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Gene discovery in ALS: What’s been found, what’s in store, and the implications for 

clinical management 

 

Abstract 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease predominantly affecting 

upper and lower motor neurons, leading to relentlessly progressive weakness of voluntary 

muscles, with death typically resulting from diaphragmatic failure within two to five years. 

Since the discovery of mutations in SOD1 in 1993, which account for about 2% of ALS, there 

have been increasing efforts to understand the genetic component of risk in the expectation 

that this will reveal mechanisms causing motor neuron death, aid diagnosis and 

classification, and guide personalized treatments. In this Review, we outline previous and 

current efforts to characterize ALS genes, describe what is currently known about the 

genetic architecture of ALS, both in terms of the effects on family history, and the likely 

nature of future gene discoveries, and explore how our understanding of ALS genetics 

affects present and future clinical decisions. We observe that the effect of many ALS gene 

variants lies somewhere between mutations that greatly increase risk and common variants 

that have a small effect on risk, and combine this with insights from Next Generation 

Sequencing to explore the implications for genetic counselling.  
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Key points: 

• Amyotrophic lateral sclerosis (ALS) is a syndrome resulting from many possible 

underlying genetic variations. 

 

• The genetic architecture of ALS is predominantly one in which a few rare variants 

contribute to risk in each individual rather than a polygenic architecture in which the 

cumulative effect of many common variants increase risk. 

 

• Carrying a disease mutation does not inevitably lead to ALS in every case, and many 

ALS genes are also implicated in other conditions, including frontotemporal dementia 

and cerebellar disease. The distinction between familial and sporadic ALS is not 

clear cut. These factors greatly complicate genetic counselling in ALS. 

 

• The rate of gene discovery in ALS is doubling every four years. 



 

• The data are consistent with a model in which multiple molecular steps are required 

to cause ALS. The causes of the steps may be genetic or environmental.  



Introduction 

Amyotrophic lateral sclerosis (ALS, also known as motor neuron disease) is a devastating 

neurodegenerative disease affecting upper and lower motor neurons and, to a variable 

extent, extramotor systems such as temporal circuits and behavioural and executive frontal 

circuits.1,2 An affected person becomes progressively weaker over months, until death 

occurs from neuromuscular respiratory failure, typically two to five years after first symptoms.  

 

Although the peak age of onset is about 70 years, ALS can affect people of any age and is 

the commonest neurodegenerative disease of mid-life; the cumulative lifetime risk of ALS is 

about 1 in 300.3 The incidence is 1-2 per 100,000 person-years.4 The point prevalence 

however is only 5 per 100,000 persons because of the very poor prognosis. 

 

Only a few non-genetic risk factors have been reliably confirmed for ALS, increasing age 

being one, although it is not clear if the risk drops off for the very elderly.5 Many studies also 

show an increased risk for males, with a 3:2 male-female ratio, but this is not true for all 

populations, and may depend on the age structure of the studied group, since men 

predominate at younger ages.6 

 

Does sporadic ALS have a genetic component? 

A family history of ALS or frontotemporal dementia can be obtained in a significant 

proportion of cases.7 Depending on the definition of familial ALS used, between 5% and 20% 

of people report a positive family history. While it may be obvious that familial ALS has a 

genetic component, it is not so clear whether apparently sporadic ALS has any genetic 

basis. Twin and other family studies have shown that the heritability of apparently sporadic 

ALS is about 60%, suggesting that a substantial genetic contribution is available for 

discovery even in those with no family history.8-10  

 



Although making a distinction between familial and apparently sporadic (isolated) cases is 

useful for genetic counselling and in informing suitable research strategies for gene 

discovery, the boundary between the two is not clear cut. The definition of familial disease 

varies widely between physicians,11 but even when there is a single gene variant that greatly 

increases the risk of ALS, the probability of obtaining a positive family history depends on 

the family size.12 When the disease gene variant only contributes moderately to ALS risk or 

increases the risk of other conditions in addition to ALS, the probability of noting a positive 

family history drops further.13 It is therefore expected that familial ALS mutations should 

sometimes be found in those with apparently sporadic ALS, and this is indeed confirmed in 

multiple studies. The corollary is that in each person, even apparently sporadic ALS may 

result from a few gene variants that each confer a moderate risk, rather than the alternative 

scenario of the cumulative effect of multiple common gene variants each contributing a little 

to disease risk. 

 

Gene discovery and ALS genetic architecture 

Family based studies have been highly successful in identifying ALS genes. In the past, 

these used a technique in which the transmission and sharing of genetic variations within a 

family were used to home in on the disease gene (a method called linkage), but now it is 

possible to simply sequence the entire genome (whole genome sequencing), or for 

economy, focus on the protein coding portion of the genome where disease gene variation is 

likely to be found (whole exome sequencing). Even though whole genome and whole exome 

sequencing will miss some forms of genetic variation, the combination of these methods and 

linkage is an excellent method for identifying ALS genes in families.14,15 However, even the 

most frequent cause of ALS, a mutation in which a hexanucleotide repeat, GGGGCC in an 

intron of the C9orf72 gene is expanded into hundreds or thousands of repeats, is not 

detectable by sequencing because large and repetitive sequences are missed by the 

technology and analysis tools currently used, emphasizing the importance of using statistical 

techniques, family studies and other methods in addition to whole genome sequencing.   



 

In sporadic ALS, a widely used method for gene discovery has been to search for 

association of genetic variants with disease status in case-control studies. Genome-wide 

association studies using common variants have identified a few replicable ALS risk loci.16-20 

This method of gene discovery is based on the “common disease common variant” 

hypothesis under which sporadic ALS is assumed to result from the cumulative effect of 

multiple common genetic variants. It is therefore useful to consider whether ALS is a 

common disease in this context, since it will reveal the likely genetic architecture – multiple 

small contributions to risk or a few large contributions to risk.  

