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Gene clustering via integrated Markov models
combining individual and pairwise features

Matthieu Vignes and Florence Forbes

Abstract— Clustering of genes into groups sharing common
characteristics is a useful exploratory technique for a nurber of
subsequent computational analysis. A wide range of clustarg
algorithms have been proposed in particular to analyze gene
expression data, but most of them consider genes as indeperd
entities or include relevant information on gene interactons in a
sub-optimal way.

We propose a probabilistic model that has the advantage to
account for individual data (eg.expression) and pairwise data€g.
interaction information coming from biological networks) simul-
taneously. Our model is based on hidden Markov random field
models in which parametric probability distributions account
for the distribution of individual data. Data on pairs, possibly
reflecting distance or similarity measures between genestethen

[9], self-organizing maps [21], k-means algorithms [23{danore
recently Support Vector Machines methods [5] or graph aisly
by bi-clustering [22]. More generally, approaches fall nhgaiin

two categories. Some focus on individual data and assunte tha
they are independent. Typically, [26] use a statisticalbsdn
model which does not incorporate possible relationshipadsen
genes. Others try to integrate several sources of datangett
for instance, expression data into a Bayesian graphicalemod
framework [12], combining expression data with phylogenet
profiles [18], or defining distances between genes combining
different data types [16]. Typically, the procedure in therkv

of [11] uses information on pairs of genes in the form of

included through a graph where the nodes represent the genes Networks or graphs and combines it with distances computed

and the edges are weighted according to the available intecsion
information. As a probabilistic model, this model has many
interesting theoretical features. Also, preliminary expeiments on
simulated and real data show promising results and points ou
the gain in using such an approach.

Availability: The software used in this work is written
in C++ and is available with other supplementary mate-
rial at http://mstis.inrialpes.fr/people/forbes/
transparenti a/ suppl ementary. htn .

Index Terms— Markov random fields, model-based clustering,
metabolic networks, gene expression.

. INTRODUCTION

A

from individual expression profiles. This requires tramsfimg
individual information into distances or similarity meass and
does not directly use individual data associated to gendken
networks, loosing some potentially interesting inforroatin the
process. Kernel-based approaches to data fusion ( [15],[28)
also consist of representing various data sets via kermetifins
which define generalized similarity relationships. Alseqgential
procedures that cluster first individual data alone andrpo@te
additional information only after the clusters are detewxi are
necessarily suboptimal.

It appears that models able to integrate simultaneoustyrim-
tion on individuals (without reducing it to pairwise infoation)
and pairwise relationships in the same procedure have rot ye

S an increasing amount of post-genomic data is availablgaen proposed. The novelty of our work is to propose a model-
there is a great need to develop methodologies t0 angssed approach, as opposed to the distance-based appgroache

lyze and to use theinformation contained in this data. A majghentioned above, to take into account simultaneously data f
challenge in b|q|nformat|c§ Is to revgal Interactions lmtw individual genesie. data that make sense and exist for each genes,
components of living organisms and discover the correspond 4 data from pairs of genes reflecting for instance somardist

networks responsible for their biological complexity. lhist
framework, clustering of genes into groups sharing comniar-c
acteristics is a useful exploratory technique. It is freglyeused
as the basis for further computational analysis. As an elartie
function of a gene can be predicted according to known fansti
of other genes from the same cluster. With the introductibn

or some similarity measure defined on the genes, possibhgusi
some recent kernel-based approaches. To our knowledgenihe
similar attempts have been proposed in [19]. However, the fo
mulation of their probabilistic model does not fully explgene
dependencies. It is written to account for gene interadtisnone

Bf the assumptions made is only valid under gene indeperdenc

DNA microa_rray technology, researchers are now_able to mreas |, aqdition, no estimation procedure is proposed to estntiae
the expression levels of thousands of genes simultanea@islyyodel parameters and they then need to be fixed to arbitrary
various time points of the biological process or under \io 51 es We propose an integrated Markov model, meaning by

experimental conditions. As data accumulate, the tendemay-
vestigate general regulatory mechanisms by clusteringggom

that a specific instance and usage of a Hidden Markov model.
Parametric probability distributions account for the dlttion of

their expression profiles increases. A wide range of climger i qividual data while data on pairs are included through aphr
algorithms have been proposed to analyze gene expressian dgnere the nodes represent the genes and the edges are @eighte

Various methods have been applied such as hierarchicaédhus
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according to the available interaction informaticgg(distances

or similarity measures between genes). As regards paramete
estimation and classification step, we consider recentepioes
based on the EM algorithm andean fieldike approximations

[7]. Such procedures were shown to be more efficient in many
ways than standard Gibbs samplers or Markov Chain MonteoCarl
(MCMC) techniques traditionally used in computer vision.
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This model and the EM classification framework (Section lljnixture model and corresponds, in our framework, to assume
have many interesting features. As a probabilistic modé&aids that the Z;’s are independent variables. Our approach differs in
to various possible statistical criteria to select autécadly the that our aim is to account for dependencies. This requires th
number of clusters and it provides confidence measures suctdefinition of neighbourhood relationships between geneswilf
posterior probabilities that an objeced. a gene) is assigned think of a set of genes as a graph with edges emanating from eac
to a class. It is flexible in that various pairwise relatidpsh gene to other genes within its neighbourhood. We will iHate
information and features on individual data can be easigiipo- in Section Ill how such a graph can be built from biological
rated possibly with different weights. Its generalizattorinclude network data. The dependencies between neighbouring geees
missing data, that often occur when dealing with expressitimen modelled by further assuming that the joint distrimoutof
data, is straightforward and its extension to overlappingtering Zi,...,Z, is a discrete Markov Random Field on this specific
methods, to deal with more realistic situations where gexags graph. Denoting = (z1, ..., zn) Specified values of thg;’s, we
belong to many groups at the same time, can also be considefine
Although such a model is relevant in various other apploces) 4
we specify in Section Ill the type of data used in this work. P(z|f) = W(B)  exp(—H(z,p)) @)

Experiments on simulated data are reported and results @an fgpere W () is a normalizing constant and/ is a function
data are then shown in Section IV. A discussion section emgls tcsumed to be of the foIIowmg form (we restrict to pair-wise

