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Gene co-expression networks from RNA
sequencing of dairy cattle identifies genes
and pathways affecting feed efficiency
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Abstract

Background: Selection for feed efficiency is crucial for overall profitability and sustainability in dairy cattle
production. Key regulator genes and genetic markers derived from co-expression networks underlying feed
efficiency could be included in the genomic selection of the best cows. The present study identified co-expression
networks associated with high and low feed efficiency and their regulator genes in Danish Holstein and Jersey cows.
RNA-sequencing data from Holstein and Jersey cows with high and low residual feed intake (RFI) and treated with two
diets (low and high concentrate) were used. Approximately 26 million and 25 million pair reads were mapped to
bovine reference genome for Jersey and Holstein breed, respectively. Subsequently, the gene count expressions data
were analysed using a Weighted Gene Co-expression Network Analysis (WGCNA) approach. Functional enrichment
analysis from Ingenuity® Pathway Analysis (IPA®), ClueGO application and STRING of these modules was performed to
identify relevant biological pathways and regulatory genes.

Results: WGCNA identified two groups of co-expressed genes (modules) significantly associated with RFI and
one module significantly associated with diet. In Holstein cows, the salmon module with module trait relationship
(MTR) = 0.7 and the top upstream regulators ATP7B were involved in cholesterol biosynthesis, steroid biosynthesis, lipid
biosynthesis and fatty acid metabolism. The magenta module has been significantly associated (MTR = 0.51) with the
treatment diet involved in the triglyceride homeostasis. In Jersey cows, the lightsteelblue1 (MTR = − 0.57) module
controlled by IFNG and IL10RA was involved in the positive regulation of interferon-gamma production, lymphocyte
differentiation, natural killer cell-mediated cytotoxicity and primary immunodeficiency.

Conclusion: The present study provides new information on the biological functions in liver that are potentially
involved in controlling feed efficiency. The hub genes and upstream regulators (ATP7b, IFNG and IL10RA) involved in
these functions are potential candidate genes for the development of new biomarkers. However, the hub
genes, upstream regulators and pathways involved in the co-expressed networks were different in both
breeds. Hence, additional studies are required to investigate and confirm these findings prior to their use as
candidate genes.
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Background
Globally, food demand is increasing as a consequence of

world population growth [1]. However, arable land to

produce sufficient amounts of food is decreasing, and

the carbon footprint is increasing [2]. Hence, solutions

for efficient and environmentally friendly methods to

produce food are urgently needed.

Feed efficiency (FE) in dairy cattle is the ability of a

cow to convert the feed nutrient consumed into milk

and milk by-products. Many approaches have been de-

veloped and adopted to select the most feed-efficient

cows. Currently, residual feed intake (RFI) has been used

to measure FE in dairy cows [3, 4]. Residual feed intake

is the difference between the predicted and actual feed

intake [5]. Regression models have been used to calcu-

late the RFI value. Thus, animals with low RFI values are

more efficient [6]. The genetic selection of animals with

a low RFI will improve profitability [7], decrease green-

house gasses emissions [8] and optimize the use of food

resources. However, in the case of dairy cattle, the inter-

pretation of RFI is not straightforward. Many other fac-

tors should be considered, as this selection might lead to

a negative energy balance, cause health issues and affect

the fertility of the cows [9, 10].

