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Several studies support currently the hypothesis that autism etiology is based on a poly-
genic and epistatic model. However, despite advances in epidemiological, molecular and
clinical genetics, the genetic risk factors remain difficult to identify, with the exception
of a few chromosomal disorders and several single gene disorders associated with an
increased risk for autism. Furthermore, several studies suggest a role of environmental
factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to
autism, based on updated family and twin studies, are examined. Second, a review of pos-
sible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented.
Then, the hypotheses are discussed concerning the underlying mechanisms related to a
role of environmental factors in the development of ASD in association with genetic factors.
In particular, epigenetics as a candidate biological mechanism for gene×environment inter-
actions is considered and the possible role of epigenetic mechanisms reported in genetic
disorders associated with ASD is discussed. Furthermore, the example of in utero expo-
sure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and
innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens
new perspectives for a better understanding, prevention, and early therapeutic intervention
of ASD.

Keywords: autistic spectrum disorders, environment, gene × environment interactions, epigenetics, multifactorial,
multidisciplinary

INTRODUCTION
Biological research in autism has attempted to improve our under-
standing of the neurobiological mechanisms possibly involved in
autistic disorder (AD); studies have been conducted in domains
as diverse as genetics, neurochemistry, neuropharmacology, neu-
roendocrinology, neuroanatomy, brain imaging, and neuroim-
munology. For example, structural and functional imaging and
neuropathological techniques applied to autism spectrum dis-
orders (ASD) brains have revealed developmental macroscopic
and microscopic abnormalities suggesting neuroinflammation in
frontal cortex and cerebellar regions, including cytokine produc-
tion and activation of microglia and astrocytes (1). Studies stress
increasingly that AD cannot be summed up or explained by a
single biological factor, but rather by a multifactorial etiology. A
multidisciplinary biological approach allows us to compare differ-
ent fields and methodological processes, thus to understand better
the neurobiology of autism. However, in spite of the numerous

studies conducted on AD during the last decades, it appears that
no etiological model, no biological or behavioral marker, and no
specific psychopathological process have been clearly identified
(negative or contradictory results, associations not replicated).
Although the genetic factors and the mode of transmission of
AD are not yet fully determined, the underlying genetic architec-
ture, such as known chromosomal rearrangements or single gene
disorders, are being identified through, for instance, more and
more routine chromosome microarray analysis (CMA) (2). Thus,
more than 200 autism susceptibility genes have been identified
to date, and complex patterns of inheritance, such as oligogenic
heterozygosity, appear to contribute to the etiopathogenesis of
autism. Similarly, cytogenetic abnormalities have been reported
for almost every chromosome [for a review, see Ref. (3–7) and
http://projects.tcag.ca/autism/]. Because of the lack of conclusive
results and concensus, it is probably more appropriate to use the
concept of syndrome to characterize autism. Autism is defined
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in the ICD-10 and DSM-5 as a delay or abnormal functioning
with onset prior 3 years in social communication, and manifesta-
tion of restricted, repetitive and stereotyped patterns of behavior,
interests, and activities.

Several authors support the hypothesis that the mechanism
underlying autism etiology is most likely polygenic and poten-
tially epistatic, and that environmental factors may interact with
genetic factors to increase risk (8, 9). Arguments for an environ-
mental contribution to AD come from the growing number of
studies on environmental factors in ASD, but also from the cur-
rent lack of conclusive results on an etiopathological genetic model
of autism. It seems important to reframe autism in a multifacto-
rial context. Autism could be considered as a psychopathological
organization that would result from the effects of diverse biologi-
cal factors and/or psychological factors, including genetic factors,
environmental factors, and gene× environment interactions. The
environmental factors could be post- or prenatal (psychosocial
environment but also cytoplasmic and uterine environment, with
placental exchanges and hormonal effects).

First, we will examine arguments for a genetic contribution to
AD based on updated family and twin studies. Then, after review-
ing the possible prenatal, perinatal, and postnatal environmental
risk factors for AD, we will discuss the hypotheses concerning the
underlying mechanisms related to their role in the development
of AD in association with genetic factors. In particular, the pos-
sible role of epigenetic mechanisms reported in genetic disorders
associated with autism will be considered.

GENETIC ARCHITECTURE OF AUTISM RISK
Several recent literature reviews underline the important role of
genetics in the etiology of AD (10–13). Much of the data come from
family and twin studies. The concordance rate among monozy-
gotic (MZ) twins ranges on average from 60 to 90%, and from 0
to 20% among dizygotic (DZ) twins. These rates depend on the
diagnosis and on the subtype of autism considered. In addition,
they are not sufficient to explain by themselves the autistic syn-
drome. Autism could be considered as a multifactorial hereditary
disorder, in other words a disorder that depends on numerous
genes (polygenic heredity) and environmental factors. Although
genetic studies have identified hundreds of genes associated with
ASD, the exact number remains unknown (10, 14). The wide phe-
notypic variability of autism may reflect the interaction between
genes and environment but also the interaction of multiple genes
within an individual’s genome and the existence of distinct genes
and gene combinations among those affected.