Paper. interactions),H (z, 3) = Z Vi(zi,8) + 3 Vij(z, 25, 3), where
=1 i J

Il. INTEGRATEDMARKOV MODELS the Vi's andV;;'s are respectively functions referred to as single-
The basic assumption is that measuresy.(expression pro- ton and pair-wise potentials. We write~ j when genes and
files) corresponding to each objects are random variabl#s avi are neighbours on the graph, so that the second sum aboveris ov
specific probability distribution in each class. A standavdy neighbouring genes. Paramet@rsonsist of two set$ = («, B)
to represent class-specific density functions is to appraté wherea and B are defined as follows. We consider pair-wise
them as Gaussian distributions whose parameters depertieonpibtentialsV;; that depend or; andz; but also possibly om and
class. In the work of [26], a Gaussian mixture model is assume. Since thez;’s can only take a finite number of values, for each
which corresponds to Gaussian class-specific distribsitiont : andj, we can define & x K matrix B;; = (By;(k,1))1<k,1<K
also to genes independence. This is not fully satisfyingesinand write without lost of generality;;(z;,z;,8) = —B;;(k,1)
strong neighbourhood relationships between genes shadmg if z; = ¢, and z; = ¢. Using the indicator vector notation
mon functions can exist. To overcome this limitation, wegmee and denotingz! the transpose of vector;, it is equivalent to
to improve on the Gaussian mixture model by assuming that theite V;;(z;,z;,8) = —z/B;;z;. This latter notation has the
distribution of the observed features is that of a Hiddenkder advantage to make sense also when the vectors are arbitdry a
Random Field (HMRF) withK components and appropriatenot necessarily indicators. This will be useful when ddsog
parametrization. To define such a model, one needs to spechyg algorithms of Section II-C. Similarly we consider sietgin
a neighbourhood structure indicating which genes aressitally potentialsV; that may depend og; and oni, so that denoting by
linked but this structure is not necessarily related to tlusters. «; a K-dimensional vector, we can writg;(z;, 3) = —a;(k) if
Dependent genes may be in different classes and genes feom#h= ¢, wherea; (k) is the k' component ofy;, or equivalently
same class may be independent. Vi(z, B) = —zfozi. This vectora; acts as weights for the different
values ofz;. Whenq; is zero, no class is favorede. for a given
genei, if no information on the neighbouring genes is available,
then aII classes have the same probability. If in addition,al i
B;; = bxIx whereb is a real scalar and is the K x K
ntlty matrix, parameterg reduce to a single scalar interaction
rameterb and we get the Potts model traditionally used for
image segmentation. Note that this model is probably theemor
appropriate for classifying genes since it tends to favaght®urs
that are in the same class. However, cases where this Bre
P(x;|®) = Z P(Z; = cx|B) f(xil0k), far from b x I could be useful in situations where neighbouring
k=1 genes are likely to be in different classes. Also, when dista
where f(z;|6)) denotes the multivariate Gaussian distributioor similarity data, (d;;),j=1,....n, between genes are available,
with parameters),, namely the mean,, and covariance matrix B;;(k,!) can be decomposed as; #Bk,!) = F'(d;;) c(k,l) where
¥,. Notation Z; denotes the random variable representing the is a non increasing function of Rand¢(k, 1) corresponds to
class of gene. Z; can take values idc,,k =1... K} denoting a gain (or a loss depending on its sign) of assigning gersesl
the K possible classes. More specifically, it is convenient tprespectively to class, andc;. This is part of the flexibility and
considerc;, as aK-dimensional indicator vector with all com- modelling capabilities of the model. However, without dfiec
ponents being except thek! which is 1. Note that we assume information, we can choose&k,l) = b if k = [ andc(k,1) = 0
in this section thatk is fixed but this can be generalized (se®therwise. In this case, parametaran be interpreted as a strength
Section 1I-B). Notation3 denotes additional parameters definingf interaction between neighbours. The highg¢he more weight
the distribution of theZ;’'s and ¥ denotes the whole modelis given to the interaction graph. #fis set to0, only the individual
parameters.e. ¥ = (0;,5,k = 1...K). As an example, the features are taken into account, reducing our model totioaei
model used by [26] forP(z;|¥) is an independentGaussian existing approaches. In practice, these parameters caonieel t

A. Hidden Markov fields for biological networks

Let n be the number of genes to be clustered and ..,z
denote the individual data observed for the genes number
by {1,...,n}. The observed data are usually multi-dimension§
vectors,e.g. expression profiles. Far= 1,...,n, we model the
probability of observinge; as
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according to expert aa priori knowledge or they can be estimateds = 1,... K and the K x K dimensional matrix B. The EM
from the data. In the first case, our software can deal with tlagorithm is a commonly usedalgorithm for parameter estona
most general parametrization, namely= («;, B;;). In the latter in problems with missing data (here the class assignmefts).
case, the part to be estimated is usually assumed indepeoiderindependent mixture models, the independence assumje@as |
the genes indicesandj, so that in what follows we will reduce to an easy implementation of the algorithm. For HMRFs, due
a and B respectively to a single vector and a single matrixeNoto the dependence structure, the exact EM is not tractalde an
that in Section IV, the model is further reduceddoequal to0 approximations are required. In this paper, we use some of
and B equal toh x Ix (see comments in this section). the approximations presented in [7]. These approximatanes
Meanwhile, to keep a general presentation, the observed daased on the mean field principle which consists in replattieg
is then represented by an HMRF defined by paramefel®ing intractable Markov distributions by factorized ones forieththe

W = ({pp, Sk te=1,... K, B). exact EM can be carried out. This allows to take the Markovian
structure into account while preserving the good featufeshd.
B. Selecting the number of classes [7] generalized the mean field principle and introducededéfht

Choosing the probabilistic model that best accounts for trf]%ctorlzed models resuiting in different procedures. n

observed data is an important first step for the quality oktitese- praptmg these alggrlthms have.to be e>_<tended 0 n capoha
S e .o estimation of matrix B and to include irregular neighboawb
guent estimation and classification stages. In statispicablems, . - -
; L . . structure coming from biological networks and not from fegu
a commonly used selection criterion is the Bayesian Inféiona

Criterion (BIC) of [20]. The BIC is computed given the data pixel grids like in 7]

and a model\/ with parametersp. It is defined by: Briefly, these algorithms can be presented as follow. They ar
. based on the EM algorithm which is an iterative algorithmiagn
BIC(M) =2log P(x | ") —dlogn, at maximizing the log-likelihood (for the observed variesxk) of

the model under consideration by maximizing at each itematie
argmax P(x | ¥, M) , d is the number of free parameterse?(pectatior_w of the complete I_og-likelihood (for the obmha_nd