In Denmark, Holstein and Jersey are the most com-

mon dairy breeds used [11]. Comparatively, Holstein

and Jersey cattle do not differ in terms of digestibility,

energy efficiencies, and the ability to convert dietary pro-

tein to milk protein [12]. However, there are no gene ex-

pression profiling studies of these breeds. Hence, to

understand the complex biological mechanisms in nutri-

ent partitioning in dairy cattle, liver transcriptomics ana-

lysis may be useful to interpret and understand the

pathways and functional elements of the genomes in-

volved [13]. Transcriptomics is a form of high through-

put analysis to quantify gene expression in a specific cell

type or tissue [14]. Various studies have reported that

mRNA levels of many genes are heritable, which affects

genetic analysis [15–17]. Many studies based on tran-

scriptomics (microarray and RNA-sequencing) have

been conducted to study gene expression in feed effi-

ciency [18–20]. Studies on differential gene expression

have been well established to identify candidate genes

for biomarker development [21]. There are limited stud-

ies related to gene expression for RFI traits in dairy cat-

tle, particularly for Jersey and Holstein breeds. However,

some studies have reported the gene expression associ-

ated with RFI in other breeds and species. For example,

Lkhagvadorj et al. [22] found that the common energy

consumption controlled by PPARA, PPARG and/or

CREB is related to RFI in pigs. In beef cattle, Alexandre

et al. [19] reported the alteration of lipid metabolism

and an increase in the inflammatory response in animals

with low feed efficiency. Paradis et al. [20] also reported

a greater response to hepatic inflammation in heifers

with high feed efficiency. In Nellore beef cattle, Tizioto

et al. [23] identified the differentially expressed genes in-

volved in oxidative stress. Hence, transcriptomics ana-

lysis might provide additional knowledge on the

complex mechanisms that regulate nutrient intake.

Diet affects the energy metabolism and efficiency of

dairy cows [24]. Some studies have investigated the cor-

relation between FE and diet, focusing on the gene ex-

pression profiles of specific tissues. Dairy cows are

typically fed high energy or high-concentrate feed to

meet the high-energy demand during the lactation

period. It has previously been shown that high energy

feeding does not affect the fatty acid concentration but

does affect the expression of genes such as ACACA, LPL

and SCD in the lipid metabolism [25]. Thus, it is also in-

teresting to investigate the effects of different levels of

energy in feed using co-expression network approaches.

Previously, we performed differential gene expression

analysis on RNA from the livers of Holstein and Jersey

cows. We identified several differentially expressed genes

between high and low RFI [26]. The differentially

expressed genes were related to primary immunodefi-

ciency, steroid hormone biosynthesis, retinol metabol-

ism, starch and sucrose metabolism, ether lipid

metabolism, arachidonic metabolism and cytochrome

P450 in drug metabolism. These biological processes

and pathways are important mechanisms that are associ-

ated with feed efficiency.

Therefore, it is important to thoroughly investigate the

mechanisms controlling feed efficiency. Systems biology

is the most promising approach to obtain a better under-

standing of complex traits, such as feed efficiency. In

systems biology, many computational methods are based

on network approaches. Co-expression network analysis

has been successfully used to analyse complex traits and

diseases in humans and animals [27–30]. Weighted

Gene Co-expression Network Analysis (WGCNA) can

be used to identify clusters (modules) of highly corre-

lated genes [31]. WGCNA has been used to identify can-

didate genes that are associated with the FE. Alexandra

et al. (2015) identified differentially co-expressed genes

that are involved in lipid metabolism in RFI divergent

Nellore cattle. Similarly, lipid metabolism-related pro-

cesses were identified in low-RFI pigs [22].

In the present study, the WGCNA method was applied

to RNA-Seq data from the livers of Holstein and Jersey

cows to: i) identify groups of co-expressed genes and bio-

logical pathways associated with RFI; ii) identify the hub

genes and upstream regulators in these modules that may

be good candidate genes for feed efficiency-related traits;

and iii) compare the mechanisms and processes involved

in RFI between Holstein and Jersey cattle. To our know-

ledge, this study is the first to use weighted gene network
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approaches to examine the overall complex transcriptional

regulation of feed efficiency (RFI) using RNA-Seq data in

Danish Holstein and Jersey cows.

Materials and methods
Animal ethics statement

The experimental design and animals that were being

used in this experiment were permitted by the Danish

Animal Experimentation Inspectorate.

Experimental data

The experimental design and details of the experimental

animals have been previously described in [26].

In brief, the dataset used in this experiment consists of

38 RNA-Seq expression profiles of liver bioposies from

nine Holsteins and ten Jersey cows. In each breed group,

cows were classified in high and low feed efficient and

RNA samples were collected before and after treatment

diet (low and high concentrate diet). The animals were

assigned to the different diets after at least for 14–26 days

adaptation period. All 38 RNA samples were paired-end

sequenced using Illumina HiSeq 2500. The bioinformatics

pipeline for RNA-Seq data processing is described in [26].

The expression quantification was performed using

Ensembl Bovine annotation (release 82). The raw count

data matrix used in this study is available in http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92398.

Weighted gene co-expression network analysis (WGCNA)

The Weighted Gene Co-expression Network Analysis

(WGCNA) [31] R package was used to build

co-expression networks and identify groups of highly

co-expressed genes. Individual analyses were conducted

on each breed group.

