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Gene clustering via integrated Markov models
combining individual and pairwise features

Matthieu Vignes and Florence Forbes

Abstract— Clustering of genes into groups sharing common
characteristics is a useful exploratory technique for a number of
subsequent computational analysis. A wide range of clustering
algorithms have been proposed in particular to analyze gene
expression data, but most of them consider genes as independent
entities or include relevant information on gene interactions in a
sub-optimal way.

We propose a probabilistic model that has the advantage to
account for individual data (eg.expression) and pairwise data (eg.
interaction information coming from biological networks) simul-
taneously. Our model is based on hidden Markov random field
models in which parametric probability distributions account
for the distribution of individual data. Data on pairs, possibly
reflecting distance or similarity measures between genes, are then
included through a graph where the nodes represent the genes
and the edges are weighted according to the available interaction
information. As a probabilistic model, this model has many
interesting theoretical features. Also, preliminary experiments on
simulated and real data show promising results and points out
the gain in using such an approach.

Availability: The software used in this work is written
in C++ and is available with other supplementary mate-
rial at http://mistis.inrialpes.fr/people/forbes/
transparentia/supplementary.html.

Index Terms— Markov random fields, model-based clustering,
metabolic networks, gene expression.

I. I NTRODUCTION

A S an increasing amount of post-genomic data is available,
there is a great need to develop methodologies to ana-

lyze and to use theinformation contained in this data. A major
challenge in bioinformatics is to reveal interactions between
components of living organisms and discover the corresponding
networks responsible for their biological complexity. In this
framework, clustering of genes into groups sharing common char-
acteristics is a useful exploratory technique. It is frequently used
as the basis for further computational analysis. As an example, the
function of a gene can be predicted according to known functions
of other genes from the same cluster. With the introduction of
DNA microarray technology, researchers are now able to measure
the expression levels of thousands of genes simultaneouslyat
various time points of the biological process or under various
experimental conditions. As data accumulate, the tendencyto in-
vestigate general regulatory mechanisms by clustering genes from
their expression profiles increases. A wide range of clustering
algorithms have been proposed to analyze gene expression data.
Various methods have been applied such as hierarchical clustering

Manuscript received July 24, 2006; revised February 22, 2007.
M. Vignes is with BioSS at the Scottish Crop Research Institute, Inver-

gowrie, Dundee, DD2 5DA, Scotland, UK.
E-mail: matthieu@bioss.ac.uk

F. Forbes is head of team Mistis, INRIA Rhône-Alpes, ZIRST,655, avenue
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[9], self-organizing maps [21], k-means algorithms [23], and more
recently Support Vector Machines methods [5] or graph analysis
by bi-clustering [22]. More generally, approaches fall mainly in
two categories. Some focus on individual data and assume that
they are independent. Typically, [26] use a statistically based
model which does not incorporate possible relationships between
genes. Others try to integrate several sources of data, setting
for instance, expression data into a Bayesian graphical model
framework [12], combining expression data with phylogenetic
profiles [18], or defining distances between genes combining
different data types [16]. Typically, the procedure in the work
of [11] uses information on pairs of genes in the form of
networks or graphs and combines it with distances computed
from individual expression profiles. This requires transforming
individual information into distances or similarity measures and
does not directly use individual data associated to genes inthe
networks, loosing some potentially interesting information in the
process. Kernel-based approaches to data fusion ( [15], [25], [24])
also consist of representing various data sets via kernel functions
which define generalized similarity relationships. Also, sequential
procedures that cluster first individual data alone and incorporate
additional information only after the clusters are determined are
necessarily suboptimal.

It appears that models able to integrate simultaneously informa-
tion on individuals (without reducing it to pairwise information)
and pairwise relationships in the same procedure have not yet
been proposed. The novelty of our work is to propose a model-
based approach, as opposed to the distance-based approaches
mentioned above, to take into account simultaneously data from
individual genes,ie. data that make sense and exist for each genes,
and data from pairs of genes reflecting for instance some distance
or some similarity measure defined on the genes, possibly using
some recent kernel-based approaches. To our knowledge, theonly
similar attempts have been proposed in [19]. However, the for-
mulation of their probabilistic model does not fully exploit gene
dependencies. It is written to account for gene interactionbut one
of the assumptions made is only valid under gene independence.
In addition, no estimation procedure is proposed to estimate the
model parameters and they then need to be fixed to arbitrary
values. We propose an integrated Markov model, meaning by
that a specific instance and usage of a Hidden Markov model.
Parametric probability distributions account for the distribution of
individual data while data on pairs are included through a graph
where the nodes represent the genes and the edges are weighted
according to the available interaction information (eg. distances
or similarity measures between genes). As regards parameter
estimation and classification step, we consider recent procedures
based on the EM algorithm andmean field-like approximations
[7]. Such procedures were shown to be more efficient in many
ways than standard Gibbs samplers or Markov Chain Monte Carlo
(MCMC) techniques traditionally used in computer vision.
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This model and the EM classification framework (Section II)
have many interesting features. As a probabilistic model, it leads
to various possible statistical criteria to select automatically the
number of clusters and it provides confidence measures such as
posterior probabilities that an object (eg. a gene) is assigned
to a class. It is flexible in that various pairwise relationship
information and features on individual data can be easily incorpo-
rated possibly with different weights. Its generalizationto include
missing data, that often occur when dealing with expression
data, is straightforward and its extension to overlapping clustering
methods, to deal with more realistic situations where genescan
belong to many groups at the same time, can also be considered.
Although such a model is relevant in various other applications,
we specify in Section III the type of data used in this work.
Experiments on simulated data are reported and results on real
data are then shown in Section IV. A discussion section ends the
paper.