) v . ) hidden variables andz) knowing the data and a current estimate
in model M andn is the number of observations. BIC allowSqs the model parameters. When the model is an Hidden Markov
comparison of models with differing parametrizations and/ \1oqe| with parameters, there are two difficulties in evaluating
differing number of classes. Many other approaches canW®fo s expectation. Both the normalizing constati(3) in (1) and

in the literature on model selection but BIC has become quif§s conditional probabilitie®(z; | x, ¥) and P(z;, z; | x, ¥) for
popular due to its simplicity and its good results. In thisdst we j in the neighbourhoodV (i) of 7, cannot be comjputed exactly.
will consider the Markov modeky(, B) as fixed. More specifically, |normally, the mean field approach consists in approxingathe

the experiments reported in Section IV correspond to th@Isist iy actaple probabilities by neglecting fluctuations fréime mean
model witha = 0 and B= b x I¢. More important in practice i, the neighbourhood of each gemeMore generally, we talk

is the choice of K and of the covariance modek's). For  4p6,t mean field-like approximations when the value for gene
multivariate Gaussian class-specific distributions, é¢hexists a does not depend on the value for other genes which are all set
number of different choices for the,’s. See [1] and [6] for @ 14 constants (not necessarily to the means) independehtiyeo
description of these forms and their meaning. The simplestais | o e for gene. These constant values denotedzby. . ., 7, are

are those for which the,’s are diagonal matrices. Our choice, arbitrary but satisfy some appropriate consistencylitioms
of K andX;’s then can be based on BIC. However, for HMRFS(,see [7)). Letzy(,) denote the set of variable§;,j € N(i)}

its exact computation is not tractable due to the dependeng& qciated to the sev (i)
structure induced by the Markov model. A possibility is therp(zi | x, ¥)
to compute BIC for independent mixture models, forgetting a
spatial information. Not to loose such information, we eath

where ™ is the maximum likelihood estimate of, ¥™ —

of neighbours ofi. It follows that
is approximated by

~ t ~
choose to use the mean field like approximations of BIC pregos Pz | x,2n3i), ®) o< f(xil20)-P(zil2n ), 6)
by [10] (see Section II-C for additional details). As regard o flag|zL0).
covariance matrices, we restrict to diagonal models in roases explzl(a+ B Z 2],

or consider an original reduction dimension techniques [d]
the context of the present work however, we did not observe
significant improvement over the simple diagonal modelstlier
data (only 10 dimensional) we consider in Section IV.

JEN (i)

where 6 denotes the vectofd,...,0x). The normalizing con-
stant is not specified but its computation is not an issue.
. Then, for allj € N(i), P(z,2; | x,%®) is approximated by
C. Classifying genes P(z | x,2Zn(;), ®) P(z; | x, Zy(;j), ¥). Both approximations are

Our aim is to classify each gene in one of the classes. easy to compute. Using such approximations leads to ahgasit
To do so we consider a Maximum Posterior Marginal (MPMyhich in their general form consist in repeating two steps. A
principle consisting in assigning gen#o classc, that maximizes iteration g,

P(Z; = cglx,¥). Such maximizations depend o# which (1) Create from the data and some current parameter es-
is usually unknown, or partly unknown when prior knowledg¢mates w(@-1) g configurationziq) .29 je. values for the

can be incorporated, and has to be estimated. The parametaei@_ Replace the Markov distributiorP(z|3) of (1) by the

to be estimated are the parameters defining the Gaussian ?is- sed distributi n (q) It foll hat the ioi
tributions namely they, and ¥, for ¥ = 1,...K and the actorized distri Ut'on.l:[ P(Z“ZN(i)’ﬁ)' t follows that the joint

=1
parameters defining the interaction model, namely di) for distribution P(x,z|‘Il)ann also be approximated by a factorized
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distribution: N A first stage consists in building a graph whose nodes are
H f(x-|z¢9)P(z»|2(q), ) enzymes. An edge exists between two enzymes if and only if
ot o FIN@)? they catalyze two reactions that share at least a commonicaem

mpound either as substrate or product. The interpretdaso

at an edge stands for the possibility that two reactiofisvio
each other in metabolic pathways. However, all the linksvben
reactions cannot be considered. In particular those wimebive
compounds that are very commoeg( water, etc) are usually
not relevant to the biological interpretation and may hide o
bias the biological information. Two possibilities areheit to
use the main compounds (according to KEGG database) or to
remove compounds which would link too many reactions (above
a given threshold). We choose the first solution for the icstt

and the two problems encountered when considering the
algorithm with the exact joint distribution disappear. Téexzond
step is therefore,

(2) Apply the EM algorithm for this factorized model with
starting values®(“~1) to get updated estimate®(? of the
parameters.

In particular themean fieldand simulated fieldalgorithms
consist in two different ways of performing stefl). The
mean fieldalgorithm consists in updating the (9's by set-

ting, for all ¢ = 1,...,n, 70 to the mean of distribution .
Pl | Xj(q) \I/(q_l)). Note that ag, is an indicator vector, the database has the advantage of being produced by experts who

N (i) manually removed somewhat irrelevant compounds such as,wat

mean valueigq) is a vector made of the respective probabilities tearbon dioxide,etc. In addition, weights(d;;); j=1...» can be
be in each of the< classes. In theimulated fieloalgorithm,égq) assigned to edges. They may reflect in a quantitative wayneezy
is simulated fromP(zi | x, gggzi)y w(@=1)) Note also that to save proximity or thermodynamical properties. Such informatis
additional notation, the updating described above is symgfus Not available yet but would be easily dealt with in our model.
while we actually implemented a sequential updating Ofgﬁﬂés: As an illustration, we consider th&accharomyces cerevisiae
each node is updated in turn using the new values of the oth&tenome and derive a graph on genes with the network of chemica
nodes as soon as they become available rather than waittilg ui¢actions given in the database. Figure 1 gives an example
all nodes have been updated. Intuitively, the stochastitufe of based on the compounds acting in G#rate cycle with
the simulated algorithmenables to avoid convergence towards @nly part of the reactions represented for clarity (FigurA)).
saddle point or a local minimum, dependence of the convgrgiffor €xample, reaction&00479, 01900 and £00709 all share
state towards initialization or slow rate of convergencaede Ccompoundisocitrate . They are therefore neighbours and so
well-documented pitfalls of the EM algorithm are sorted gut are the enzymes catalyzing each of these reactions (Fig{B§).1
the spirit of Stochastic EM (SEM [27]). However both algont TWO enzymes catalyzing the same reaction are neighbourglas w
cannot be really compared since SEM is not Markovian: it does (€9- £C'2.3.3.8 and EC'2.3.3.1 ). Reversibility is allowed. Also a
account for dependencies between observations and is witgltls common enzyme may catalyze different reacti@gs £C'1.1.1.42
to deal with mixture models. is active in reactiong201899, R00268 and R00267. It must then