First, the low count genes and outliers were filtered by

leaving only genes that had at least 1 count per million in

90% of the group. The remaining 11,153 genes in Holstein

and 11,238 genes in Jersey were used for the analysis. The

gene expression counts were normalized using the default

procedure from the DESeq2 package version 1.12.0 [32] by

correcting for the parity number to reduce potential effects

from the parity number factor. The normalized data were

subsequently log transformed as suggested in the WGCNA

manual (https://horvath.genetics.ucla.edu/html/Coexpres-

sionNetwork/Rpackages/WGCNA/). The final dataset was

used in WGCNA to build an unsigned network. Pairwise

Pearson’s correlations among all genes were calculated to

create an adjacency matrix. A soft threshold power was set

at β = 12 for Holstein and β = 10 for Jersey, correspondent

to a scale-free topology index (R2) [33] of 0.9 for Holstein

and 0.8 for Jersey. The adjacency matrix was used to calcu-

late the Topological Overlap Measure (TOM). Modules of

co-expressed genes were identified by using the dynamic

tree cut algorithm [34]. Modules were arbitrarily labelled

with different colours.

The module eigengenes were computed for each mod-

ule using the first principal component to capture the

variation in gene expression within each module. The

eigengene sign was chosen to have a positive correlation

with average module gene expression.

The correlation between module eigengene and RFI or

treatment diet was evaluated to select modules that were

associated with the respective traits (p-value < 0.05). In

addition, FDR were computed using Benjamini–Hoch-

berg (BH) method separately for each breed.

Gene significance (GS) was computed for each gene as

the correlation between gene expression counts and FE.

In addition, hub genes were identified, selecting genes

with high module membership (MM > 0.8) in the mod-

ules of interest.

Functional enrichment analysis

The modules that are significantly associated with RFI

and treatment diet traits were selected.

Functional enrichment analysis was performed in

the selected modules to identify and interpret com-

plex biological functions based on gene ontology

terms for the biological processes, molecular functions

and cellular components and based on the KEGG

pathways annotation.

All the genes included in each module were used in

the functional enrichment analysis with the Cytoscape

3.4.0 plug-in software, ClueGO v2.2.6 [35]. The signifi-

cance value was set as p-value < 0.05 and the BH correc-

tion was used as the multiple test correction. The

reference set used for this analysis included a total of

9064 genes. The list of genes in the module of interest

was also analysed using the STRING v.10.0 [36] database

and the Bos taurus annotation.

Ingenuity® Pathway Analysis (IPA®) was used to detect

upstream regulators, diseases and functions in the se-

lected modules. The upstream regulator analysis identi-

fies the upstream regulators that better explain the

change in gene expression. The analysis is based on the

set of indirect relationships present in the IPA® database.

The algorithm computes an overlap P-value by measur-

ing enrichment of network-regulated genes to determine

the most likely set of upstream regulators. Next, the al-

gorithm computes the activation Z-score by identifying

the match of up- and down-regulation annotated in In-

genuity knowledge base. The Z-score is then used to

predict the activation state of the upstream regulators

(either activated or inhibited).

A summary of the pipeline of the experimental work-

flow, bioinformatics and statistical analysis is presented

in Fig. 1.
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Results

In the present study, WGCNA was used to identify RFI

and diet-associated co-expression modules and their key

functions. In total, 72 modules (Fig. 2) for Holstein cows

and 59 modules (Fig. 3) for Jersey cows were identified.

Subsequent the module detection, we have performed

multiple testing corrections (Additional file 1: Tables S1

and S2 in each breed using BH method despite the norm

that it is not carried out across gene network modules

and traits. Unfortunately, after the multiple testing cor-

rections, none of the top module is significant at ad-

justed p-value < 0.05 and therefore the results are to be

validated in independent experiments with larger sample

size, which is beyond the scope of this study. The results

reported here are therefore are of exploratory and pre-

liminary in nature. Therefore, modules with nominal

p-value< 0.05 were used to be reported and discussed in

the subsequent sections.

A total of 11 modules and four modules were signifi-

cantly correlated with RFI for Holstein and Jersey cows,

respectively. Additionally, 13 modules for Holstein and

two modules for Jersey were significantly associated with

treatment diet.

We assigned all the significant modules into the

ClueGO application analysis to investigate the gene

ontology (GO) and KEGG pathway-related functions

with specific traits. The modules with the top significant

module trait relationships (MTRs) were selected as the

modules of interest in the present study. The modules

lightsteelblue1 and violet in Jersey cows and the modules

salmon and magenta in Holstein cows were selected for

RFI and treatment diet, respectively.