II. I NTEGRATEDMARKOV MODELS

The basic assumption is that measures (e.g. expression pro-
files) corresponding to each objects are random variables with a
specific probability distribution in each class. A standardway
to represent class-specific density functions is to approximate
them as Gaussian distributions whose parameters depend on the
class. In the work of [26], a Gaussian mixture model is assumed
which corresponds to Gaussian class-specific distributions but
also to genes independence. This is not fully satisfying since
strong neighbourhood relationships between genes sharingcom-
mon functions can exist. To overcome this limitation, we propose
to improve on the Gaussian mixture model by assuming that the
distribution of the observed features is that of a Hidden Markov
Random Field (HMRF) withK components and appropriate
parametrization. To define such a model, one needs to specify
a neighbourhood structure indicating which genes are statistically
linked but this structure is not necessarily related to the clusters.
Dependent genes may be in different classes and genes from the
same class may be independent.

A. Hidden Markov fields for biological networks

Let n be the number of genes to be clustered andx1, . . . , xn

denote the individual data observed for the genes numbered
by {1, . . . , n}. The observed data are usually multi-dimensional
vectors,e.g. expression profiles. Fori = 1, . . . , n, we model the
probability of observingxi as

P (xi|Ψ) =

K∑

k=1

P (Zi = ck |β) f(xi|θk),

where f(xi|θk) denotes the multivariate Gaussian distribution
with parametersθk namely the meanµk and covariance matrix
Σk. Notation Zi denotes the random variable representing the
class of genei. Zi can take values in{ck, k = 1 . . . K} denoting
the K possible classes. More specifically, it is convenient to
considerck as aK-dimensional indicator vector with all com-
ponents being0 except thekth which is 1. Note that we assume
in this section thatK is fixed but this can be generalized (see
Section II-B). Notationβ denotes additional parameters defining
the distribution of theZi’s and Ψ denotes the whole model
parametersi.e. Ψ = (θk, β, k = 1 . . . K). As an example, the
model used by [26] forP (xi|Ψ) is an independentGaussian

mixture model and corresponds, in our framework, to assume
that theZi’s are independent variables. Our approach differs in
that our aim is to account for dependencies. This requires the
definition of neighbourhood relationships between genes. We will
think of a set of genes as a graph with edges emanating from each
gene to other genes within its neighbourhood. We will illustrate
in Section III how such a graph can be built from biological
network data. The dependencies between neighbouring genesare
then modelled by further assuming that the joint distribution of
Z1, . . . , Zn is a discrete Markov Random Field on this specific
graph. Denotingz = (z1, . . . , zn) specified values of theZi’s, we
define

P (z|β) = W (β)−1 exp(−H(z, β)) (1)

where W (β) is a normalizing constant andH is a function
assumed to be of the following form (we restrict to pair-wise

interactions),H(z, β) =
n∑

i=1
Vi(zi, β) +

∑
i,j

i∼j

Vij(zi, zj , β), where

theVi’s andVij ’s are respectively functions referred to as single-
ton and pair-wise potentials. We writei ∼ j when genesi and j

are neighbours on the graph, so that the second sum above is over
neighbouring genes. Parametersβ consist of two setsβ = (α, IB)

where α and IB are defined as follows. We consider pair-wise
potentialsVij that depend onzi andzj but also possibly oni and
j. Since thezi’s can only take a finite number of values, for each
i andj, we can define aK×K matrix IBij = (IBij(k, l))1≤k,l≤K

and write without lost of generalityVij(zi, zj , β) = −IBij(k, l)

if zi = ck and zj = cl. Using the indicator vector notation
and denotingzt

i the transpose of vectorzi, it is equivalent to
write Vij(zi, zj , β) = −zt

i IBijzj. This latter notation has the
advantage to make sense also when the vectors are arbitrary and
not necessarily indicators. This will be useful when describing
the algorithms of Section II-C. Similarly we consider singleton
potentialsVi that may depend onzi and oni, so that denoting by
αi a K-dimensional vector, we can writeVi(zi, β) = −αi(k) if
zi = ck, whereαi(k) is thekth component ofαi, or equivalently
Vi(zi, β) = −zt

iαi. This vectorαi acts as weights for the different
values ofzi. Whenαi is zero, no class is favored,i.e. for a given
genei, if no information on the neighbouring genes is available,
then all classes have the same probability. If in addition, for all i

andj, IBij = b×IK whereb is a real scalar andIK is theK×K

identity matrix, parametersβ reduce to a single scalar interaction
parameterb and we get the Potts model traditionally used for
image segmentation. Note that this model is probably the more
appropriate for classifying genes since it tends to favor neighbours
that are in the same class. However, cases where the IBij ’s are
far from b× IK could be useful in situations where neighbouring
genes are likely to be in different classes. Also, when distance
or similarity data,(dij)i,j=1,...,n, between genes are available,
IBij(k, l) can be decomposed as IBij(k, l) = F (dij) c(k, l) where
F is a non increasing function of IR+ and c(k, l) corresponds to
a gain (or a loss depending on its sign) of assigning genesi and
j respectively to classck andcl. This is part of the flexibility and
modelling capabilities of the model. However, without specific
information, we can choosec(k, l) = b if k = l and c(k, l) = 0

otherwise. In this case, parameterb can be interpreted as a strength
of interaction between neighbours. The higherb the more weight
is given to the interaction graph. Ifb is set to0, only the individual
features are taken into account, reducing our model to traditional
existing approaches. In practice, these parameters can be tuned
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according to expert ora priori knowledge or they can be estimated
from the data. In the first case, our software can deal with the
most general parametrization, namelyβ = (αi, IBij). In the latter
case, the part to be estimated is usually assumed independent of
the genes indicesi andj, so that in what follows we will reduce
α and IB respectively to a single vector and a single matrix. Note
that in Section IV, the model is further reduced toα equal to0

and IB equal tob × IK (see comments in this section).
Meanwhile, to keep a general presentation, the observed data

is then represented by an HMRF defined by parametersΨ being
Ψ = ({µk , Σk}k=1,...,K , α, IB).