 

Discrete traits such as schizophrenia with a lifetime risk of around 1% are sufficiently 

common that the common disease common variant hypothesis could apply. On the other 

hand, rare diseases with a genetic basis are often caused by large effect mutations in a 

single gene, and have a lifetime risk that is a tiny fraction of a percent. Huntington’s Disease 

is an example of such a condition. ALS lies somewhere between these two extremes, 

suggesting that it might have a genetic architecture somewhere between the two.  

 

A review of lists of genetic risk factors for ALS (for example, http://alsod.iop.kcl.ac.uk)21,22 

focussing on those in the Online Mendelian Inheritance in Man (OMIM) database23 (Table 1), 

and combined with examination of genes identified from genome-wide association studies24 

(Table 2) allow some inferences. 

 

ALS, like other neurodegenerative diseases, has a single, overwhelmingly large genetic 

signal detectable by association tests. In the case of ALS, the association is with genetic 

variation on chromosome 9.16,17 Despite the strength of this association, it was only 

detectable with sample sizes in the thousands, and only replicated with a further increase in 

sample size. The association signal corresponded to the genetic location of a signal 

identified in families with inherited forms of ALS.25-31 We now know that both signals are 

http://alsod.iop.kcl.ac.uk/


pointing to the same genetic variant, hexanucleotide repeat expansion in the C9orf72 

gene.32,33 The reason this expansion mutation is detectable with both case-control 

association studies and family based studies is because it occupies the middle ground 

between a rare gene variant that almost inevitably leads to disease and common gene 

variation that only increases risk a little (Figure 1). The hexanucleotide expansion results in a 

moderate increase in the risk of ALS, frontotemporal dementia or both, and is responsible for 

up to 10% of apparently sporadic ALS in some populations, and about 30% of familial ALS.  

 

A few common gene variants are replicably associated with ALS, increasing risk by a small 

amount only. One is in the UNC13A gene.34,35 Expansion of the CAG trinucleotide repeat in 

the ATXN2 gene is known to cause spinocerebellar ataxia, but if the repeats are of 

intermediate size, smaller than the range associated with spinocerebellar ataxia, they are a 

well replicated risk factor for ALS.36 Common variants in the MOBP gene and the SCFD1 

gene, also show replicated association with ALS (Table 2). Variants in ELP3 have been 

associated with ALS, and although, because of the nature of the variation, no replication 

study has been done, there is functional work to support the findings.37 Similarly, SMN1 copy 

number variation,38 and indel mutation in the NEFH gene are considered risk factors (Tables 

1 and 2).39  

 

Single nucleotide variations account for only 8.5% of the heritability of ALS, which is much 

smaller than the equivalent for schizophrenia for example at 21%, suggesting that rare 

variation, structural variants such as large deletions or inversions, and repeat sequences 

that are not captured by current high throughput techniques must account for much of the 

heritability.19,40 In support of this view, a large genome-wide association study of ALS has 

shown a  larger than expected contribution from low-frequency variants in genetic 

susceptibility to ALS  (See Box 1). 

  

Sequencing as a gene finding strategy 



The disproportionately large role for low-frequency variation in the genetic architecture of 

ALS, including apparently sporadic ALS, is a strong argument to look for such variants. 

When there is no family history, a case-control design is the simplest approach, but requires 

the ability to sequence the whole genome to assay the rare variation. Although whole 

genome sequencing is now feasible, the major problem is that it is not straightforward to 

interpret findings. One might expect that a protein changing mutation found in patients but 

not controls must indicate pathogenicity, but this is not the case, since many protein 

changing mutations occur in the general population, as can be seen from 60,706 sequenced 

control exomes in the ExAC database, http://exac.broadinstitute.org.41 On average, each 

person has ten major protein truncating or extending mutations without obvious disease 

effects. Furthermore, in a late onset disease one would expect as yet unaffected controls to 

carry disease-causing mutations, and when changes are rare, the numbers available for 

statistical testing are small. Since rare variation is also likely to be specific to certain 

populations, replication studies are difficult and this leads to uncertainty around the statistical 

declaration of a relationship between a variant and disease. One potential test is post 

mortem identification of protein encoded by a putative ALS gene in pathological inclusions or 

aggregates, but this is only useful if such material is available and if the protein is found.42 

 

These problems are illustrated with SOD1 mutation in ALS. The initial linkage based studies 

showing a disease associated locus on chromosome 21 led to the identification of the p.A5V 

mutation of SOD1 as a causative variant.43,44 Subsequently, other SOD1 mutations were 

identified, with either linkage or functional evidence or both. However, the discovery of SOD1 

as a pathogenic ALS gene led to widespread sequencing of the gene in families and those 

with apparently sporadic ALS, leading ultimately to more than 130 mutations being identified 

in this 153 amino acid gene (http://alsod.iop.kcl.ac.uk). Identification of a protein changing 

mutation in a known ALS gene in a patient with ALS naturally leads to the assumption that 

the mutation is causative, but functional evidence or evidence for familial segregation is 

often lacking or limited.13,45 A similar problem now arises in the large scale sequencing of 

http://exac.broadinstitute.org/
http://alsod.iop.kcl.ac.uk/


genomes of people with ALS. Identification of a rare variant in someone with ALS cannot on 

its own be regarded as evidence of pathogenicity, even if it occurs in a known ALS gene. 

Because such variants are by definition rare, it is not possible to provide even statistical 

support through an association with ALS. Using bioinformatics methods to predict if a variant 

is detrimental is not effective either, as many of the protein coding variants in the Exome 

Aggregation Consortium (ExAC) database are predicted to have detrimental effects, even in 

SOD1, despite being found in a general population sample.  