Fig. 1 Experimental design and co-expressed gene network analysis pipeline
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Fig. 2 Module trait relationship (p-value) for detected modules (y-axis) in relation with traits (x-axis) for Holstein cows. The module trait relationship
were colored based on the correlation between the module and traits (red = strong positive correlation; green = strong negative correlation). X-axis

legend: Diet = Treatment diet; RFI = Residual feed intake; Lact_no = Lactation number
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Fig. 3 Module trait relationship (p-value) for detected modules (y-axis) in relation with traits (x-axis) for Jersey cows. The module trait relationship
were colored based on the correlation between the module and traits (red = strong positive correlation; green = strong negative correlation).

X-axis legend: Diet = Treatment diet; RFI = Residual feed intake; Lact_no = Lactation number
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Modules related to RFI and treatment diet in Holstein

cows

In Holstein cows, among the 11 modules that were sig-

nificantly (p-value< 0.05) related to the RFI, salmon

module (203 genes with MTR RFI = 0.7) is the top sig-

nificant module. For the diet trait, we identified the ma-

genta module as the top significant module. The

magenta module comprised 212 genes that contribute to

the MTR Diet = 0.82.

In the top module (salmon), steroid biosynthesis was

identified as the most enriched KEGG pathway (Fig. 4).

This finding was also confirmed after analysing the

genes in this module using www.string-db.org, and

almost the same pathways and same patterns appeared

in the output. Interestingly, most of the enriched path-

ways of co-expressed genes in Holstein cows were in-

volved in steroid, lipid and cholesterol biosynthesis and

metabolism (Fig. 4).

Additional file 1: Table S3 shows a summary of the

functional groups with the number of genes involved in

the GO terms and pathways. In total, 84 GO terms were

significantly enriched (p-value< 0.05) after multiple test-

ing corrections using BH. The GO-terms and KEGG

pathways presented here are also almost the same as the

output from the STRING 10 analysis (Additional file 1:

Tables S5, S6 and S7).

Fig. 4 Pie chart presenting an overview of the significant GO terms and KEGG pathways in the salmon module in Holstein cows
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The list of upstream regulators identified for the mod-

ules that are significantly associated with RFI and diet

are presented in Additional file 1: Table S11. In the sal-

mon module, ATP7B was predicted as activated, while

POR and cholesterol were predicted as inhibited. In

Additional file 1: Tables S13 and S14 shows the diseases

and functions involved in salmon and magenta modules.

The module eigengene diagram for both of the salmon

and magenta modules shows a higher average expression

profile in high RFI samples (Fig. 5 a and b).

The list of genes with high (MM > 0.8) in the salmon

module is presented in Table 1.

Modules related to RFI and treatment diet in Jersey cows

Among the four modules significantly (p-value< 0.05) re-

lated to RFI in the Jersey group, the lightsteelblue1 mod-

ule (72 genes) with a module trait relationship (MTR

RFI = − 0.57) is the top significant (p-value< 0.05) mod-

ule associated with RFI. In total, 44 GO terms were sig-

nificantly enriched (p-value< 0.05) after multiple test

correction using BH. For the diet trait, among the two

significantly correlated modules, the violet module was

the top significant (MTR Diet = − 0.47). However, this

module has limited output from a functional enrichment

analysis or no interesting biological information related

to diet. Hence, the modules related to diet for the Jersey

breed were not further discussed.

Figure 6 and Additional file 1: Table S4 shows the top

summarized GO terms involved in the lightsteelblue1

module that is related to immune system functions. The

first and the second GO terms, which are associated

with the regulation of lymphocyte activation and positive

regulation of leukocyte activation, involved almost the

same genes as those that are involved in immune system

functions. In detail, primary immunodeficiency has been

identified (p-value< 0.05) as a significant KEGG pathway

that involves four genes together with the positive regu-

lation of leukocyte activated GO terms.

We identified IFNG (Interferon Gamma) as inhibited

and IL10RA (Interleukin 10 Receptor Subunit Alpha),

NKX2–3 (NK2 Homeobox 3) and dexamethasone were

predicted as activated upstream regulators (Additional

file 1: Table S12). In Additional file 1: Tables S14 and

S16 shows the diseases and functions involved in light-

steelblue1 and violet modules.

Interestingly, all of these upstream regulators have

functions related to the immune system. In addition,

GO-terms and KEGG pathways from the STRING 10

analysis (Additional file 1: Tables S8, S9 and S10) also

give almost the same output.