B. Selecting the number of classes

Choosing the probabilistic model that best accounts for the
observed data is an important first step for the quality of thesubse-
quent estimation and classification stages. In statisticalproblems,
a commonly used selection criterion is the Bayesian Information
Criterion (BIC) of [20]. The BIC is computed given the datax

and a modelM with parametersΨ. It is defined by:

BIC(M) = 2 log P (x | Ψml) − d log n ,

whereΨ
ml is the maximum likelihood estimate ofΨ, Ψ

ml =

arg max
Ψ

P (x | Ψ, M) , d is the number of free parameters

in model M and n is the number of observations. BIC allows
comparison of models with differing parametrizations and/or
differing number of classes. Many other approaches can be found
in the literature on model selection but BIC has become quite
popular due to its simplicity and its good results. In this study, we
will consider the Markov model (α, IB) as fixed. More specifically,
the experiments reported in Section IV correspond to the simplest
model withα = 0 and IB= b × IK . More important in practice
is the choice ofK and of the covariance model (Σk ’s). For
multivariate Gaussian class-specific distributions, there exists a
number of different choices for theΣk ’s. See [1] and [6] for a
description of these forms and their meaning. The simplest models
are those for which theΣk ’s are diagonal matrices. Our choice
of K andΣk ’s then can be based on BIC. However, for HMRFs,
its exact computation is not tractable due to the dependence
structure induced by the Markov model. A possibility is then
to compute BIC for independent mixture models, forgetting any
spatial information. Not to loose such information, we rather
choose to use the mean field like approximations of BIC proposed
by [10] (see Section II-C for additional details). As regards
covariance matrices, we restrict to diagonal models in mostcases
or consider an original reduction dimension techniques [4]. In
the context of the present work however, we did not observe
significant improvement over the simple diagonal models forthe
data (only 10 dimensional) we consider in Section IV.

C. Classifying genes

Our aim is to classify each gene in one of theK classes.
To do so we consider a Maximum Posterior Marginal (MPM)
principle consisting in assigning genei to classck that maximizes
P (Zi = ck|x,Ψ). Such maximizations depend onΨ which
is usually unknown, or partly unknown when prior knowledge
can be incorporated, and has to be estimated. The parameters
to be estimated are the parameters defining the Gaussian dis-
tributions namely theµk and Σk for k = 1, . . . K and the
parameters defining the interaction model, namely theα(k) for

k = 1, . . . K and theK × K dimensional matrix IB. The EM
algorithm is a commonly usedalgorithm for parameter estimation
in problems with missing data (here the class assignments).For
independent mixture models, the independence assumption leads
to an easy implementation of the algorithm. For HMRFs, due
to the dependence structure, the exact EM is not tractable and
approximations are required. In this paper, we use some of
the approximations presented in [7]. These approximationsare
based on the mean field principle which consists in replacingthe
intractable Markov distributions by factorized ones for which the
exact EM can be carried out. This allows to take the Markovian
structure into account while preserving the good features of EM.
[7] generalized the mean field principle and introduced different
factorized models resulting in different procedures. Notethat in
practice, these algorithms have to be extended to incorporate the
estimation of matrix IB and to include irregular neighbourhood
structure coming from biological networks and not from regular
pixel grids like in [7].

Briefly, these algorithms can be presented as follow. They are
based on the EM algorithm which is an iterative algorithm aiming
at maximizing the log-likelihood (for the observed variablesx) of
the model under consideration by maximizing at each iteration the
expectation of the complete log-likelihood (for the observed and
hidden variablesx andz) knowing the data and a current estimate
of the model parameters. When the model is an Hidden Markov
Model with parametersΨ, there are two difficulties in evaluating
this expectation. Both the normalizing constantW (β) in (1) and
the conditional probabilitiesP (zi | x,Ψ) andP (zi, zj | x,Ψ) for
j in the neighbourhoodN(i) of i, cannot be computed exactly.
Informally, the mean field approach consists in approximating the
intractable probabilities by neglecting fluctuations fromthe mean
in the neighbourhood of each genei. More generally, we talk
about mean field-like approximations when the value for genei

does not depend on the value for other genes which are all set
to constants (not necessarily to the means) independently of the
value for genei. These constant values denoted byz̃1, . . . , z̃n are
not arbitrary but satisfy some appropriate consistency conditions
(see [7]). LetzN(i) denote the set of variables{zj , j ∈ N(i)}

associated to the setN(i) of neighbours ofi. It follows that
P (zi | x,Ψ) is approximated by

P (zi | x, z̃N(i), Ψ) ∝ f(xi|z
t
iθ).P (zi|z̃N(i), β)

∝ f(xi|z
t
iθ).

exp[zt
i (α + IB

∑

j∈N(i)

z̃j)],

where θ denotes the vector(θ1, . . . , θK). The normalizing con-
stant is not specified but its computation is not an issue.
Then, for all j ∈ N(i), P (zi, zj | x,Ψ) is approximated by
P (zi | x, z̃N(i),Ψ) P (zj | x, z̃N(j),Ψ). Both approximations are
easy to compute. Using such approximations leads to algorithms
which in their general form consist in repeating two steps. At
iterationq,

(1) Create from the datax and some current parameter es-
timatesΨ

(q−1) a configurationz̃
(q)
1 , . . . z̃

(q)
n , i.e. values for the

Zi’s. Replace the Markov distributionP (z|β) of (1) by the

factorized distribution
n∏

i=1
P (zi|z̃

(q)
N(i)

, β). It follows that the joint

distribution P (x, z|Ψ) can also be approximated by a factorized
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distribution:
n∏

i=1

f(xi|z
t
iθ)P (zi|z̃

(q)
N(i)

, β)

and the two problems encountered when considering the EM
algorithm with the exact joint distribution disappear. Thesecond
step is therefore,

(2) Apply the EM algorithm for this factorized model with
starting valuesΨ(q−1), to get updated estimatesΨ(q) of the
parameters.