In practice, at steg2), performing one EM iteration is usually P€ linked to any enzyme catalyzing reactions sharing a comgpo
enough. Then, the HMRF estimation provides us with estim$dth the later.
tions for the means and covariance matrices of shé&aussian A second stage in building the final graph is to go from

distributions, namely,, and;, for k = 1,... K, but also for the enzymes to genes. Two cases have to be considered. In the
hidden field parameters, matrix B and vectorlt follows easily first one a gene maps to several enzymatic functions while in
approximations of the”(Z; = ¢ |x, ¥) required to classify each the second one several genes map to a single enzymatic

genes using the MPM principle. . ~ number. A way to deal with both cases is to consider couples
In this work, we mainly consider the so-callsimulated field of objects(gene, EC) and connect them in the graph as soon as
(SF) algorithm for its better performance in practice. their second components are connected. In the first casgnesz

already correspond to different nodes. These nodes only tee

I1l. FROM BIOLOGICAL NETWORKS TO INTERACTION GRAPHS e fused keeping neighbourhood relationships. The meatinet

Many kinds of biological networks are freely available. ¥hethe gene is then assigned to the resulting node. The seceadsca
contain a lot of information that should not be ignored tdlustrated in the transition from graph (B) to graph (C) ofjkre
provide optimal clustering but the quality and the accesth&d 1. Links (see graph (B)) between enzymes correspond to solid
information is far from being uniform. As an example, bidky lines while each set of associated genes corresponds teddott
networks are not all related to the same objects. They mhges. A node is added for each of the gene correspondingeto th
contain links between genes, gene products, proteins exempl same enzymatic function. New nodes are then linked to keep th
or families,etc.and the links may stand for experimentally basedame relationships than that existing between enzymesuin o
or assumed relationships. Our goal is to build a graph wifeate example (Figure 1 (C))EC 4.2.1.3 splits into genes” JL200C
which are individually subject to other measurements, asege and Y LR304C. Note that information related t&C 2.3.3.8 is
are to microarrays. There is no universal way to build suchlast because no known yeast gene is assigned to that enzyme.
graph but we give an illustration in this section. We choase Besides an obvious limitation of our graph constructionhatt
focus on gene expression data and metabolic networks ldgethit ignores genes not related to EC numbers. Many of thega (
given in the Reaction (part of Ligand) KEGG databasép(// regulators) can be responsible for relevant interactidnsnore
www.genome.ad.jp/kegg/reaction/ ). A mapping be- complete (and less automatic) graph construction woulde hav
tween genes and objects in the network must then be deriveefuired additional expert knowledge not available in #gtisdy.
Chemical reactions of interest are those which are assignedr Note that beyond the biological relevance, the size of tlaplyr
severalEC numbers corresponding to enzymes that may catalyizenot a problem. The model can deal with large numbers of
them. ToeachEC number are associated one or more genes. genes, edges and experiments. In different contexts, iexpets
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where thee;;'s are generated according to the normal dis-
tribution with mean 0 and standard deviatieR;. The o;;'s

are drawn, randomly from standard deviations observed on
the real data described by [13]. We further increase the
noise by multiplying thee;;’s by 6 (the corresponding stan-
dard deviation is then6 * o;;). We refer to [17] and
the web site http://expression.washington.edu/
publications/kayee/medvedovic_bioinf2003/ for

a graphical illustration of such data (see also supplemgnta
material).

EC 2338 YPROOGc

Mitivee Ro0267 As regards network data, we are not aware of any well

EC4213 established simulation methods. For a simple illustratioe
EC1lle2 consider the genes as the nodes of8ax 32 regular grid with
o neighbourhoods made of the 8 nearest neighbours.¢Thasses
Fe2331 YpLOGGw are then chosen as shown in Figure 2 (left-hand image) where

EC11.1.41 YNLOOOw

each color is associated to a class. Although such a netvesrkd
biological interpretation, the classification quality &sg to assess
by non expert users and it provides a clear visual illusiratf
the gain in taking into account network relationships. Wepare
the standard EM algorithm, which assumes genes indepeadenc
and the EM-like procedures we propose. BIC is computed ih bot
cases fork = 3 to K = 9. Typical curves are shown in Figure 2.
EM-like procedures show higher BIC values than standard EM.
Fig. 1. From the graph of chemical metabolic reactions (Atte gene I1Ne criterion selects the right number of classes exceptidva
interaction network (Cyia the enzyme network (B). For clarity, only edgessets1 and 4 for which 7 classes are preferred. However, this is
between reactions in the metabolic subgraph (A) are reptede consistent with the obtained classifications shown in Figr
For standard EM2 bands are wrongly merged except for data
set2. For thesimulated fieldalgorithm, the bands are correctly

were carried out with the equivalent of thousands of genek an

edges and up t800 experimental conditions (dimension of therecovered except for setsandd . In these latter cases, thiegroup

. ; . . . . ) classifications are visually better for data setnd4 (bottom row
data) using diagonal covariance matrices or dimensionctexu ) . .
techniques of [4]. of Figure 3) as suggested by BIC values. The interpretatidhait

in these very noisy cases it may be worth considering an extra
class with no specific meaning but that gathers outliers or to
ambiguous measureSimulated fieldand mean fieldalgorithms
. . erform similarly except for data set 5. In this case shmulated
correspond to Fhe simplest Markov model wiih= 0 and B = Fi)eld algorithm syelect$ipclasses and gives a better classification.
bx Ik In particular for the yeast Qata, more _complex modelﬁ,] the following developments, we will only refer to teemulated
when estimated, seem to be penallz_ed by thelr larger nunﬂ)erﬁgld algorithm.
parameters (see Figure 5 (b) for an illustration). Table | shows the global recognition rates (proportions of
i well-classified genes) obtained with the EM asichulated field
A. Synthetic data sets algorithms for each data sets, while Table Il shows the afu
We first assess our method performance on synthetic data f@étrix obtained for set 5. Rows correspond to the true cfasse
which the classes are known. Modelling gene expression dgjile columns correspond to the obtained classes. The diggo
sets is an ongoing effort by many researchers and there is tams are the proportions of well classified genes in eacsscla
well-established model to represent gene expression @atdlye The other terms are proportions of badly classified genek. Al
simulation method we use is based on a proposal by [26]. dhta sets show similar improvements when comparing EM to the
aims at simulating cyclic datag. cyclic behavior of genes over simulated fieldalgorithm.
different time points. We create five data sets following shene On such synthetic data, the gain in taking into account netwo
model. Each set is made @636 genes for which we simulate information or dependencies between genes through theéisa
20 experiments. These genes come frérslasses equal in size appears clearly with improved recognition rates. BIC or its
(256 genes per class) corresponding to different behavior d\er tapproximation in our Markov field setting, also appears to be
time course. Letr;; be the simulated expression level of gene satisfying criterion as regards the selection of the numdfer
under experiment in the data set. We first consider the followingclasses. It selects a number of classes which is consistémt w
periodic behaviors (before adding noise). When the gergséfa the visual quality of the corresponding classification. Sehéirst
z; = ¢ With k = {1,...,4}, we set conclusions will guide, in the next section, our analysisthué
experiments on real data for which no ground-truth is atgla