The module eigengene for the lightsteelblue1 module

shows has an average expression profile that is lower in

high RFI individuals (Fig. 7).

The list of genes with high (MM > 0.8) in the light-

steelblue1 module is presented in Table 2.

Discussion
WGCNA identified groups of co-expressed genes that

are expected to perform the same biological functions

and affect RFI. From the MTR, we tested the modules

that were significantly correlated to the focus traits (RFI

and diet). However, only the most significant module

had any interesting biological meaning associated with

the traits (one module in each breed). Hence, only the

Fig. 5 a Module eigengene (y-axis) across samples (x-axis) from the salmon module (associated to RFI) (b) Module eigengene (y-axis) across samples

(x-axis) from the magenta module (associated to treatment diet)
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Table 1 List of the top hub genes generated from (MM > 0.8) in the salmon module in Holstein cows

Ensembl gene ID Gene name Module membership Gene significance

ENSBTAG00000000197 TRMT10A 0.801 0.576

ENSBTAG00000001774 SPRY2 −0.814 − 0.520

ENSBTAG00000001950 RDH11 0.852 0.441

ENSBTAG00000002412 CYB5B 0.907 0.633

ENSBTAG00000002435 PTPRE 0.852 0.767

ENSBTAG00000002714 GNAI1 0.901 0.557

ENSBTAG00000002827 ACAT2 0.946 0.691

ENSBTAG00000002966 DNAJC13 0.813 0.710

ENSBTAG00000003068 MSMO1 0.852 0.579

ENSBTAG00000003305 NCF1 0.802 0.642

ENSBTAG00000003696 CCDC64 0.837 0.679

ENSBTAG00000003718 HACL1 0.854 0.705

ENSBTAG00000003948 0.919 0.559

ENSBTAG00000004075 IDI1 0.870 0.607

ENSBTAG00000004688 DHCR24 0.859 0.555

ENSBTAG00000005183 MVK 0.906 0.497

ENSBTAG00000005498 SQLE 0.816 0.442

ENSBTAG00000005650 SKAP2 0.826 0.589

ENSBTAG00000005976 HSD17B7 0.809 0.550

ENSBTAG00000006999 RYR1 0.929 0.763

ENSBTAG00000007014 CEP63 0.823 0.623

ENSBTAG00000007079 LCP1 0.806 0.583

ENSBTAG00000007840 HMGCR 0.888 0.522

ENSBTAG00000007844 CETN2 0.836 0.335

ENSBTAG00000008160 MBOAT2 0.865 0.534

ENSBTAG00000008329 CYTIP 0.823 0.477

ENSBTAG00000010347 EZR 0.850 0.506

ENSBTAG00000011146 RAB8B 0.884 0.473

ENSBTAG00000011839 HMGCS1 0.871 0.507

ENSBTAG00000012059 MVD 0.831 0.364

ENSBTAG00000012170 UBL3 0.813 0.729

ENSBTAG00000012432 FDFT1 0.821 0.529

ENSBTAG00000012695 LCK 0.837 0.534

ENSBTAG00000013284 0.886 0.736

ENSBTAG00000013303 ACSS2 0.866 0.571

ENSBTAG00000013749 RHOQ 0.868 0.525

ENSBTAG00000014517 KLB 0.857 0.640

ENSBTAG00000015327 SPTAN1 0.899 0.637

ENSBTAG00000015980 FASN 0.859 0.490

ENSBTAG00000016445 YME1L1 0.807 0.717

ENSBTAG00000016465 DHCR7 0.903 0.521

ENSBTAG00000016709 NT5C3A 0.824 0.615

ENSBTAG00000016721 ZNF791 0.824 0.559

ENSBTAG00000016740 ACLY 0.918 0.520
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most biologically meaningful modules were further ana-

lysed and discussed.

For Holstein cows, we identified pathways and upstream

regulators related to steroid biosynthesis, lipid metabol-

ism, cholesterol metabolism and production in salmon

module. In particular, we identified the activation of chol-

esterol and lipid synthesis in high RFI cows. There was a

tendency for these three mechanisms to be activated in

the datasets, which is consistent with the idea that high

synthesis of fat is correlated with the loss of energy used

in milk production in dairy cows, resulting in less feed ef-

ficient animals [37]. This finding is also consistent with

previous studies that associated high fat deposition with

high RFI animals [6, 38]. The magenta module was signifi-

cantly associated with diet and involved the energy con-

sumption and regulation of glucose.