In particular themean fieldand simulated fieldalgorithms
consist in two different ways of performing step(1). The
mean fieldalgorithm consists in updating thẽzi

(q)’s by set-
ting, for all i = 1, . . . , n, z̃i

(q) to the mean of distribution
P (zi | x, z̃

(q)
N(i)

,Ψ(q−1)). Note that aszi is an indicator vector, the

mean valuẽz(q)
i is a vector made of the respective probabilities to

be in each of theK classes. In thesimulated fieldalgorithm, z̃(q)
i

is simulated fromP (zi | x, z̃
(q)
N(i)

,Ψ(q−1)). Note also that to save
additional notation, the updating described above is synchronous
while we actually implemented a sequential updating of thez̃

(q)
i ’s:

each nodei is updated in turn using the new values of the other
nodes as soon as they become available rather than waiting until
all nodes have been updated. Intuitively, the stochastic feature of
the simulated algorithmenables to avoid convergence towards a
saddle point or a local minimum, dependence of the converging
state towards initialization or slow rate of convergence. These
well-documented pitfalls of the EM algorithm are sorted outin
the spirit of Stochastic EM (SEM [27]). However both algorithm
cannot be really compared since SEM is not Markovian: it doesn’t
account for dependencies between observations and is well suited
to deal with mixture models.

In practice, at step(2), performing one EM iteration is usually
enough. Then, the HMRF estimation provides us with estima-
tions for the means and covariance matrices of theK Gaussian
distributions, namelyµk andΣk for k = 1, . . . K, but also for the
hidden field parameters, matrix IB and vectorα. It follows easily
approximations of theP (Zi = ck|x,Ψ) required to classify each
genes using the MPM principle.

In this work, we mainly consider the so-calledsimulated field
(SF) algorithm for its better performance in practice.

III. F ROM BIOLOGICAL NETWORKS TO INTERACTION GRAPHS

Many kinds of biological networks are freely available. They
contain a lot of information that should not be ignored to
provide optimal clustering but the quality and the access tothat
information is far from being uniform. As an example, biological
networks are not all related to the same objects. They may
contain links between genes, gene products, proteins complexes
or families,etc.and the links may stand for experimentally based
or assumed relationships. Our goal is to build a graph with objects
which are individually subject to other measurements, as genes
are to microarrays. There is no universal way to build such a
graph but we give an illustration in this section. We choose to
focus on gene expression data and metabolic networks like those
given in the Reaction (part of Ligand) KEGG database (http://
www.genome.ad.jp/kegg/reaction/ ). A mapping be-
tween genes and objects in the network must then be derived.
Chemical reactions of interest are those which are assignedone or
severalEC numbers corresponding to enzymes that may catalyze
them. ToeachEC number are associated one or more genes.

A first stage consists in building a graph whose nodes are
enzymes. An edge exists between two enzymes if and only if
they catalyze two reactions that share at least a common chemical
compound either as substrate or product. The interpretation is
that an edge stands for the possibility that two reactions follow
each other in metabolic pathways. However, all the links between
reactions cannot be considered. In particular those which involve
compounds that are very common (eg. water, etc.) are usually
not relevant to the biological interpretation and may hide or
bias the biological information. Two possibilities are either to
use the main compounds (according to KEGG database) or to
remove compounds which would link too many reactions (above
a given threshold). We choose the first solution for the restricted
database has the advantage of being produced by experts who
manually removed somewhat irrelevant compounds such as water,
carbon dioxide,etc. In addition, weights(dij)i,j=1,...,n can be
assigned to edges. They may reflect in a quantitative way enzymes
proximity or thermodynamical properties. Such information is
not available yet but would be easily dealt with in our model.
As an illustration, we consider theSaccharomyces cerevisiae
genome and derive a graph on genes with the network of chemical
reactions given in the database. Figure 1 gives an example
based on the compounds acting in theCitrate cycle with
only part of the reactions represented for clarity (Figure 1(A)).
For example, reactionsR00479, R01900 and R00709 all share
compoundIsocitrate . They are therefore neighbours and so
are the enzymes catalyzing each of these reactions (Figure 1(B)).
Two enzymes catalyzing the same reaction are neighbours as well
(eg.EC 2.3.3.8 andEC 2.3.3.1 ). Reversibility is allowed. Also a
common enzyme may catalyze different reactions,eg.EC1.1.1.42

is active in reactionsR01899, R00268 andR00267. It must then
be linked to any enzyme catalyzing reactions sharing a compound
with the later.

A second stage in building the final graph is to go from
enzymes to genes. Two cases have to be considered. In the
first one a gene maps to several enzymatic functions while in
the second one several genes map to a single enzymaticEC

number. A way to deal with both cases is to consider couples
of objects(gene,EC) and connect them in the graph as soon as
their second components are connected. In the first case, enzymes
already correspond to different nodes. These nodes only need to
be fused keeping neighbourhood relationships. The measureabout
the gene is then assigned to the resulting node. The second case is
illustrated in the transition from graph (B) to graph (C) of Figure
1. Links (see graph (B)) between enzymes correspond to solid
lines while each set of associated genes corresponds to dotted
lines. A node is added for each of the gene corresponding to the
same enzymatic function. New nodes are then linked to keep the
same relationships than that existing between enzymes. In our
example (Figure 1 (C)),EC 4.2.1.3 splits into genesY JL200C

and Y LR304C. Note that information related toEC 2.3.3.8 is
lost because no known yeast gene is assigned to that enzyme.
Besides an obvious limitation of our graph construction is that
it ignores genes not related to EC numbers. Many of them (eg.
regulators) can be responsible for relevant interactions.A more
complete (and less automatic) graph construction would have
required additional expert knowledge not available in thisstudy.
Note that beyond the biological relevance, the size of the graph
is not a problem. The model can deal with large numbers of
genes, edges and experiments. In different contexts, experiments
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Fig. 1. From the graph of chemical metabolic reactions (A) tothe gene
interaction network (C)via the enzyme network (B). For clarity, only edges
between reactions in the metabolic subgraph (A) are represented.

were carried out with the equivalent of thousands of genes and
edges and up to300 experimental conditions (dimension of the
data) using diagonal covariance matrices or dimension reduction
techniques of [4].