YCRO05¢ YOR136¢
YNROO1c YNLO37w
YPROO1w 'YPROO6C

IV. RESULTS
As mentioned earlier, the experiments reported in thisicect

yij = sin(2mj/10 — wk/4) for j =1,...20.

Whenk =5 and k = 6, we consider the linear behavioys; =

we ! B. Saccharomyces cerevisiae (yeast) data
J/20 ety;; = —j/20. Noise is then added,

Although, our approach is valid for any organism provided

zij =y +€; fori=1,...1536 andj =1,...,20, individual data and network information is available, wee
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BIC values for data set 1 BIC values for data set 2 BIC values for data set 5

76000 74000 72000 70000 -68000 -66000
76000 74000 72000 70000 68000  -66000

76000 74000 72000 70000 68000  -66000

Fig. 2. Reference classification and BIC values for 3 data wéen K varies from3 to 9.
Dashed line: Mean field algorithm.

Fig. 3. Top and middle rows: 6 color classifications for 5 kgtic data sets using standard EM algorithm assuming imdigpee (top row) and simulated
field algorithm (middle row). Bottom row: 7 color classifizats using the Simulated field algorithm. Note that the colare arbitrarily assigned and may
not match.

TABLE |

to be suboptimal and a seven expression patterns desnoripéie
RECOGNITION RATES IN% FOR SYNTHETIC DATA (K = ()) p p p w

preferred. Changes in the concentrations of the mRNA trgpisc
data sets 1 2 3 4 5 from each gene were measured at seven successive intefteals a
EM 64.8 79.2 633 681 64 synchronisation; yeast cells were transferred to a nitrdgeited
Simulated field| 77.5 95.8 93.6 78.6 91. medium that induces sporulation. The samples were takemes t
(0h, 0.5h, 2h, 5h, 7h, 9h, 11.5h) based on the independently
TABLE Il monitored expression pattern of known early, middle, rait|
and late genes. Three additional points were measured when a
essential transcription factor known to be activated atethe of

o

o

CONFUSION MATRIX FORFIGURE 3 MIDDLE RIGHT IMAGE .

global recognition rate= 91.3 % the meotic prophase is missing; cells are then non-sparglat
Class| 1 2 3 4 S 6 The measures we use are related to these specific times. This
1 1941 12 0 0O 08 39 leads to 10 dimensional profiles that should capture esgenti
:23 1(-)2 819-21 83(’)'19 106 g'g 14(57= activity behavior of yeast genes during_ sporulation. Asardg _
7 5 (') 1.6 84'.0 12'.1 2_§ network data, we use the KEGG Reaction database as described
5 0 0 0 0 996 04 in Section Ill. The resulting graph consists@35 genes (amongst
6 0 0 0 0 0 100 the 6118 ORFs expression measurements available, 6fyare

present in the metabolic network). Since our aim is mainly to
assess the benefit in adding network information, we themices
to these635 genes. The networks hadll edges and2% of

on data related t&accharomyces cerevisiaghich is a widely pajrs are connected. Figure 4 gives a summary of charaiteris
studied organism with well established information andadat ¢ the network. In particular, the graph on the left repohatt
its mechanisms. The expression data we use are described;byjgnificant number of edges are very connected5: nodes

[8] and correspond to the developmental program of spaomlat paye more tharzo neighbours and's of them haves0 or more

(gametogenesis in yeast). It consists of meiosis overthiiipe nejghbours. The most connected nodES2R005W) was found
spore formation. Sporulation can be characterized in t@ffsur 5 nave145 interactors.

distinct sets of genes which play different sequentials@ecord-
ing to their transcriptional activation during the procesarly, In this case, the appropriate number of classes is unknoven. W
middle, mid-late and late. The study proved this charaza¢ion compute BIC values foi = 2 to K = 10. The corresponding
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Fig. 4. Left: distribution of the node degrees of the netwarider study. Center: average clustering coefficients oesad their number of neighbours.
Right: distribution of the shortest path between nodes.

SF clusters
1 2 3 4 5 6

that presenting the resulting clustering as a whole is nesipte
due to the size of the graph. An appropriate visualizatiah i®
missing to provide a global biologically meaningful ideath&
clusters. However, the clusters are available in separat dn
our website.

Ideally, we would like to check whether our approach results
in clusters better related to real biological networks.c8ithis
experiment is based on a graph that accounts for dependencie
that are expected to be strongly related to pathway infaomat
we assess the quality and relevance of the various clustersr-
paring them to groups of genes in the same metabolic pathway o
in related pathways. [14] propose a method to detect sigmific
pathways associated to the [8] expression data set we arg. usi
They describe three scoring functions to characterizewsth at
the transcriptional level based on gene expression, clagu
and cascade effect. Their pathway scores show relevaneadsw
the biological background. This work provides an interegti
tool to evaluate the performance of gene expression clogter
techniques. HighActivity Scoresare awarded to pathways that
exhibit many genes expressed above a given threshold or unde
another threshold in the case of repression effé€tsegulation
Scoresare higher for pathways in which genes show greater

EM clusters

T

Fig. 6. Visualization of the confusion matrix of EM and SFsd#ications.