For Jersey cows, the lightsteelblue1 module was

enriched for immune system-related functions. Interest-

ingly, the upstream regulators for the genes in the light-

steelblue1 module (IFNG and IL10RA) were also related

to the immune system. In particular, the immune system

in high RFI group was activated. Thus, the activation of

the immune system leads to low feed efficiency, which is

consistent with previous studies [19, 39].

These findings are supported by evidence from the

co-expression network analysis of both breeds.

Table 1 List of the top hub genes generated from (MM > 0.8) in the salmon module in Holstein cows (Continued)

Ensembl gene ID Gene name Module membership Gene significance

ENSBTAG00000018936 LSS 0.839 0.580

ENSBTAG00000018959 RAB11A 0.828 0.670

ENSBTAG00000020984 RAPGEF4 0.856 0.775

ENSBTAG00000021842 0.804 0.492

ENSBTAG00000030951 0.844 0.508

ENSBTAG00000036260 LPXN 0.801 0.391

ENSBTAG00000037413 TMEM164 0.810 0.468

ENSBTAG00000047970 0.835 0.558

Fig. 6 Pie chart visualization of GO terms and KEGG pathways in the lightsteelblue1 module in Jersey cows
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Co-expressed networks in Holstein cows

The functional enrichment analysis determined that the

module identified in Holstein cows was involved in chol-

esterol biosynthesis, steroid biosynthesis, lipid biosyn-

thesis and fatty acid metabolism.

From the most significant pathways, cholesterol bio-

synthesis has previously been discussed, as its related

genes are important in the RFI. The cholesterol biosyn-

thetic pathway is responsible for the variability of choles-

terol levels in cells [40]. This module was also enriched

Fig. 7 Module eigengene (y-axis) across samples (x-axis) from the lightsteelblue1 module (associated to RFI)

Table 2 List of the top hub genes generated from (MM > 0.8) in the lightsteelblue1 module in Jersey cows

Ensembl gene ID Gene name Module membership Gene significance

ENSBTAG00000000431 TRDC 0.858 −0.411

ENSBTAG00000000432 TRAC 0.860 −0.526

ENSBTAG00000000715 0.889 −0.487

ENSBTAG00000001198 0.810 −0.555

ENSBTAG00000002669 RASSF4 0.802 −0.722

ENSBTAG00000003037 0.829 −0.485

ENSBTAG00000004894 0.907 −0.497

ENSBTAG00000004917 KLRK1 0.826 −0.437

ENSBTAG00000005628 0.818 −0.490

ENSBTAG00000005892 ZAP70 0.864 −0.609

ENSBTAG00000006452 CD3D 0.900 −0.494

ENSBTAG00000006552 LAMP3 0.827 −0.501

ENSBTAG00000007191 CCL5 0.909 −0.480

ENSBTAG00000008401 PFKFB3 0.808 −0.547

ENSBTAG00000009381 LCP2 0.857 −0.654

ENSBTAG00000012695 LCK 0.852 −0.510

ENSBTAG00000013730 CD5 0.857 −0.403

ENSBTAG00000014725 CD27 0.822 −0.474

ENSBTAG00000015708 CXCR6 0.879 −0.469

ENSBTAG00000015710 CD3E 0.875 −0.537

ENSBTAG00000017256 CD2 0.914 −0.474

ENSBTAG00000019403 MALSU1 0.800 −0.536

ENSBTAG00000020904 JAK3 0.857 −0.439

ENSBTAG00000027246 UBD 0.888 −0.621

ENSBTAG00000030426 0.889 −0.379

ENSBTAG00000037510 0.853 −0.433

ENSBTAG00000038639 CXCL9 0.906 −0.425

ENSBTAG00000039588 0.815 −0.535

ENSBTAG00000047988 0.842 −0.365

Salleh et al. BMC Bioinformatics          (2018) 19:513 Page 11 of 15



for lipid biosynthesis. Interestingly, the levels of choles-

terol and lipids have previously been positively associ-

ated with RFI in beef cattle [41].