FAMILY STUDIES
The prevalence of autism in the general population has been esti-
mated in various ways that depend mainly on sampling methods
and diagnostic criteria, as noted already many years ago in the
report by Agence Nationale pour le Développement de l’Evaluation
Médicale (ANDEM) (15). Thus, the prevalence of autism varies
according to the diagnostic criteria of Kanner, DSM-III, and DSM-
IV classifications: from 1 to 5/10,000 according to Kanner or DSM-
III criteria up to 20/10,000 according to DSM-IV-TR criteria (16).
Prevalence of parent-reported diagnosis of ASD among 3- to 17-
year-old children in the USA reaches the very high rate of 1/91 (17).

Similar results are expected using the DSM-5 criteria given that
the diagnosis of autism is only based on ASD in this classification
(according to DSM-5 criteria, ASD includes two main domains of
autistic behavioral impairments: social communication impair-
ments and stereotyped behaviors or interests). Broadening of the
diagnostic criteria for autism and better recognition of the autism
behavioral phenotype may explain this rising prevalence, but a
true increase in incidence cannot be ruled out [Autism and Devel-
opmental Disabilities Monitoring Network, 2008; (18)]. However,
Fisch (19, 20) showed clearly that this rising prevalence is related
to the use of different diagnostic criteria. He concluded by saying
“There is no autism epidemic but a research epidemic on autism.”
Still, the reasons of such an increased interest in autism remain to
be understood (for example, a better organization of association
of parents, more funding contributing to an increase in the num-
ber of researchers and studies in autism, a growing interest for
social communication impairments in a society promoting social
communication networks).

It is noteworthy that there is a male prevalence in autism
[about three to four times higher in males than in females (21)],
which might also fit with greater social communication difficulties
observed in males compared to females with typical development.
Studies on the prevalence of autism in families with autistic chil-
dren show a higher rate than in the general population. The con-
cordance rate for siblings of individuals with autism of unknown
cause ranges from 5 to 10% and approaches 35% in families with
two or more affected children (22–25). Taken together, the rates
of AD in siblings of children with autism are on average 50–150
times higher than the rate of autism in the general population,
which suggests that autism has a family feature (family meaning
here environmental as much as genetic). Carlier and Roubertoux
(26) emphasized that in evaluating the risk, the degree of genetic
proximity and the degree of environmental similarity were cor-
related. Only two studies have attempted to assess the presence
of parental pathology at the same time as sibling pathology in
the families of autistic individuals. The first was the Utah epi-
demiological survey (1989) and the second was Gillberg et al. (27)
study. Ritvo et al. (25) reported that of the 214 parents seen in
the Utah survey, 7 were autistic, the majority being fathers. In the
epidemiologically based, case–control study by Gillberg et al. (27)
four fathers of the 33 autistic probands were considered to have
Asperger’s syndrome. This gives an overall prevalence of autism in
parents between the two studies of 2.3%. As underscored by Todd
and Hudziak (28) the presence of affected father–son pairs is not
compatible with simple X-linked transmission.

TWIN STUDIES
In the field of genetic research on AD, which compares MZ with
DZ twins, three interesting results can be presented (see Table 1
for a summary of the results from the updated studies):

• In each study, the concordance rate for MZ twins is higher than
for DZ twins.

• The concordance rate of AD in MZ twins is incomplete, suggest-
ing a contribution of environmental factors. Hallmayer et al. (9)
underline in their twin studies the involvement of both genetic
and environmental factors in the development of ASD.
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Table 1 | Pairwise concordance rates for autism in monozygotic twins (MZ) and dizygotic twins (DZ).

Authors MZ total

number of

twin pairs

Pairwise concordance rate DZ total

number of

twin pairs

Pairwise concordance rate

Folstein and Rutter (29) 11 Autism DSM-III 10 Autism DSM-III

4 (36%) 0 (0%)

Cognitive impairment (especially in

verbal communication)

Cognitive impairment (especially in

verbal communication)

9 (82%) 1(10%)

Carlier and Roubertoux (26) 30 26 (86%) 9 2 (22%)

Ritvo et al. (31) 23 22 (96%) 17 4 (17%)

Single case studies Smalley et al. (32) 11 9 (82%) 10 1 (10%)

Steffenburg et al. (33) 11 Autism DSM-III-R 10 Autism DSM-III-R

10 (91%) 0 (0%)

Cognitive impairment (mainly

language/writing/reading impairment)