Circle radius are proportional to cluster intersectiondoals. Note that SF
and EM cluster labels have no special meaning and were ailyjitrand

independently assigned as outputs of both clustering igthgor

TABLE Il
SOME CHARACTERISTICS OFSFCLUSTERS

E 1 5 3 1 5 6 similarity in their expression pattern€ascade Scoreaccount
Nodes 180 86 52 123 34 160 for genes that do not show huge deviation from the reference
Internal edges 537 195 75 254 8 903 time point and for the structure and ordering of the reastion
% of connected pairg 14 66 17 14 1 16 the pathway. In particular, they are useful to find out in vahic
Diameter 8 12 5 8 2 8 pathway a reaction chain is active or shut down for the paletic

experiment under study. For example, Transcription/Tegdias
pathways are given a highctivity Scorein results of [14]. This

curve (Figure 5 (a)) does not show a clear maximum. We thé&well captured by ousimulated fieldalgorithm which gathers
consider as a reasonable choicerof the value after which the 16 out of the 28 genes involved in Transcription mechanisms
difference in two successive BIC does not increase signifigza in cluster6. In comparison, standard EM succeeds in gathering
anymore. This leads to selectidg = 6 as the number of classes11 of these genes at best. When considering two clusters, these
(Figure 5 (b)). We then compare into more details classifinat numbers raise respectively ta genes for our approach against
obtained with standard EM and with tisemulated fieldalgorithm
for parameterK = 6. A visualization of the confusion matrix to the restriction of our data set, we have no gene correspgnd
between SF and EM classifications is provided on Figure @ B12 in our data although it corresponds to some yeast gene.
While some clusters remain very similar (even identical fie t Similar results hold for Translation involved genes.

cas of clusters SF and EW), it is sometimes difficult to identify ~ We can also refer to the Vitamins metabolism that is given
correspondance; EM clustersplits into SF clusters and6 and a high Cascade Scordy [14]. The simulated fieldalgorithm

SF cluster2 content comes from EM clusteBsand 6. Moreover,
characteristics for SF clusters are reported in Table lliirésults

are made available on the supplementary website.

19 for the independent gene case (see Figure 7). Note that due

gathers26 genes in the same cluster while EM recovers
at best. If two clusters are merged, these numbers resekctiv
raise to44 and 35 genes out of th&0 involved in the Vitamins

To assess the quality of such classifications is not an eddgtabolism. Another pathway that is reported to be related t
task since there is no universal criteria to measure thdiwvela sporulation is the Oxydative Phosphorilation pathway thed a
performance of the algorithms. We therefore illustrategam in
using our approach on the following specific features chdeen cluster6 while EM groups at most6 out of the52 genes involved.
their relevance with regards to the data under consideraiote The detected genes are up-regulated at the second timeguaint

high Coregulation Scorén [14]. Our method find24 genes in
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BIC values for yeast data sucessive BIC differences BIC values for yeast data

1500
I

—-14500

1000
I

-15500
500
I

-16500

number of classes number of classes number of classes

@) (b) (©

Fig. 5. BIC values for yeast data wheid varies from2 to 10. (a) comparing Simulated field and EM algorithms. Solid line: Slated field algorithm,
Dashed line: EM algorithm(b) Differences in two successive BIC for the Simulated fielcoathm; (c) comparing various Markov models for the Simulated
field algorithm. Solid line:B = b x I model, Dashed line: diagond model, Dotted line: fullB model.

Transcription pathway (KEGG) Simulated Field result EMules
Enkarpatis Pol 1T Evkaryotic Pol 1T
) BZ
E B3 | Ba | BS | BE | B7 | =i B2 | B4 [ B5 [ B6 [ B7 |
B8 | B9 | B0 | Bl | Bz | B8 | B9 | st0 | mit | Biz |
Enkaryotic Fol 11T Eukaryntiz: Lol 11
ve o 0 | o4 | o5 | i
a8 [ ea [ o5 [ cu oL :
o139 | ces | ol | cad o1g [ ezs [ om [ o |
Enkayotic Fol T Evkaryotic Fol I
a2 : a2
: Alz | Al ] &3 [ a4s [ 449 | g a2 | Ald] asd ] a4 [ &4 |
RHNA polymerase 11 { Saccharomyce s cerevisiae) A1

Fig. 7. RNA polymerase Transcription pathway as taken froEGIG. The middle and right columns show the results obtainedherging two clusters,
respectively using theimulated fieldalgorithm (middle) and the EM algorithm (right). Pink cadar proteins correspond to genes that are included in the
two merged clusters while green ones correspond eithernesgthat do not belong to the clusters or to genes that werénclatled in the analysis. The
simulated fieldalgorithm (missing proteins: B4, B12, C2, C5, A49) outparie EM (missing proteins: B4, B7, B11, B12, C2, C4, C5, C1150231) in
grouping together this class of genes.

are specific to ATP synthesis. The analysis shows that clésteclusters even if their expression pattern is not a sufficatun.

is related to Energy metabolisred. Ox_ydative Phpsphorilation) To further assess the gain in using network information, we
as well as metabolisms that deal with Transcriptieg. RNA 450 consider an ontological analysis approach to help thith
polymerase), Translatioreg. Aminoacyl-tRNA synthetase) and pip|ogical interpretation of the results. We used t#5 GO
Vitamins. Other pathways can be more fully recovered usimg Oerms available -out of them is a subsetiofi6 terms involved
approach and the additional graph information. As an Hatgin, i, piological procesp at the time of the study, from the Gene
fpr the glycoly5|§ pathway4 genes belong to the samenulated Ontology fittp://www.geneontology.org/ ) database.
field cluster while EM groups9 out of the44 in our data set. Tpe fy|l list and additional information is made available o
These results show the inclination of our method to a beéiesis 4 ,r \ebsite ittp://mistis.inrialpes.fr/people/

tivity to group genes involved in meaningful identified mztism forbes/transparentia/supplementary.html ). Two