Many genes in this modules have previously been asso-

ciated with feed efficiency, [39]. For example, Acetyl-CoA

carboxylase alpha (ACACA), Acetyl-CoA Acetyltransfer-

ase 2 (ACAT2), and fatty acid synthase (FASN) genes in

the modules are key genes in cholesterol biosynthesis, or-

ganic hydroxy compound metabolism, collagen fibril

organization, steroid biosynthesis, astral microtubule

organization, protein oligomerization and oxidoreductase

activity, acting on the CH-CH group of donors and NAD

or NADP as an acceptor. ACACA and FASN were found

to be differentially expressed and co-expressed in other

feed efficiency-related studies [22, 39, 42]. The main func-

tion of FASN is to catalyse the synthesis of palmitate from

acetyl-CoA and malonyl-CoA, in the presence of NADPH,

into long-chain saturated fatty acids. Hence, these genes

have a tendency to affect the feed efficiency in Holstein

cows. In addition, many studies have discussed the in-

volvement of several genes included in the modules that

we identified in the present study (CYP7A1, ACACA,

FASN) [39, 43]. The presence of ACAT2 is also interesting

because the product of this gene is involved in lipid

metabolism [44].

Other feed efficiency studies, for example, in pigs, have

previously observed that lipogenesis and steroidogenesis

in liver tissue are closely related to feed efficiency [22,

45], confirming previous observations in the differential

expression analysis of this dataset [26].

In Holstein cows, we identified ATP7B as a top up-

stream regulator for the salmon module. This protein

uses energy in the molecule adenosine triphosphate

(ATP), which is responsible for the transport of metals

into and out of cells using the energy stored in the mol-

ecule adenosine triphosphate (ATP). ATP7B appears to

be activated in high RFI (low FE). Hoogeveen et al.

(1995) [46] stated that the deficiency of copper in rats

would increase the utilization of fat in rats. Hence, this

finding suggests a relationship when ATP7B is activated,

which potentially reflects the deposition of fats. Consist-

ent with the present study, the high RFI cow shows the

activation of ATP7B. This upstream regulator shows a

relationship with regulating the fat consumption. Al-

though it is not straightforward, the presence of the gene

reflects the consumption of fat and indirectly affects the

fat composition [47].

In the present study, cholesterol synthesis was acti-

vated in the IPA upstream regulator analysis. Further-

more, the activation of lipid metabolism in the disease

function analysis supports the evidence from the GO

term and pathway analyses. As lipid and cholesterol me-

tabolism, and fat synthesis in particular, are activated in

the high RFI group, we can assume that the high RFI

group is inefficient in converting fat to energy. Hence,

animals with high RFI (low FE) have high levels of chol-

esterol and fat in the body [48]. This finding is also con-

sistent with Arthur et al. [49], who reported the positive

relationship between RFI and average back fat in beef

carcasses.

Interestingly, when fed a high or low concentrate diet,

triglyceride homeostasis was the top GO biological

process, which might be the result of the high energy or

low energy diet. A previous study reported that con-

trolled diet (with fructose and glucose) significantly af-

fects the triglyceride levels [50].

Generally, based on the results obtained from the func-

tional enrichment analysis for the Holstein breed, the

most important GO terms, KEGG pathways and upstream

regulators involved were related to steroid biosynthesis,

cholesterol biosynthesis, lipid biosynthesis and triglyceride

homeostasis. These findings show that the feed efficiency

in Holstein cows is strictly associated with the regulation

of energy via lipid and cholesterol metabolism.

Co-expressed networks in Jersey cows

The most significant pathways in Jersey cows were posi-

tive regulation of interferon-gamma production, lympho-

cyte differentiation, side of membrane, natural killer

cell-mediated cytotoxicity and primary immunodeficiency.

Interestingly, these most summarized pathways were re-

lated to the immune system. From the IPA upstream regu-

lator and diseases function analysis, the immune system

related functions were activated in the high RFI group.

Several studies also suggested that the involvement of

the immune system would affect the feed efficiency [51,

52]. For example, [19, 27] discussed important findings

but in different species and breeds. Kristina et al. [39]

discovered an increase in the inflammatory response of

the progeny of low RFI sires, which is consistent with

the results of the present study. The type of diet might

also affect the immune response. For example, Ametaj et

al. [53] reported that the feeding of high concentrate

feeds affects several inflammatory responses in feedlot

steers. However, in the present study, no significant ef-

fect from the different type of concentrate diet in Jersey

cows was observed. This finding might reflect the differ-

ent populations and different breeds, as dairy cattle con-

vert their nutrients into different products with respect

to beef cattle [54]. Although, many other studies relate

their findings with the importance of the immune sys-

tem in RFI and feed efficiency, few studies have been

conducted in dairy cattle [19, 20, 39].