IV. RESULTS

As mentioned earlier, the experiments reported in this section
correspond to the simplest Markov model withα = 0 and IB =

b × IK . In particular for the yeast data, more complex models,
when estimated, seem to be penalized by their larger number of
parameters (see Figure 5 (b) for an illustration).

A. Synthetic data sets

We first assess our method performance on synthetic data for
which the classes are known. Modelling gene expression data
sets is an ongoing effort by many researchers and there is no
well-established model to represent gene expression data yet. The
simulation method we use is based on a proposal by [26]. It
aims at simulating cyclic data,ie. cyclic behavior of genes over
different time points. We create five data sets following thesame
model. Each set is made of1536 genes for which we simulate
20 experiments. These genes come from6 classes equal in size
(256 genes per class) corresponding to different behavior over the
time course. Letxij be the simulated expression level of genei

under experimentj in the data set. We first consider the following
periodic behaviors (before adding noise). When the gene class is
zi = ck with k = {1, . . . , 4}, we set

yij = sin(2πj/10 − πk/4) for j = 1, . . . 20.

When k = 5 and k = 6, we consider the linear behaviorsyij =

j/20 et yij = −j/20. Noise is then added,

xij = yij + εij for i = 1, . . . 1536 and j = 1, . . . , 20,

where the εij ’s are generated according to the normal dis-
tribution with mean 0 and standard deviationσij . The σij ’s
are drawn, randomly from standard deviations observed on
the real data described by [13]. We further increase the
noise by multiplying theεij ’s by 6 (the corresponding stan-
dard deviation is then6 ∗ σij). We refer to [17] and
the web site http://expression.washington.edu/
publications/kayee/medvedovic_bioinf2003/ for
a graphical illustration of such data (see also supplementary
material).

As regards network data, we are not aware of any well
established simulation methods. For a simple illustration, we
consider the genes as the nodes of a48 × 32 regular grid with
neighbourhoods made of the 8 nearest neighbours. The6 classes
are then chosen as shown in Figure 2 (left-hand image) where
each color is associated to a class. Although such a network has no
biological interpretation, the classification quality is easy to assess
by non expert users and it provides a clear visual illustration of
the gain in taking into account network relationships. We compare
the standard EM algorithm, which assumes genes independence
and the EM-like procedures we propose. BIC is computed in both
cases forK = 3 to K = 9. Typical curves are shown in Figure 2.
EM-like procedures show higher BIC values than standard EM.
The criterion selects the right number of classes except fordata
sets1 and 4 for which 7 classes are preferred. However, this is
consistent with the obtained classifications shown in Figure 3.
For standard EM,2 bands are wrongly merged except for data
set 2. For thesimulated fieldalgorithm, the bands are correctly
recovered except for sets1 and4 . In these latter cases, the7-group
classifications are visually better for data sets1 and4 (bottom row
of Figure 3) as suggested by BIC values. The interpretation is that
in these very noisy cases it may be worth considering an extra
class with no specific meaning but that gathers outliers or too
ambiguous measures.Simulated fieldand mean fieldalgorithms
perform similarly except for data set 5. In this case thesimulated
field algorithm selects6 classes and gives a better classification.
In the following developments, we will only refer to thesimulated
field algorithm.

Table I shows the global recognition rates (proportions of
well-classified genes) obtained with the EM andsimulated field
algorithms for each data sets, while Table II shows the confusion
matrix obtained for set 5. Rows correspond to the true classes
while columns correspond to the obtained classes. The diagonal
terms are the proportions of well classified genes in each class.
The other terms are proportions of badly classified genes. All
data sets show similar improvements when comparing EM to the
simulated fieldalgorithm.

On such synthetic data, the gain in taking into account network
information or dependencies between genes through their labels
appears clearly with improved recognition rates. BIC or its
approximation in our Markov field setting, also appears to be
satisfying criterion as regards the selection of the numberof
classes. It selects a number of classes which is consistent with
the visual quality of the corresponding classification. These first
conclusions will guide, in the next section, our analysis ofthe
experiments on real data for which no ground-truth is available.

B. Saccharomyces cerevisiae (yeast) data

Although, our approach is valid for any organism provided
individual data and network information is available, we focus
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Fig. 2. Reference classification and BIC values for 3 data sets whenK varies from3 to 9. Solid line: Simulated field algorithm, Dotted line: EM algorithm,
Dashed line: Mean field algorithm.

Fig. 3. Top and middle rows: 6 color classifications for 5 synthetic data sets using standard EM algorithm assuming independence (top row) and simulated
field algorithm (middle row). Bottom row: 7 color classifications using the Simulated field algorithm. Note that the colors are arbitrarily assigned and may
not match.