subunits than standard EM. Figure 8 shows genes assignedid@es of statistical tests are driven. The null hypothesisys
S|mulat§d fle!dclusterz that are involved in Glycply5|s. This being that a GO term is not overlunder-represented and the
cluster is mainly related to Carbohydrate metabolism (SBHET ,jternative being that a GO term is over- (first series) oresnd
V). represented (second series). P-Values are computed witle Fa
Our method has the ability to group genes with a coordinat&iscovery Rate (expected proportion of erroneous rejestio
activity during glycolysis despite some expression didsinties. among all rejections) corrections, which addresses thdipteul
This is the case fory’' LR153C (EC6.2.1.1) and YPLO61W  testing issue. Moreover, arbitrary dependencies betweeapg
(FC1.2.1.3) which have a slowly increasing expression whilare taken into account (see [3]). The power of this correctio
genes in the main way converting glucose 6-phosphate imo pylower than in [2] (null hypothesis are more easily acceptezhe
vate (or conversely) are immediately over-expressed. Asittem if wrong) that is valid under positive regression dependEsic
of fact the two former genes are not assigned to the sameecludt is not sure wheither the GO terms hierarchy fulfills this
as the others when using standard EM. The glycolysis examglatement. Eventually, we will miss some over-represei@en
suggests that, as expected, our method outperforms tnaaliti categories but we can be confident about identified ones.ighis
clustering methods in grouping functionally related geimgs the price to pay to account for multiple testing under aaljtr
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TABLE IV
ONTOLOGICAL ANALYSIS: OVER-REPRESENTEDG O CATEGORIES
p— RELATED TO THE DIFFERENT CLUSTERS AND CORRESPONDINR-VALUES.
wmmj i SIMULATED FIELD (RESR STANDARD EM) P-VALUES ARE COMPUTED FOR
SIMULATED FIELD (RESR STANDARD EM) CLUSTERS
mewbolism [T T T Ty
R || Aok,
\\5 simul. field | GO terms simul. field | Standard EM
P (RS a——— Cluster P-values | P-values
1 G0:0008652: amino-acid biosynth. | 1.1E-2 0.193
[T 2 G0:0006006: glucose metabolism 1.2E-7 8.7E-7
P 5 G0:0006090: pyruvate metabolism | 5.9E-5 | 8.7E-7
Aroutin Arbutis v G0:0006144: purine base metabolism 2.2E-2 0.259
e - GO:0015980 : energy dev. by oxid..| 1.8E-2 | 3.3E-2
(extrace Iulany @—127.L.69 O——{3.2.186 - - -
e [ 3 G0:0006259: DNA metabolism 4162 | 1
e i«—z ****** Yorpomme G0:0006261: DNA-dep. DNA replic.| 4.1E-2 | 0.193
Photosynthe i organiams Glyvemone-P r / e G0:0006271: DNA strand elong. 4.1E-2 0.208
v — S 4 no significant GO term N.A. N.A.
S 5 GO0:0030437: sporulation 4E-2 0.26
7 O Glsmee 2 382 6 G0:0006360: transcr. from RNA pol| 1.6E-2 2.5E-2
o~ > G0:0006164: purine nucleo biosynt.| 2.0E-2 6.1E-2
Clyverat: -3P- ‘Thisumine
IGLUCONEOGENBISI s
2, o Zemer - . )
o | t‘f acid biosynthesis (see Table V) are a first example. ThelRBeVa
Citrate cycle - . . . . e
; i T (1.1%) shows that thesimulated fielctluster (1) is highly specific
() T NN L towards this function whereas the corresponding standaid E
! A gu e cluster isn’t (P-value equal t©.193). Simulated fielccluster5 is
| 7 . .
i “ an even more relevant example._lt con_talns most _of the spiioal
o ions bodiss ;t specific genesO : 0030437) listed in [8] (available on the
et paper website or with our data in supplementary materidip T
8 scatm "1‘[“’ 3 | ryreemy—— test conclusion is that this cluster is specific towards tiveked
11171 | . . .
I m - function with a P-Value oft%. For comparison, the best results
- ! M sine metabolism .
among standard EM clusters (26 which does not lead to the

conclusion that this term is over-represented. Note that ith
Fig. 8. Glycolysis pathway: colored EC numbers are in oundsat. Pink SOmewhat surprising since these genes are apparentlynketli
ones belong to the sansmulated fieldcluster while green ones (numbershy any of the association types provided in the STRING da@ba
5.4.22,51.338, 23112, 1241, 1.8.1.4, 1.2.1.5pb0 (http://string.embl.de ). We looked for links related to
databases, co-expression, physical location on the clzome,
fusion, experiments, co-occurrence in different genorBesonly
dependencies. The analysis is summarized in Table IV whightext-mining link was detected, certainly due to the facit th
shows respective P-values for over-represented GO terrtisein many of the genes are referenced in the [8] paper. According
clusters found by theimulated fieldand standard EM algorithms. to this paper,32 among34 genes in cluster 5 take a significant
Note that since clustering results feimulated fielcand standard part in the temporal program of yeast sporulation. This telus
EM algorithms differ, the cluster numbering correspondgh® does not include however the classmétabolicgenes (quickly
simulated fieldalgorithm. The last column of the table shows thénduced) that are mainly recovered in another much biggestet.
best corresponding P-Values computed among all the EMeskist A possible interpretation is that these latter genes haveite q
Although this does favor EM, the results show that siraulated different regulator.
field approach still performs better. Under-represented G@ser
are not listed for sake of brevity and because most of over- V. DISCUSSION AND CONCLUSION
represented GO terms in one cluster show under-repregentat o aim was to show that Hidden Markov models could be
in the other clusters and this with significant P-values. introduced to incorporate various types of information wtho
The ontological analysis is consistent with the previouseob piological objects €g. genes) and in particular to account for
vations on pathways. In addition, it suggests that our nteténds  interactions between these objects (through biologicalvorks
to produce clusterings with more specificity than tradd@oEM  for instance). We focused on the task of classifying genem fr
in the sense that GO terms that are significantly over-e8ped  their expression profiles and from metabolic pathways dstana
one cluster are significantly under-expressed in the otlusters. jllustration. The introduction of Markov models in this dert
This is usually true but to a much lesser extent for clustevsi js new. They provide parametric models where the parameters
by EM. The simulated fieldalgorithm provides highly specific have a natural interpretation. Some of them (thes) can be
clusters. To exhibit such a property we considered GO termgated to class proportions while others (matrix B) torjveise
with a reasonnable number of components (ten or so). GO terffgeractions (see Section 1I-A). In our method, parametes
gathering are not specific to a distinctive class of genesy ™o estimated but tuning is also possible, for instance, torjpmate
not give a satisfactory evidence that our method can disishg a priori knowledge regarding class proportions or strength of
between genes specific to some processes. GO terms with aji@eractions to put more weight on network data. Other ekirsg
low number of genes cannot lead to a real validation of thévatet methods are much less readable in that sense.
neither. Preliminary results are promising. Experiments on sinadat
The genes classified under GO ter®0O : 0008652: amino- data show that our approach can improve significantly diaasi
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tion rates. They also suggest that criteria based on BICdcoel [2] Y. Benjamini and Y. Hochberg, “Controlling the false diery rate - a
used to guide the choice of the number of classes. Additional practical and powerful approach to multiple testingdurnal of the Royal

. . e Statistical Society Bvol. 57, no.1, pp. 289-300, Feb. 1995.
experiments on real data (yeast) point out further intérgst [3] Y. Benjamini and D. Yekutieli, “ The control of the falsasgdovery rate

features of our approach. Themulated fieldalgorithm leads in multiple testing under dependency§hnals of Statisticsyol. 29, no.
to biologically more plausible and more fully identified stars. 4, pp. 1165-1188, Aug. 2001.