 

The problem of interpretation of findings is even more difficult for the 99% of the genome 

that is non-protein coding. Although it is a popular belief that we know the genetic code, this 

is only true for the protein coding portion of the genome. For the non-coding component we 

have made some progress46 but we do not completely understand how the nuclear and 

cellular machinery interprets the sequence. It is therefore very difficult to understand whether 

a variant is pathogenic when found outside the coding regions. There are also further 

confounders that we are only now beginning to understand, such as the 3-dimensional 

conformation of the genome,47 the interaction of the genome structure with transcription48 

and somatic mosaicism in which different cells within a person have their own mutations 

collected through mitosis during development.49 

 

One response to this problem is collaboration on a truly global scale. This strategy allows 

sufficient numbers to be assayed that the less rare variants may be seen in more than one 

individual, allowing statistical support, or may be seen to cluster in a particular domain 

allowing functional studies to show pathogenicity of lesions in that region of a protein. If 

those interpretations are not possible, burden testing can be used in which a simple count of 

rare variants can be taken per gene in cases and controls, with statistical excess in one 

group used to support an argument for a pathological role of the relevant gene. One such 

initiative is Project MinE (http://www.projectmine.com), an international whole genome 

sequencing consortium using crowdsourcing for funding, which is on target to achieve a goal 

http://www.projectmine.com/


of 15,000 ALS whole genomes and 7,500 control sequences. Even this project will need to 

work with data from other populations to increase the number of controls available for 

example. 

 

Implications of genetic findings for the development of new treatments 

Recent efforts using family based whole exome and whole genome sequencing, and large-

scale genome-wide case-control association studies in ALS have already uncovered a 

number of novel ALS risk variants in various genes and illuminated potential molecular 

pathways (Table 1). These include an increased burden of protein-changing and loss of 

function mutations in the genes TBK1, NEK1, and a gene coding for a mitochondrial protein, 

C21orf2.19 The NEK1 protein interacts with C21orf2 as well as other proteins involved in 

motor neuron degeneration, including ALS2 and VAPB. TBK1 phosphorylates a protein 

implicated in ALS, OPTN.50 TBK1 mutations also appear to segregate with disease in 

pedigrees with ALS and FTD.15 TBK1 is known to be involved in autophagy, especially 

autophagosome maturation as well as the clearance of pathological aggregates through the 

proteasome. Other proteins involved in the proteasomal pathway include UNC13A, ATXN2, 

UBQLN2, SQSTM, and SARM1. Through the NF-kappaB pathway, TBK1 also has a role in 

innate immunity signaling, which is related to neuroinflammation and may have a role in risk 

and rate of disease progression in ALS.51  

 

C21orf2 is a poorly characterized protein, but through its interaction with NEK1 it has been 

shown to be crucial for proper DNA repair.52 Both NEK1 and C21orf2 are part of the “ciliome” 

and are required for the formation and maintenance of primary cilia.53 Defects in primary cilia 

are associated with various neurological disorders and cilia numbers are decreased in G93A 

SOD1 transgenic mice.54Microtubule organization and kinesin/dynein intra-flagellar transport 

are essential to maintain cilia structure and function, and it is known that disruption of the 

microtubule cytoskeleton is associated with the development of ALS,55 and mutations of the 

dynein subunit dynactin (DCTN1) are a rare cause of familial ALS.56 Other cytoskeletal 



proteins are also implicated in ALS through genetics. These include VAPB, VCP, SCFD1, 

OPTN, PFN1, NEFH, and TUBA4A.  

 

Previously identified ALS genes with varying levels of support, code for proteins involved in 

RNA processing (TDP43, FUS, SETX, ELP3, ANG, TAF15 and others). RNA processing is 

an ubiquitous process, and it is not yet clear why such defects might result in specific injury 

to motor neurons. 

 

Thus, molecular pathways relevant to ALS are emerging, and include DNA repair, RNA 

processing, autophagy, inflammation, protein degradation, mitochondrial dysfunction and 

cytoskeletal organisation (Table 1). These are all logical therapeutic targets, but the 

implication of new findings for individual patients may well be difficult to interpret. Progress in 

the discovery of novel ALS related genes is greatly accelerating (Figure 2).  Biological 

insights will grow concomitantly and therefore fuel novel therapeutic developments. Also, 

these discoveries are paving the way for precision medicine in ALS through the precise 

knock-down or even gene-editing of specific ALS associated mutations (Box 2). 

 

Implications of genetic findings for counselling in ALS 

Compounding the difficulty interpreting newly identified mutations are three genetic effects, 

oligogenic inheritance, pleiotropy and reduced penetrance. Oligogenic inheritance is when a 

single mutation is not sufficient to cause disease despite significantly increasing risk. Other 

factors are required such as other gene variants, to cause ALS. This was first described in a 

French family in which affected individuals had two different mutations, one in the maternal 

and the other in the paternal copy of the SOD1 gene,57 but more recently has been seen in 

affected individuals carrying combinations of risk variants in FUS, TARDBP, C9orf72, SOD1, 

VAPB, OPTN1, and ANG.58-60 C9orf72 hexanucleotide repeat expansion confers moderate 

risk, not as large as for typical familial disease genes, but far greater than the modest odds 

ratios seen for common variants associated with ALS. If oligogenic inheritance is a frequent 



theme in ALS, all the relevant gene variants will need to be identified and tracked through a 

family to reveal risk and will greatly complicate the interpretation of a positive gene test for 

genetic counsellors. An important and recent finding that further exemplifies how oligogenic 

inheritance might affect genetic counselling in the future is the finding that knockdown of the 

SUPT4H1 gene greatly reduces expression of the C9orf72 hexanucleotide repeat 

expansion.61 Deletions or loss of function mutations in SUPT4H1, therefore, might be a 

natural modifier of C9orf72 mediated toxicity and understanding the genetic variants an 

individual carries in SUPT4H1 would then be essential in interpreting the effect of being a 

C9orf72 hexanucleotide expansion mutation carrier. 