TABLE I

RECOGNITION RATES IN% FOR SYNTHETIC DATA (K = 6).

data sets 1 2 3 4 5
EM 64.8 79.2 63.3 68.1 64.3

Simulated field 77.5 95.8 93.6 78.6 91.3

TABLE II

CONFUSION MATRIX FORFIGURE 3 MIDDLE RIGHT IMAGE .

global recognition rate= 91.3 %
Class 1 2 3 4 5 6

1 94.1 1.2 0 0 0.8 3.9
2 1.2 89.1 3.1 0 2.0 4.7
3 0 1.2 80.9 1.6 5.9 10.5
4 0 0 1.6 84.0 12.1 2.3
5 0 0 0 0 99.6 0.4
6 0 0 0 0 0 100

on data related toSaccharomyces cerevisiaewhich is a widely
studied organism with well established information and data on
its mechanisms. The expression data we use are described by
[8] and correspond to the developmental program of sporulation
(gametogenesis in yeast). It consists of meiosis overlapped by
spore formation. Sporulation can be characterized in termsof four
distinct sets of genes which play different sequential roles accord-
ing to their transcriptional activation during the process: early,
middle, mid-late and late. The study proved this characterization

to be suboptimal and a seven expression patterns description was
preferred. Changes in the concentrations of the mRNA transcripts
from each gene were measured at seven successive intervals after
synchronisation; yeast cells were transferred to a nitrogen-limited
medium that induces sporulation. The samples were taken at times
(0h, 0.5h, 2h, 5h, 7h, 9h, 11.5h) based on the independently
monitored expression pattern of known early, middle, mid-late,
and late genes. Three additional points were measured when an
essential transcription factor known to be activated at theend of
the meotic prophase is missing; cells are then non-sporulating.
The measures we use are related to these specific times. This
leads to 10 dimensional profiles that should capture essential
activity behavior of yeast genes during sporulation. As regards
network data, we use the KEGG Reaction database as described
in Section III. The resulting graph consists of635 genes (amongst
the 6118 ORFs expression measurements available, only635 are
present in the metabolic network). Since our aim is mainly to
assess the benefit in adding network information, we then restrict
to these635 genes. The networks has7111 edges and92% of
pairs are connected. Figure 4 gives a summary of characteristics
of the network. In particular, the graph on the left reports that
a significant number of edges are very connected :245 nodes
have more than20 neighbours and78 of them have50 or more
neighbours. The most connected nodes (Y ER005W ) was found
to have145 interactors.

In this case, the appropriate number of classes is unknown. We
compute BIC values forK = 2 to K = 10. The corresponding
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Fig. 4. Left: distribution of the node degrees of the networkunder study. Center: average clustering coefficients of nodes vs their number of neighbours.
Right: distribution of the shortest path between nodes.

Fig. 6. Visualization of the confusion matrix of EM and SF classifications.
Circle radius are proportional to cluster intersection cardinals. Note that SF
and EM cluster labels have no special meaning and were arbitrarily and
independently assigned as outputs of both clustering algorithm.

TABLE III

SOME CHARACTERISTICS OFSF CLUSTERS.

k 1 2 3 4 5 6
Nodes 180 86 52 123 34 160

Internal edges 537 195 75 254 8 903
% of connected pairs 14 66 17 14 1 16

Diameter 8 12 5 8 2 8

curve (Figure 5 (a)) does not show a clear maximum. We then
consider as a reasonable choice ofK, the value after which the
difference in two successive BIC does not increase significantly
anymore. This leads to selectingK = 6 as the number of classes
(Figure 5 (b)). We then compare into more details classifications
obtained with standard EM and with thesimulated fieldalgorithm
for parameterK = 6. A visualization of the confusion matrix
between SF and EM classifications is provided on Figure 6.
While some clusters remain very similar (even identical in the
cas of clusters SF and EM5), it is sometimes difficult to identify
correspondance; EM cluster2 splits into SF clusters1 and6 and
SF cluster2 content comes from EM clusters3 and6. Moreover,
characteristics for SF clusters are reported in Table III. All results
are made available on the supplementary website.

To assess the quality of such classifications is not an easy
task since there is no universal criteria to measure the relative
performance of the algorithms. We therefore illustrate thegain in
using our approach on the following specific features chosenfor
their relevance with regards to the data under consideration. Note

that presenting the resulting clustering as a whole is not possible
due to the size of the graph. An appropriate visualization tool is
missing to provide a global biologically meaningful idea ofthe
clusters. However, the clusters are available in separate files on
our website.

Ideally, we would like to check whether our approach results
in clusters better related to real biological networks. Since this
experiment is based on a graph that accounts for dependencies
that are expected to be strongly related to pathway information,
we assess the quality and relevance of the various clusters by com-
paring them to groups of genes in the same metabolic pathway or
in related pathways. [14] propose a method to detect significant
pathways associated to the [8] expression data set we are using.
They describe three scoring functions to characterize pathways at
the transcriptional level based on gene expression, coregulation
and cascade effect. Their pathway scores show relevance towards
the biological background. This work provides an interesting
tool to evaluate the performance of gene expression clustering
techniques. HighActivity Scoresare awarded to pathways that
exhibit many genes expressed above a given threshold or under
another threshold in the case of repression effects.Coregulation
Scoresare higher for pathways in which genes show greater
similarity in their expression patterns.Cascade Scoresaccount
for genes that do not show huge deviation from the reference
time point and for the structure and ordering of the reactions in
the pathway. In particular, they are useful to find out in which
pathway a reaction chain is active or shut down for the particular
experiment under study. For example, Transcription/Translation
pathways are given a highActivity Scorein results of [14]. This
is well captured by oursimulated fieldalgorithm which gathers
16 out of the 28 genes involved in Transcription mechanisms
in cluster6. In comparison, standard EM succeeds in gathering
11 of these genes at best. When considering two clusters, these
numbers raise respectively to24 genes for our approach against
19 for the independent gene case (see Figure 7). Note that due
to the restriction of our data set, we have no gene corresponding
to B12 in our data although it corresponds to some yeast gene.
Similar results hold for Translation involved genes.