When compared to clustering methods based on gene expresétb C: Bouveyron, S. Girard and C. Schmid, “Class specificspalge  dis-
. . criminant analysis for high dimensional data,”lect. Notes Comp. Sci.,
only (eg. EM clustering), it has the advantage to produce clusters gpringer,no. 3940, pp139-150, 2008.

associated to pathways with possible coordinated changerie [5] M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W.u8net, T.S.
expression. When compared with methods incorporatingartw ~ Furey, M. Ares Jr. and D. Haussler, "Knowledge-based aimlys

. - ‘e microarray gene expression data by using support vectohimess” Proc.
data, it has the advantage to consist in a statistically featded Nat. Acad. Sci.yol 97, no.1, pp.262-267, Jan 2000.

approach which does not require to choose a distance or alkerg] G. Celeux and G. Govaert, “Gaussian Parsimonious diagtanodels”,
function and allows further statistical analysis regagdadditional J. of Pat. Rec. Soc28, pp. 781-793, 1995.

issues such as model selection. It is also part otifeclustering [7] G- Celeux, F. Forbes and N. Peyrard, "EM procedures usiegn-field
methods that provide membership probabilities insteadhaoti like approximations for Markov-model based image segmifiaPat.
p pp rec.,vol. 36, no. 1, pp. 131-144, Jan 2003.

(usually more biased) classifications. [8] S. Chu, J.L. DeRisi, M.B. Eisen, J. Mulholland, D. BotsteP.O. Brown
Future work would be to investigate this general methodplog and I. Herskowitz, “ The transcriptional program of spofiala.in budding

. . . . . . yeast, "Scienceyol. 282, pp. 699-705, Oct 1998.
in other contexts, with applications in proteomics, usirenes 9] M.B. Eisen, P.T. Spellman, P.O. Brown and D. BotsteinluZer analysis

or proteins as central concepts through a variety of infoiona and display of genome-wide expression patter®sgc. Nat. Acad. Sci.,
sources such as sequences, structures, expression pafiern vol. 95, pp.14863-14868, Dec 1998.

sition in networks,etc Additional experiments could also bell0] F.Forbesand N. Peyrard, “Hidden Markov random field elatlection
ful t hall del . lete int ti dat criteria based on mean field-like approximatiodEEE Trans. PAMIyol.
useful to challenge our model on incomplete interactioradat 55 1o 9 pp. 1089-1101, Sep 2003.

The difficult passage here is to determine the full pair exton [11] D. Hanisch, A. Zien, R. Zimmer and T. Lengauer, “Co-thigg of

network. In the synthetic data case, th@earest neighbourhood  biological networks and gene expressio@loinformatics, vol. 18 no.
-« Suppl.1, pp. S145-S154, Jul. 2002.

Settmg s Chosen. because it is widely used in image analyiﬁ] A.J. Hartemink, D.K. Gifford, T.S. Jaakkola and R.A. 0w, “Using
But it doesn't claim to be the network that accounts at best fO ~graphical models and genomic espression data to stafigticalidate

interactions in an image. In the real biological dataset,ane models of genetic regulatory network®foc. Pacific Symp. Biocomputing

certainly faced to a graph only summarizing a fraction of e 7, pp. 422-433, Jan. 2002.

hypothetical gene interaction network®&ccharomyces cerevisae[13] T:R. Hugues, M.J. Marton, A.R. Jones, C.J. Roberts, Bugton,
) : - . g C.D. Armour, H.A. Bennett, E. Coffey, H. Dai, Y.D. He, M.J. dd,

Biological interaction networks are known to be incomplatel AM. King, M.R. Meyer, D. Slade, P.Y. Lum, S.B. StepanianBD.

the reliability of the interactions vary a lot. Hence it makie Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bai &.H.

e ; ; : P Friend, “Functional discovery via a compendium of exprsgrofiles,”
difficult to assess the proportion of information initialpresent Cell, vol. 102, pp. 109126, Jul. 2000.

in the network. A possibility would be to take into account &4 m.p, Kurhekar, S. Adak, S. Jhunjhunwala and K. RaghupaGenome-
wider range of pair dependencies and to assign weights @iogor wide pathway analysis and visualization using gene exjmesdata,”

to prior knowledge on the reliability of the interaction. 1Ou___Proc. Pacific Symp. Biocomputing #p. 462-473, Jan 2002.

. . . . 1:[15] G. Lanckriet, T. De Bie, N. Christianini, M. |. JordandhiV. Noble, “A
model was designed to deal with such a refinement. This k"qdr) statistical framework for genomic data fusiofBiofinformatics,vol. 20,

of information is not available yet on the metabolic netwerk no. 16,pp. 2626-2635, Nov. 2004.
considered. Alternately, it might be worth building an natetion [16] E.M. Marcotte, M. Pellegrini, M.J. Thompson, T.O. Yestand D.

network using a database like STRINGitp:/string. Fﬁg&?ﬁ“ﬁ\i;ﬁjfgwi”jgza'gg”g‘?ﬂé%r ?\leé‘voqgg"’gide predictof protein
embl.de/ ) which offers confidence level for gene interactiong;7) . Medvedovic, K.Y. Yeung and R.E. Bumgarner, “Bayesimixture

from various sources (physical chromosome neighbourhiveat, model based clustering of replicated microarray daBiginformatics
hybrid, literature link,...). Before that, more specificalysis [lg]Vgl- éoy If_]é)_- 3'JDR}V7613—77311 épf- 2034W N Grundy. “Genecfiomal

- P . Pavlidis, J. Weston, J. Cai an . N. Grundy, “Genecfioma
would be us_erI_aS re_gards th_e generallzatloq to n_1|35|rrgulina1t classification from heterogeneous dat®foc. Fifth Annual Int. Conf.
often occur in biological studies. Our mean field-like framoek Comp. Biol., pp. 249255, Apr. 2001.

allows such a generalization. Also, in a variety of applmad, [19] E. Segal, H. Wang and D. Koller, “Discovering molecutathways from

overlapping clustering, wherein some items are allowed o b protein interaction and gene expression daBaginformatics,vol. 19, no.
ppIng 9 Suppl 1, pp. i264-i272, Jul. 2003.

members of two or more discovered clusters, is more ap[mg)ri [20] G. Schwarz, “Estimating the dimension of a modélfin. Stat.vol. 6,
Methods have been proposed that would be worth investmgatin no.2, pp. 131-134, Apr. 1978.

in the context of genetic data analysis.
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