  

Pleiotropy is the observation that a particular gene mutation may result in different diseases, 

either simultaneously or in different individuals. For example, expansion mutation of C9orf72 

can result in ALS, frontotemporal dementia or both (Figure 3).62 For ATXN2 the situation is 

complicated further because the exact variation influences the disease: those with up to 28 

CAG trinucleotide repeats are normal, those with 29 to 32 repeats at risk of ALS, and those 

with 33 or more repeats at risk of spinocerebellar ataxia, with little overlap at the 

boundaries.36 The repeat sizes are not stable between generations. This phenomenon of 

pleiotropy in ALS is increasingly recognised, and extends most frequently to frontotemporal 

dementia, but also to ataxia, parkinsonism, mitochondrial myopathies, Paget’s disease, 

Alzheimer-type dementia, psychiatric disorders such as schizophrenia, and possibly multiple 

sclerosis, associated with variants in C9orf72, ATXN2, TBK1, FUS, C21orf2, NEK1, MATR3, 

CHCHD10, VCP, hnRNPA1, hnRNPA2B1 and others (Table 1).7,13,19,20 The implications for 

genetic counselling are that the family history may be incomplete, since the different 

diseases are not correctly recognised as a positive family history, and the interpretation of a 

positive gene test for other family members is no longer limited to the risk of developing a 

single condition.  

 



A related genetic phenomenon is age dependent penetrance. In this context, penetrance is 

the probability of developing a disease if a mutation carrier. All ALS genes and many genes 

for related conditions show age dependent penetrance, with the risk of manifesting disease 

increasing with age. This means that development of a disease is not inevitable just because 

someone carries a risk variant, since the age at which disease manifests may be older than 

the lifespan of the person. From a clinical perspective, this leads to the disease skipping 

generations and therefore impacts the likelihood of a positive family history, and also means 

that the reduced risk of developing a disease needs to be explained to gene carriers or those 

at risk, even though the exact profile of risk reduction is complex or unknown. There are also 

ethical difficulties for prenatal screening, for example, termination of a pregnancy for a fetus 

carrying C9orf72 expansion. These are very complex matters and counselling should be 

provided by trained clinical geneticists.63  

 

This complexity is perhaps best illustrated by further considering the hexanucleotide repeat 

expansion mutation of C9orf72, which is carried by up to 10% of all people with ALS in some 

populations, regardless of family history.64 A significant problem therefore, is whether 

everyone, even those with apparently sporadic ALS, should be tested. The lack of a family 

history of ALS is not strong evidence against this single gene cause. On the other hand, the 

correct interpretation of a positive result is not clear, since the mutation may not result in 

ALS in the offspring or relatives, and may not cause disease at all. Furthermore, at present, 

no treatment is possible, although that may change as genetic therapies become available. 

The correct approach is still under debate and there are differences between countries with 

some screening all patients and others only if there is a family history of ALS in a first degree 

relative. 

  

Multistep model 

These three genetic phenomena can be explained through a multistep model of ALS 

pathogenesis, which has recently been shown to fit the incidence profile of the disease.65 



The evidence fits a model showing that on average, ALS results from six pathological steps 

which may themselves result from one or more genetic or environmental risk factors. Also, 

the disproportionately large role for low-frequency high risk variation in the genetic 

architecture of ALS as opposed to the concerted action of thousands of low risk variants, is 

consistent with this model. The multistep model also explains gene x environment 

interaction, since some of the steps would be triggered by genes and others by 

environmental factors, but because these occur within a specific pathway, the environmental 

trigger is only relevant within the context of the genetic trigger.  

  

Implications of genetics for diagnosis and prognosis 

A desirable scenario is that knowledge of the gene profile of an affected individual provides a 

sensitive and specific diagnostic test for ALS. Indeed, it has been proposed that the El 

Escorial criteria should have provision for diagnosis of ALS based on identification of 

mutation in a familial ALS gene.66 However, because of the difficulties in interpreting the 

meaning of a mutation when there is no family history, there are challenges in using such an 

approach for most people with ALS. A gene profile might still be useful in allowing 

classification into a subtype suitable for targeting with a specific treatment strategy, either 

through gene therapy, or because a specific pathway can be targeted. 

 

To aid with interpretation and genetic counselling, we have provided information in Table 1. 

The genes where there is strong evidence for “genic constraint” 

(http://exac.broadinstitute.org), i.e. with “good” to “fairly good” Interpretability of genetic 

findings for counselling, are most suitable to routinely test if the phenotype allows for it. If 

genetic results are returned, even previously unknown mutations that lead to a truncated or 

absent protein can be regarded as being pathogenic. The “low” category is typically the 

category of genes that can have amino acid changing mutations which are probably 

pathogenic but not necessarily always, given the frequency of observed mutations in the 

general population such as those in the ExAC database, and the lack of evidence for 



segregation of genetic variation with disease within a family. One should be aware of this 

when routinely testing these genes in the clinic. The Variants of Uncertain Significance 

(VUS) category genes should really not be routinely tested in clinic since they encode 

proteins that are apparently highly tolerant of amino acid changing mutations. 

 

Risk profiling in healthy individuals using methods to evaluate the total effect of genetic risk 

is possible.67 Using individual gene profiles to predict the development of ALS by screening 

the population is not practical however, and is unlikely ever to be so. The major problem is 

the risk of false positive tests in a rare condition that cannot be prevented or avoided. Even 

in ideal circumstances, it is likely that screening would do more harm than good.  

 

There is a role for genetics in predicting prognosis. At present this is restricted to very basic 

observations such as a better or worse outlook being likely in those with certain mutations of 

SOD1 or an increased risk of frontotemporal dementia in those with C9orf72 expansion 

mutation. However, association studies examining survival offer the opportunity to generate 

a prognostic genetic score that could be used to stratify in clinical trials, or, in combination 

with clinical features, be used to inform clinical care. Already, there is replicated association 

of variants in the UNC13A gene and initial association of variants in the CAMTA1 gene with 

worse prognosis. Such findings are potentially important therapeutically, since the 

mechanism of ALS causation and the mechanism of disease progression may well be 

different. 

 

Conclusions 

Genetic studies of ALS are at an exciting and crucial phase in which advances in technology 

and unprecedented large scale international collaboration are combining to rapidly increase 

our understanding of the causes of this disease. 
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BOX1 

Types of genetic studies 

 

Genetic studies come in many forms and flavours depending on the genetic architecture of 

the disease or trait of interest. Below is an overview of different study designs. 