We can also refer to the Vitamins metabolism that is given
a high Cascade Scoreby [14]. The simulated fieldalgorithm
gathers26 genes in the same cluster while EM recovers19

at best. If two clusters are merged, these numbers respectively
raise to44 and 35 genes out of the70 involved in the Vitamins
Metabolism. Another pathway that is reported to be related to
sporulation is the Oxydative Phosphorilation pathway thathas a
high Coregulation Scorein [14]. Our method finds24 genes in
cluster6 while EM groups at most16 out of the52 genes involved.
The detected genes are up-regulated at the second time pointand
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Fig. 5. BIC values for yeast data whenK varies from2 to 10. (a) comparing Simulated field and EM algorithms. Solid line: Simulated field algorithm,
Dashed line: EM algorithm;(b) Differences in two successive BIC for the Simulated field algorithm; (c) comparing various Markov models for the Simulated
field algorithm. Solid line:B = b× IK model, Dashed line: diagonalB model, Dotted line: fullB model.

Transcription pathway (KEGG) Simulated Field result EM result

Fig. 7. RNA polymerase Transcription pathway as taken from KEGG. The middle and right columns show the results obtained by merging two clusters,
respectively using thesimulated fieldalgorithm (middle) and the EM algorithm (right). Pink colored proteins correspond to genes that are included in the
two merged clusters while green ones correspond either to genes that do not belong to the clusters or to genes that were notincluded in the analysis. The
simulated fieldalgorithm (missing proteins: B4, B12, C2, C5, A49) outperforms EM (missing proteins: B4, B7, B11, B12, C2, C4, C5, C11, C25, C31) in
grouping together this class of genes.

are specific to ATP synthesis. The analysis shows that cluster 6

is related to Energy metabolism (eg. Oxydative Phosphorilation)
as well as metabolisms that deal with Transcription (eg. RNA
polymerase), Translation (eg. Aminoacyl-tRNA synthetase) and
Vitamins. Other pathways can be more fully recovered using our
approach and the additional graph information. As an illustration,
for the glycolysis pathway,24 genes belong to the samesimulated
field cluster while EM groups19 out of the44 in our data set.
These results show the inclination of our method to a better sensi-
tivity to group genes involved in meaningful identified metabolism
subunits than standard EM. Figure 8 shows genes assigned to
simulated fieldcluster 2 that are involved in Glycolysis. This
cluster is mainly related to Carbohydrate metabolism (see Table
IV).

Our method has the ability to group genes with a coordinated
activity during glycolysis despite some expression dissimilarities.
This is the case forY LR153C (EC6.2.1.1) and Y PL061W

(EC1.2.1.3) which have a slowly increasing expression while
genes in the main way converting glucose 6-phosphate into pyru-
vate (or conversely) are immediately over-expressed. As a matter
of fact the two former genes are not assigned to the same cluster
as the others when using standard EM. The glycolysis example
suggests that, as expected, our method outperforms traditional
clustering methods in grouping functionally related genesinto

clusters even if their expression pattern is not a sufficientclue.

To further assess the gain in using network information, we
also consider an ontological analysis approach to help withthe
biological interpretation of the results. We used the1935 GO
terms available -out of them is a subset of1016 terms involved
in biological process)- at the time of the study, from the Gene
Ontology (http://www.geneontology.org/ ) database.
The full list and additional information is made available on
our website (http://mistis.inrialpes.fr/people/
forbes/transparentia/supplementary.html ). Two
series of statistical tests are driven. The null hypothesisalways
being that a GO term is not over/under-represented and the
alternative being that a GO term is over- (first series) or under-
represented (second series). P-Values are computed with False
Discovery Rate (expected proportion of erroneous rejections
among all rejections) corrections, which addresses the multiple
testing issue. Moreover, arbitrary dependencies between groups
are taken into account (see [3]). The power of this correction is
lower than in [2] (null hypothesis are more easily accepted even
if wrong) that is valid under positive regression dependencies.
It is not sure wheither the GO terms hierarchy fulfills this
statement. Eventually, we will miss some over-representedGO
categories but we can be confident about identified ones. Thisis
the price to pay to account for multiple testing under arbitrary
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Fig. 8. Glycolysis pathway: colored EC numbers are in our data set. Pink
ones belong to the samesimulated fieldcluster while green ones (numbers
5.4.2.2, 5.1.3.3, 2.3.1.12, 1.2.4.1, 1.8.1.4, 1.2.1.5) donot.

dependencies. The analysis is summarized in Table IV which
shows respective P-values for over-represented GO terms inthe
clusters found by thesimulated fieldand standard EM algorithms.
Note that since clustering results forsimulated fieldand standard
EM algorithms differ, the cluster numbering corresponds tothe
simulated fieldalgorithm. The last column of the table shows the
best corresponding P-Values computed among all the EM clusters.
Although this does favor EM, the results show that thesimulated
field approach still performs better. Under-represented GO-terms
are not listed for sake of brevity and because most of over-
represented GO terms in one cluster show under-representation
in the other clusters and this with significant P-values.

The ontological analysis is consistent with the previous obser-
vations on pathways. In addition, it suggests that our method tends
to produce clusterings with more specificity than traditional EM
in the sense that GO terms that are significantly over-expressed in
one cluster are significantly under-expressed in the other clusters.
This is usually true but to a much lesser extent for clusters found
by EM. The simulated fieldalgorithm provides highly specific
clusters. To exhibit such a property we considered GO terms
with a reasonnable number of components (ten or so). GO terms
gathering are not specific to a distinctive class of genes. They do
not give a satisfactory evidence that our method can distinguish
between genes specific to some processes. GO terms with a too
low number of genes cannot lead to a real validation of the method
neither.

