turned out that the dire
t kNNapproa
h outperforms the other two. Compared with the binary 
lassi�
ation results, those three �xed-sizepredi
tion s
hemes improved re
all without a signi�
ant loss of pre
ision.To understand those results of the binary and the �xed-sized predi
tion approa
hes, we analyzed therelationship between the binary predi
tion pre
ision of ea
h fun
tion 
lass and statisti
al measures of theDNA expression pro�les, whi
h revealed that (i) large fun
tional 
lasses are relatively easy to predi
t 
orre
tly,and (ii) the variability of expression pro�les has in
uen
e on the predi
tion pre
ision.Based on those experiments and the analysis we believe it will be feasible to make use of expressionpro�les 
olle
ted under appropriate 
onditions to predi
t gene fun
tionality as more diverse experiments areperformed and pre-examined data are a

umulated.Referen
es[1℄ L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�
ation and Regression Trees. Chapman& Hall, New York, 1984.[2℄ M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, Jr., andD. Haussler. Knowledge-based analysis of mi
roarray gene expression data by using support ve
torma
hines. In Pro
. Natl. A
ad. S
i., volume 97, pages 262{267, January 2000.[3℄ M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, J. Manuel Ares, and D. Haussler.Support ve
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