 

Genetic linkage studies 

A family study design based on the phenomenon whereby alleles at different loci are 

transmitted together from parents to offspring more often than expected by chance in 

relation to a disease. Linkage studies are typically good at identifying disease variants that 

are in themselves sufficient to cause disease (for example in Huntington’s chorea), but not 

so good at finding variants that only increase risk a little. 

 

Candidate gene studies 

The selection of one or more candidate genes based on a biologically plausible hypothesis, 

in order to compare genetic variation between cases and controls. Most past candidate gene 

studies have not replicated robustly. 

 

Genome-wide association studies (GWAS).  

GWAS either have a case-control design with disease status or a quantitative trait as 

outcome (e.g. blood pressure).  Typically hundreds of thousands of common variants are 

genotyped simultaneously using a DNA microarray, and frequencies of different variants are 

compared between cases and controls or correlated with the trait of interest. GWAS are well 

suited to find common variants that increase risk for a disease but are not necessarily 

causative. 

 

Genome-wide next generation sequencing studies 



Whole genome sequencing based studies typically include both common and rare  genetic 

variation. Because rare variants can so infrequent that statistical tests are not reliable, 

special techniques are needed. One method takes the aggregate of rare variation in a 

specific gene in cases and compares it with the aggregate in controls. Gene sizes vary, and 

large genes have more chance to accumulate rare variation, so some tests are weighted to 

account for these biases.   Another method tests each variant independently, and then 

combines the results across multiple DNA sequences to test for association. This allows for 

the fact that some variants might be protective and otherwise cancel out risk variants. . 

Examples of such tests are SKAT, C-alpha, and EREC. 

END BOX 

  



BOX2 

From risk genes to precision medicine 

 

The recent notion that the bulk of the genetic risk factors that remain to be identified in ALS 

are likely to be rare variants with intermediate to large effects on risk has important 

consequences for future drug development.  There is a clear need to accelerate the 

development of new ALS drugs since many clinical trials have been negative in the past. 

The hope is that the discovery of ALS risk genes will help this process. 

  

In general, three strategies are used to identify novel ALS risk genes allowing us to arrive at 

a precision medicine state. 

 

1. The identification of ALS risk genes that act in specific molecular pathways may allow 

for a stratified treatment approach using compounds that target the pathway. ALS 

genes do not appear to all act through the same mechanism. For example, FUS and 

TARDBP appear to be mainly active in RNA metabolism, TUBA4A and PFN1 in 

axonal and cytoskeletal biology, VCP, OPTN and TBK1 in autophagy, and UBQLN2 

and others in protein stability, conformation and degradation. Many other pathways 

will follow, and it is highly plausible that different compounds will be needed 

dependent on the class of ALS genes that is involved in a subgroup of patients. 

2. The identification of specific mutations that act through a toxic-gain of function in ALS 

may offer an opportunity for more specific precision medicine. Most notable 

examples are SOD1 and C9orf72. The first steps towards this approach in ALS have 

already been taken, as a successful phase 1 study with SOD1 antisense therapy has 

already been performed and a phase 2/3 trial is under way.68 Also, many research 

groups are working on the development of gene-targeted therapies through 

antisense oligonucleotides, and viral delivery of si-RNA, in particular for C9orf72 

mutation. One special caveat here is that overall knock-down of ALS gene 



expression, affecting both the wild-type and variant allele, might also have 

detrimental effects. This, for example appears to be the case in C9orf72.69,70 

3. The ultimate form of precision medicine, but also the most distant one, is that of 

genome editing. Recent exciting breakthroughs in molecular biology have made it 

possible to induce mutations or repair mutations through a biological machinery 

originally discovered in bacteria called CRISPR/cas9.71,72 This form of precision 

medicine is in fact “pinpoint-medicine”, meaning that within one ALS gene, every 

damaging mutation involved would need its own specific treatment. Current elegant 

examples are the elaborate efforts in Duchenne muscular dystrophy where specific 

antisense therapies are being tested to induce exon skipping to improve dystrophin 

levels in muscle and thereby improved functional outcome in patients. Since 

dystrophin is a very large gene with 79 exons and many mutations have been 

described, many specific antisense oligomers will be needed that each target the 

disease in a very small subset of patients. 

 

For some ALS mutations it is very clear that they are directly disease causing and therefore 

amenable to targeting with a precision medicine approach.  Nevertheless, while mutations or 

genes can have robust statistical association with ALS, for many mutations direct 

pathogenicity has not been demonstrated. The hope is that high-throughput screening in 

neuronal cell models, for example, based on patient-derived induced pluripotent stem cells, 

will make this process easier. Importantly, these functional assays should be done only 

when there is sound genetic evidence to begin with.73 

END BOX 

  



Definitions 

Locus 

A chromosomal region, often defined by a property such as coding for protein or RNA. 

 

Allele 

A genetic variant 

 

Recombination  

Two genetic variants can be inherited from one parent but originate from different 

grandparents.  If such variants are on the same chromosome, this means that sections of 

chromosomes have swapped during meiosis, a process called recombination.  

 

Linkage disequilibrium  

A measure of whether gene variants are associated with each other.  Variants that are in 

linkage disequilibrium are found together on the same haplotype more often than expected 

by chance.  

 

Haplotypes  

Combinations of genetic variants that are inherited together.  

 

Penetrance  

The conditional probability of a phenotype (for example ALS) given a genotype.  

 

Genetic pleiotropy 

The situation where genetic variants can lead to more than one disease or trait. The 

diseases may appear unrelated from a clinical viewpoint. Decades ago, no one would have 

grouped ALS with FTD, but although there was increasing evidence for a clinical overlap 

over the last twenty years, the discovery of the C9orf72 repeat expansion in ALS-FTD, has 



dramatically confirmed an aetiological and pathological overlap. The C9orf72 genetic variant 

is also associated with Parkinsonism, Huntington’s chorea, Alzheimer’s disease, psychosis 

and bipolar disorder. 