Furthermore, these significant GO terms and pathways

were also supported by the findings from upstream regula-

tor analysis through IPA®. The top upstream regulator in

Jersey cows is Interferon Gamma (IFNG), which has an

interesting relationship to interactions among nutrition,
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metabolism, and the immune system [55]. This gene en-

codes a soluble cytokine that is a member of the type II

interferon class. IFNG was predicted to be inhibited in

high RFI Jersey cows. This protein is secreted from cells of

both the innate and adaptive immune systems. IFNG is

important in the system because it directly inhibits viral

replication. The down-regulation of this cytokine in the

high RFI group in Jersey cows might affect the feed effi-

ciency. Thus, IFNG plays an important role in regulating

immune systems in animals. Another interesting upstream

regulator in Jersey cows is IL10RA (Interleukin 10 Recep-

tor Subunit Alpha), which was predicted to be activated.

IL10RA is a receptor with anti-inflammatory properties

[56]. The activation of this gene might result in inhibition

of the synthesis of pro-inflammatory cytokines. Reyn-

olds et al. [57] reported that IL10RA was differentially

expressed in rumen papillae of divergent average daily

gain steers and these authors showed a negative asso-

ciation between the inflammatory response and feed

efficiency. Thus, the activation of IL10RA in the high

RFI group would reflect the inflammatory response in

Jersey cows.

We further speculate that, based on the results ob-

tained in the Jersey breed, the most important GO

terms, KEGG pathways and upstream regulators were

related to the immune system. Jersey cows have many

co-expressed genes that relate to the immune system to

regulate feed utilization. It is likely that in Jersey cows,

immunity plays a key role in substituting feed nutrient

into milk and milk components. The immune response

plays an important role in energy balance during milk

production in dairy cows.

Comparison of RFI associated modules between Holstein

and Jersey cows

In the datasets analysed in the present study, the most

significant module associated with RFI differed between

the Holstein and Jersey breeds. Furthermore, these mod-

ules were enriched for different sets of biological pro-

cesses. This evidence suggests that the Holstein cow

system is more reactive towards steroid biosynthesis,

while Jersey cows have more reactions in their immune

systems. Several studies have reported the importance of

the lipid and cholesterol metabolism and immune sys-

tem related functions in feed efficiency traits in farm an-

imals, likely reflecting the complex role of the liver in

regulating the nutrient uptake [58].

The hub genes of the modules identified in the present

study represent potential candidate genes for RFI. These

findings might provide additional information and new

insights into the biological processes that are associated

with RFI in these two main dairy breeds. Thus, we spec-

ulated that in this study population, the liver transcripto-

mics profiles of the two main dairy breeds are involved

in two different biological processes. However, a com-

parative feed efficiency study reported similar results in

terms of digestibility and ratios of milk to body weight

and feed intake between Holstein and Jersey cows [12].

The sample size of the present study did not enable con-

firmation of whether the identified biological processes

are breed specific. To confirm this notion, the set of

genes should be validated in other cows using qPCR to

confirm whether the expression patterns conform to dif-

ferent RFI-diet groups, which is out of the scope of the

present study. In addition, a common limitation of static

gene co-expression studies is the impossibility to decide

if the identified modules are causing variation in the trait

analysed or if their co-expression is a consequence of

the variation observed for trait. Consequently, in this

study we never talk about causality. Further study such

as eQTL mapping (data integration between transcripto-

mics and genomics) could help in understanding better

causality between gene expression and trait variation.

Conclusion

In conclusion, the co-expression network analysis re-

vealed important genes and pathways in the liver that

are involved in feed efficiency (RFI). In Holstein cows,

the overall results showed that genes and upstream reg-

ulators such as ATP7b in RFI-associated modules that

were co-expressed were primarily related to steroid and

lipid biosynthesis. The results show that high RFI Hol-

stein cows have a high lipid and cholesterol metabolism.

The co-expressed genes associated with treatment diet

were involved in triglyceride homeostasis. We observed

different patterns of co-expressed genes involved in

Jersey cows for which most of the co-expressed genes

associated with RFI were related to the immune system

in the most significant module. The upstream regulators

IFNG and ILR10 that were predicted to be inhibited and

activated, respectively, were closely associated with the

immune system in Jersey cows. A high RFI Jersey cow

tends to have a higher response to inflammation. The in-

formation of the functional enrichment from the analysis

of co-expressed genes provides a better understanding

of the mechanisms controlling RFI in Holstein and

Jersey cows. Thus, the present study paves the way

for the development of biomarkers for feed efficiency

in dairy cattle.
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