The genes classified under GO termGO : 0008652: amino-

TABLE IV

ONTOLOGICAL ANALYSIS : OVER-REPRESENTEDGO CATEGORIES

RELATED TO THE DIFFERENT CLUSTERS AND CORRESPONDINGP-VALUES.

SIMULATED FIELD (RESP. STANDARD EM) P-VALUES ARE COMPUTED FOR

SIMULATED FIELD (RESP. STANDARD EM) CLUSTERS.

Simul. field GO terms Simul. field Standard EM

Cluster P-values P-values
1 GO:0008652: amino-acid biosynth. 1.1E-2 0.193
2 GO:0006006: glucose metabolism 1.2E-7 8.7E-7

GO:0006090: pyruvate metabolism 5.9E-5 8.7E-7
GO:0006144: purine base metabolism 2.2E-2 0.259
GO:0015980 : energy dev. by oxid... 1.8E-2 3.3E-2

3 GO:0006259: DNA metabolism 4.1E-2 1
GO:0006261: DNA-dep. DNA replic. 4.1E-2 0.193
GO:0006271: DNA strand elong. 4.1E-2 0.208

4 no significant GO term N.A. N.A.
5 GO:0030437: sporulation 4E-2 0.26
6 GO:0006360: transcr. from RNA pol. 1.6E-2 2.5E-2

GO:0006164: purine nucleo biosynt. 2.0E-2 6.1E-2

acid biosynthesis (see Table IV) are a first example. The P-Value
(1.1%) shows that thesimulated fieldcluster (1) is highly specific
towards this function whereas the corresponding standard EM
cluster isn’t (P-value equal to0.193). Simulated fieldcluster5 is
an even more relevant example. It contains most of the sporulation
specific genes (GO : 0030437) listed in [8] (available on the
paper website or with our data in supplementary material). The
test conclusion is that this cluster is specific towards the invoked
function with a P-Value of4%. For comparison, the best results
among standard EM clusters is0.26 which does not lead to the
conclusion that this term is over-represented. Note that this is
somewhat surprising since these genes are apparently not linked
by any of the association types provided in the STRING database
(http://string.embl.de ). We looked for links related to
databases, co-expression, physical location on the chromosome,
fusion, experiments, co-occurrence in different genomes.But only
a text-mining link was detected, certainly due to the fact that
many of the genes are referenced in the [8] paper. According
to this paper,32 among34 genes in cluster 5 take a significant
part in the temporal program of yeast sporulation. This cluster
does not include however the class ofmetabolicgenes (quickly
induced) that are mainly recovered in another much bigger cluster.
A possible interpretation is that these latter genes have a quite
different regulator.

V. D ISCUSSION AND CONCLUSION

Our aim was to show that Hidden Markov models could be
introduced to incorporate various types of information about
biological objects (eg. genes) and in particular to account for
interactions between these objects (through biological networks
for instance). We focused on the task of classifying genes from
their expression profiles and from metabolic pathways data as an
illustration. The introduction of Markov models in this context
is new. They provide parametric models where the parameters
have a natural interpretation. Some of them (theαk ’s) can be
related to class proportions while others (matrix IB) to pair-wise
interactions (see Section II-A). In our method, parametersare
estimated but tuning is also possible, for instance, to incorporate
a priori knowledge regarding class proportions or strength of
interactions to put more weight on network data. Other clustering
methods are much less readable in that sense.

Preliminary results are promising. Experiments on simulated
data show that our approach can improve significantly classifica-
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tion rates. They also suggest that criteria based on BIC could be
used to guide the choice of the number of classes. Additional
experiments on real data (yeast) point out further interesting
features of our approach. Thesimulated fieldalgorithm leads
to biologically more plausible and more fully identified clusters.
When compared to clustering methods based on gene expression
only (eg.EM clustering), it has the advantage to produce clusters
associated to pathways with possible coordinated change ingene
expression. When compared with methods incorporating network
data, it has the advantage to consist in a statistically wellfounded
approach which does not require to choose a distance or a kernel
function and allows further statistical analysis regarding additional
issues such as model selection. It is also part of thesoftclustering
methods that provide membership probabilities instead ofhard
(usually more biased) classifications.

Future work would be to investigate this general methodology
in other contexts, with applications in proteomics, using genes
or proteins as central concepts through a variety of information
sources such as sequences, structures, expression patterns, po-
sition in networks,etc. Additional experiments could also be
useful to challenge our model on incomplete interaction data.
The difficult passage here is to determine the full pair interaction
network. In the synthetic data case, the8 nearest neighbourhood
setting is chosen because it is widely used in image analysis.
But it doesn’t claim to be the network that accounts at best for
interactions in an image. In the real biological dataset, weare
certainly faced to a graph only summarizing a fraction of thereal
hypothetical gene interaction network ofSaccharomyces cerevisæ.
Biological interaction networks are known to be incompleteand
the reliability of the interactions vary a lot. Hence it makes it
difficult to assess the proportion of information initiallypresent
in the network. A possibility would be to take into account a
wider range of pair dependencies and to assign weights according
to prior knowledge on the reliability of the interaction. Our
model was designed to deal with such a refinement. This kind
of information is not available yet on the metabolic networkwe
considered. Alternately, it might be worth building an interaction
network using a database like STRING (http://string.
embl.de/ ) which offers confidence level for gene interactions
from various sources (physical chromosome neighbourhood,two-
hybrid, literature link,...). Before that, more specific analysis
would be useful as regards the generalization to missing data that
often occur in biological studies. Our mean field-like framework
allows such a generalization. Also, in a variety of applications,
overlapping clustering, wherein some items are allowed to be
members of two or more discovered clusters, is more appropriate.
Methods have been proposed that would be worth investigating
in the context of genetic data analysis.
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