 

Heritability  

The proportion of phenotypic variation in a population that is attributable to genetic variation 

among individuals.  

 

Genetic architecture  

The number of risk variants underlying disease, their relative frequencies, the size of their 

effects on risk and their mode of interaction.  

 

Next-generation sequencing (NGS) 

Highly parallel DNA-sequencing technologies that produce many hundreds of thousands or 

millions of short reads of DNA (25–500 bp) for a low cost and in a short time. The reads 

need to be assembled into a full genome by supercomputer. 

 

Mosaic mutations  

Mutations that are present in only a proportion of cells in the body.  

 

Structural variation  

Occurs in DNA regions generally greater than 1 kilobase in size, and includes genomic 

imbalances (namely, insertions and deletions, also known as copy number variants), 

inversions and translocations.  

 

De novo mutations  

Non-inherited novel mutations in an individual that result from a germline mutation.  



 

END Definitions 
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Figure 1. The relationship between allele frequency and effect size for ALS genes 

Traits such as height, body mass index (BMI) and schizophrenia are influenced by the 

cumulative effect of tens or hundreds of gene variants, each only contributing a little. 

Because of the small effect of each variant, there is only weak removal from the population 



by natural selection, and they can reach high frequency, becoming common. Diseases such 

as cystic fibrosis or Huntington’s chorea result from single gene mutations of very large 

effect, greatly increasing the risk of disease. Because of the large effect, such variants tend 

to be removed by natural selection and remain rare in the population, unless (as is the case 

for cystic fibrosis) they confer some selective advantage in certain environments. ALS has 

examples of single, large effect genes and small effect genes, but the majority of variants 

have an effect size somewhere in between. 

  



 

Figure 2. Gene count by year of publication 

The size of each sphere is in direct proportion to the number of ALS related publications for 

that gene. Gene count is doubling every four years. TDP43 is coded by the TARDBP gene. 

Data kindly provided by Dr William Sproviero. 

  



 

 

 

Figure 3. A stalagmite plot showing genetic pleiotropy in ALS 

The size of each plotted point is in direct proportion to the number of ALS and frontotemporal 

dementia (FTD) publications referencing that gene, with year on the Y axis. Each gene 

corresponds to a different colour stalagmite (key for the most important from left to right 

shown). The position on the X-axis corresponds to the proportion of publications in ALS vs 

FTD. 

 



Table 1. ALS genes as listed in OMIM, supplemented with recent discoveries 
 
Locus Name Gene/Locus Phenotype Inheritance Penetrance Other clinical 

features 
Ease of 
interpretation 
for 
counselling 

Initial 
genetic 
evidence 

Freq 
in 
ALS* 

Biological 
processes 

Evidence 
for genic 
constraint 

Refs 

1p36.22 ALS 10, with 
or without 
FTD 

TARDBP 
(encoding 
TDP-43) 

ALS; ALS-
FTD 

Dominant 
(recessive 
rare) 

Can be 
incomplete, 
mostly 
complete 

Supranuclear 
palsy, chorea, 
FTD 

Good Candidate 
gene and 
linkage 

1% DNA/RNA 
metabolism 

High pLI 74-76 

2p13.1 {ALS, 
susceptibility 
to} 

DCTN1, 
HMN7B 

ALS  Risk gene Incomplete 
 

Low Candidate 
gene in case 
control study 

UNK Vesicle 
trafficking 

Low pLI 
but low 
pNull 

77 

2q33.1 ALS 2, 
juvenile 

ALS2, ALSJ, 
PLSJ, 
IAHSP 

UMN 
predominant; 
juvenile 

Recessive Complete 
 

Fairly good but 
note atypical 
phenotype 

Linkage <1% Endosomal 
dynamics 

Low pLI 
but low 
pNull 

78,79 

2q34 ALS 19 ERBB4, 
HER4, 
ALS19 

ALS Dominant   Can be 
incomplete, 
mostly 
complete 

 
Good Linkage UNK Neuronal 

development; 
synaptic 
plasticity 

High pLI 80 

2q35 ALS 22 with 
or without 
FTD 

TUBA4A, 
TUBA1, 
ALS22 

ALS; ALS-
FTD 

Dominant UNK 
 

Fairly good Whole 
exome 
burden 

UNK Cytoskeleton 
architecture 
and 
dynamics 

High pRec 55 

3p11.2 ALS 17 CHMP2B, 
DMT1, 
VPS2B, 
ALS17 

ALS  Risk gene UNK FTD Fairly good Candidate 
gene in case 
control study 

UNK Autophagy; 
lysosomal 
pathway 

High pRec 81 

4q33 To be 
assigned 

NEK1 ALS Risk gene Incomplete Short rib-
polydactyly 
syndrome; 
renal 
pathology 

Low Homozygosi
ty mapping 
followed by 
candidate 
gene 
sequencing; 
whole 
exome 
burden 

3% DNA repair; 
cytoskeleton 
architecture 
and 
dynamics 

Low pLI 
but low 
pNull 

20,50
,82 



5q31.2 ALS 21 MATR3, 
MPD2, 
ALS21 

Brisk 
reflexes and 
split hand 
phenomenon 
LMN 
predominant 
disease 

Dominant UNK (Distal) 
myopathy, 
vocal cord and 
pharyngeal 
weakness, 
FTD 

Good but note 
atypical 
phenotype 

Whole 
exome 
filtering 

UNK DNA/RNA 
metabolism 

High pLI 83,84 

5q35.3 FTD and/or 
ALS 3 

SQSTM1, 
P62, PDB3, 
FTDALS3 

ALS; ALS-
FTD 

Dominant UNK Paget's 
disease, FTD 

Fairly good Candidate 
gene in case 
control and 
pedigrees 
with 
evidence for 
segregation 

UNK Autophagy  High pRec 85-88 

6q21 ALS 11 FIG4, 
KIAA0274, 
SAC3, 
ALS11, YVS, 
BTOP 

ALS; PLS Risk gene UNK CMT4J VUS Candidate 
gene in case 
control study 

UNK Unknown No  89 

9p21.2 FTD and/or 
ALS 1 

C9orf72, 
FTDALS1, 
FTDALS, 
ALSFTD 

ALS; ALS-
FTD 

Dominant Can be 
incomplete 

Parkinsonism, 
Huntington 
phenocopies, 
Alzheimer’s 
disease, 
schizophrenia, 
psychosis and 
bipolar 
disorder 

Fairly good Linkage and 
chromosom
e 9 
sequencing 

10% Toxic RNA 
species, loss 
of protein or 
toxic repeat 
dipeptides 
aggregation 

NA 32,33 

9p13.3 ALS 16, 
juvenile 

SIGMAR1, 
SRBP, 
ALS16, 
DSMA2 

Juvenile ALS Recessive UNK 
 

VUS Homozygosi
ty mapping 
followed by 
candidate 
gene 
sequencing 

UNK Endoplasmic 
reticulum 
chaperone 

No  90 

9p13.3 ALS 14, with 
or without 
FTD 

VCP, 
IBMPFD1, 
ALS14, 
CMT2Y 

ALS; ALS-
FTD. LMN 
predominant 
disease 

Dominant UNK Inclusion body 
myopathy with 
early-onset 
Paget disease 
and 
frontotemporal 
dementia 
(IBMPFD) 

Good but note 
phenotype 

Whole 
exome 
filtering 

UNK Autophagy  High pLI 91 



9q34.11 To be 
assigned                                                         

GLE1 ALS  Risk gene; 
not yet clear 

Incomplete 
 

Fairly good Candidate 
gene in case 
control study 
+ evidence 
for 
segregation 
in one 
pedigree 

UNK RNA export 
mediator 

High pRec 92 

9q34.13 ALS 4, 
juvenile 

SETX, 
SCAR1, 
AOA2, ALS4 

Juvenile ALS Dominant UNK AOA2, 
cerebellar 
ataxia, distal 
motor 
neuropathy 
(with brisk 
reflexes) 

Low Linkage UNK DNA/RNA 
processing 

Low pLI 
but low 
pNull 

92-96 

10p13 ALS 12 OPTN, 
GLC1E, 
FIP2, HYPL, 
NRP, ALS12 

ALS Recessive 
and 
dominant 

UNK Primary open 
angle 
glaucoma, 
FTD 

Fairly good Homozygosi
ty mapping 
followed by 
candidate 
gene 
sequencing 

UNK Autophagy  High pRec 97,98 

12q13.12 {ALS, 
susceptibility 
to} 

PRPH ALS Risk gene UNK 
 

VUS Candidate 
gene in case 
control study 

UNK Axonal 
regrowth 

No  99 

12q13.13 ALS 20 HNRNPA1, 
IBMPFD3, 
ALS20 

IBMPFD/AL
S 

Dominant Can be 
incomplete, 
mostly 
complete 

IBMPFD Good but note 
atypical 
phenotype 

Linkage and 
exome 
sequencing 

UNK RNA 
metabolism 

High pLI 100 

12q14.2 FTD and/or 
ALS 4 

TBK1, NAK, 
FTDALS4 

ALS; ALS-
FTD 

Risk gene; 
Dominant 

Incomplete, 
can be 
complete 

FTD Good Linkage and 
exome 
sequencing 
and whole 
exome 
burden 
testing 

1% Autophagy; 
neuroinflam
mation 

High pLI 15,50
,98 

12q24.12 {ALS, 
susceptibility 
to, 13} 

ATXN2, 
ATX2, 
SCA2, 
ASL13 

ALS Dominant 
(recessive 
rare) 

Incomplete Longer repeat 
sizes: 
spinocerebella
r ataxia, 
parkinsonism 

Fairly good Candidate 
gene in case 
control study 
and 
pedigree 
with 

1-2% RNA 
metabolism 

NA 36,10
1,102 



evidence for 
segregation 

14q11.2 ALS 9 ANG, 
RNASE5, 
ALS9 

ALS, more 
bulbar 

Risk gene Incomplete ANG 
mutations 
described 
together with 
FUS and 
TARDBP 
mutations 

VUS Candidate 
gene in case 
control study 

<1% Blood vessel 
formation; 
anti-immunity 

No  58,10
3-105 

15q21.1 ALS 5, 
juvenile 

SPG11 
(SPATACSI
N) 

Juvenile ALS Recessive Complete HSP-11, 
CMT2X 

Fairly good Linkage UNK DNA repair  High pRec 106,1
07 

16p11.2 ALS 6, with 
or without 
FTD 

FUS, TLS, 
ALS6, ETM4 

ALS; ALS-
FTD. May be 
young onset, 
aggressive 
ALS, 
especially 
mutation 
p.R521C. 
LMN 
predominant 
disease 

Dominant 
(recessive 
rare), de 
novo 

Can be 
incomplete, 
mostly 
complete 

Hereditary 
essential 
tremor-4, FTD.  

Good Linkage with 
candidate 
gene 
approach 

1% DNA/RNA 
metabolism 

High pLI 108-
110 

16p13.3 To be 
assigned 

CCNF16p13.
3-p12.3 

ALS; PLS Dominant Complete 
 

Low Linkage and 
exome 
sequencing 

UNK Autophagy  Low pLI 
but low 
pNull 

14 

17p13.2 ALS 18 PFN1, 
ALS18 

ALS Dominant Can be 
incomplete, 
mostly 
complete 

 
Low Whole 

exome 
filtering 

UNK Cytoskeleton 
architecture 
and 
dynamics 

Low pLI 
but low 
pNull 

111 

18q21 ALS 3 ALS3 ALS Dominant UNK 
  

Linkage UNK Unknown NA 112 

20p13 ALS 7 ALS7 ALS Dominant UNK 
  

Linkage UNK Unknown NA 113 

20q13.32 ALS 8 VAPB, 
VAPC, ALS8 

Slowly 
progressive 
ALS; LMN 
predominant 
disease 

Dominant Complete 
(one family) 

Essential 
tremor 

Low Linkage <1% Vesicle 
trafficking 

Low pLI 
but low 
pNull 

114 



21q22.3 To be 
assigned 

C21orf2 ALS Risk gene Incomplete 
 

VUS GWAS with 
custom 
reference 
panel 
imputation 

2% DNA repair; 
cytoskeleton 
architecture 
and 
dynamics 

No  19 

21q22.11 ALS 1 SOD1, ALS1 ALS; LMN 
predominant 
disease 

Dominant 
(recessive 
rare), de 
novo 

Can be 
incomplete 

Cerebellar 
ataxia and 
autonomic 
dysfunction 
(rare), FTD 
(rare) 

Fairly good Linkage 1-2% Autophagy; 
toxic 
aggregation 

Low pLI 
but low 
pNull 

43,11
5,116 

22q11.23 FTD and/or 
ALS 2 

CHCHD10, 
FTDALS2, 
SMAJ, 
IMMD 

ALS with 
myopathy, 
ataxia and 
FTD. LMN 
predominant 
disease 

Dominant Can be 
incomplete, 
mostly 
complete 

Parkinsonism  VUS Whole 
exome 
filtering 

UNK** Mitochondrial 
function 

No  117 

22q12.2 {ALS, 
susceptibility 
to} 

NEFH, 
CMT2CC 

ALS  Risk gene Incomplete 
 

Low Candidate 
gene in case 
control study 

UNK Axonal 
transport; 
cytoskeleton 
architecture 
and 
dynamics 

High pRec 39,11
8-121 

Xp11.21 ALS 15, with 
or without 
FTD 

UBQLN2, 
PLIC2, 
CHAP1, 
ALS15 

ALS; ALS-
FTD. UMN 
predominant 
disease 

X-linked 
dominant 

Incomplete Can be 
juvenile 

Low Linkage UNK Autophagy  Low pLI 
but low 
pNull 

122,1
23 

 

Table 1 Legend: 

The listed genes are biased towards European populations since there is limited genetic evidence for other populations. 

 

Interpretability for genetic counselling is based on genic constraint scores,41 phenotype and level of genetic evidence for involvement in ALS. Good means 

that interpretation is straightforward in most cases. Fairly good means that in many cases it may be possible to determine if the variant found is relevant to 

ALS. Low means that interpretation may be difficult because the encoded protein is tolerant to a degree of loss of function, and there may also be reduced 



penetrance, or there may be limited evidence for involvement in ALS. VUS indicates that variants of uncertain significance will be frequent because the 

protein encoded by the gene is tolerant to loss of function. In the VUS category, one will find many missense or even loss-of-function mutations that can be 

found in the general population. One should be cautious, therefore, to do routine testing on VUS category genes in ALS patients. 

 

Genic constraint interpretation: 

No: (No constraint). These are genes that are very tolerant to missense of loss of function mutations (resulting in truncated or absent protein) in the general 

population.  

high pLI: These are genes that are highly intolerant to any loss of function mutations, either heterozygous or homozygous. They are near Mendelian genes, in 

which mutations have very high or full penetrance. 

high pRec: These genes are mostly intolerant of homozygous loss of function mutations, but generally tolerant of heterozygous mutations. 

low pLI but low pNull: These genes are intolerant to some heterozygous and some homozygous mutations, but tolerant to others 

 

UMN: Upper motor neuron; LMN: Lower motor neuron; UNK: Unknown; Freq: Frequency; Refs: References 

* Assuming a rate of familial ALS of 10% in all ALS and based on European populations 

** Many variants have been published but any damaging effect of many of those in ALS and or FTD is still unclear 

 

  



Table 2. Replicated genome-wide association findings in ALS 
 

 
Location SNP 

Odds 
Ratio* Genes in locus Comment 

References 

chr 19 rs12608932 1.11 UNC13A Intronic variant, mode of action still unknown 16,17 

chr 17 rs35714695 0.88 

SARM1, POLDIP2, TMEM199, MIR4723, 
SEQBQX, VTN, TNFAIP1, KRT18P55, 
TMEM97, IFT20 Multiple plausible candidate genes 

18 

chr 21 rs75087725 1.45 C21orf2 Rare coding variant (1-2% minor allele frequency) 19 
chr 3 rs616147 1.10 MOBP Also associated with PSP  124 
chr 14 rs10139154 1.09 SCFD1, G2E3 Novel locus 19 

chr 12 rs74654358** 1.21 TBK1  
Either tagging multiple rare variants or independent 
actual functional variant 

15,50 

 

Table 2 Legend: 

Data are biased towards European populations since there is limited genetic evidence from other populations.  

 

Genome-wide association studies identify a variant on chromosome 9p21 as associated with ALS. This variant is a marker that tags the much rarer C9orf72 

hexanucleotide repeat expansion. It is still unknown whether the other associations here also represent tags for one or more rare variants with a large effect 

on risk or whether the associations are actually functional themselves and are common variants with a small effect on ALS risk. The C21orf2 variant has no 

correlation with other nearby variants and thus appears to be identifying a signal confined to C21orf2. 

 

Previously associated variants that were not found to be associated with ALS (uncorrected p value > 0.05) in Van Rheenen et al 2016, supplementary table 

15),19 include single nucleotide variants in or near FGGY, ITPR2, SUN3, C7orf57, DPP6, CAMK1G, SUSD2, 18q11.2, CYP27A1, CENPV, 8q24.13, and the 

three previously reported variants in VEGF;125 rs699947, rs1570360, rs2010963, neither were previously reported variants in PON1 and PON2;126 rs662, 



rs854560, rs10487132), ANG;35 rs11701, or HFE;19 rs1799945. Copy number variation in SMN1 and SMN2 127,128 and microsatellite variation in ELP3 37 have 

also been reported to be associated with ALS risk, but still await further independent replication by other groups. 

* Odds ratios taken from Van Rheenen et al 2016.19 

** This variant was near genome-wide significance (6.6 x 10-8) in Van Rheenen et al 2016.19 
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