Cognitive impairment (mainly

language/writing/reading impairment)

10 (91%) 3 (33%)

Bailey et al. (30) 25 Autism DSM-IV 20 Autism DSM-IV

15 (60%) 0 (0%)

Cognitive and social impairment Cognitive and social impairment

23 (92%) 2 (10%)

Rosenberg et al. (34) 67 Autism spectrum disorders DSM-IV 210 Autism spectrum disorders DSM-IV

59 (88%) 64 (31%)

Hallmayer et al. (9) Autism DSM-IV Autism DSM-IV

40 Male (M) pairs 17 (43%) 31 MM 4 (13%)

7 Female (F) pairs 3 (43%) 10 FF 2 (20%)

55 MF 2 (4%)

Autism spectrum disorders Autism spectrum disorders

DSM-IV-TR DSM-IV-TR

45 M pairs 29 (65%) 45 FF 9 (20%)

9 F pairs 3 (33%) 13 FF 4 (31%)

80 MF 5 (6%)

Nordenback et al. (35) 13 Autism DSM-IV-TR 23 Autism DSM-IV-TR

12 (92.3%) 1 (4.3%)

• In the Folstein and Rutter (29), Bailey et al. (30), and Hallmayer
et al. (9) studies, concordance rates vary according to the diag-
nosis: the concordance rates are higher for the broader autism
phenotype than for AD (full diagnostic criteria).

These results point to a possible etiological heterogeneity of
autism. The etiology could be different according to the subtype
of autism considered, a subtype that could be clinical as much as
biological. This may help us to better understand why none of
the genetics inheritance models proposed for autism, including
the polygenic model, can fully explain the autism phenotype in
the family and twin studies presented above. One of the current
issues in the field of genetic research on AD is to work on different
subtypes in order to identify the relevant genes. There are three
main approaches to identifying genetic hotspots or chromosomal
regions likely to contain relevant genes: (1) cytogenetic studies,

(2) whole genome screens, and (3) evaluation of a priori selected
candidate genes known to affect brain development or possibly
involved in the pathogenesis of autism.

Genome-wide association studies (GWAS) examine associ-
ations between disease and genetic variants such as single-
nucleotide polymorphisms (SNPs) or copy number variations
(CNVs). Genetic variants can be either inherited or caused (which
is often the case) by de novo mutations. CNVs and SNPs have
both been reported to play a major role in autism incidence (36–
41). Common SNPs acting additively have been reported as a
major source of risk for ASD (42) with heritability exceeding 60%
for ASD individuals from multiplex families and approximately
40% for simplex families. CNVs, including insertions, deletions,
and repeated sequences, can be highly disruptive to developmen-
tally regulated genes. Several CNV studies (36, 43, 44) identified
also structural changes in DNA, which contribute to the risk for
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ASD. Recent findings suggest the possibility that not only sin-
gle, but also aggregate molecular genetic risk factors, linked in
particular to alterations in calcium-channel signaling, are shared
between autism and four other psychiatric disorders (schizophre-
nia, attention-deficit hyperactivity disorder, bipolar disorder, and
major depressive disorder) (45, 46). However, the mechanisms
underlying the role of these mutations in the development of
ASD phenotypes remain to be ascertained. More generally, chil-
dren with neurodevelopmental problems, including ASD, are often
affected in more than one area of functioning of mental health to
the extent that hierarchies of mutually excluding categorical diag-
noses have to be considered as conflicting with scientific evidence
(47). It suggests, according to Anckarsäter (48), that genetic sus-
ceptibilities behind mental health problems have to be sought both
in relation to specific problem types and to general dysfunction,
using multivariate analyses with measures of all types of mental
disorders.

Concerning candidate genes, several of them have been stud-
ied at chromosome regions 7q22–q33 or 15q11–q13, and variant
alleles of the serotonin transporter gene at 17q11–q12 are more
frequent in individuals with autism [see Ref. (12), for a review].
Linkage data from genome screens and animal models suggest also
a possible role of the oxytocin receptor gene at 3p25–p26 (49).
Interestingly, the majority of the genes reported to be associated
with autism is involved in various physiological processes, such as
chromatin remodeling, metabolism, translation, and synaptoge-
nesis. These genes may converge into pathways affecting distinct
neuronal functions such as synaptic homeostasis. Such a genetic
basis of synaptic and neuronal signaling dysfunction in ASD has
been confirmed by recent findings (50) demonstrating differences
in transcriptome organization between autistic and normal brain
through gene co-expression network analysis.

Finally, it should be highlighted that the polygenic model does
not exclude a role of environment. It is noteworthy that heritability
(h2) is defined as h2

=GV/(GV+ EV) where GV is the cumulative
genetic variance and EV, the environmental variance (51). The pos-
sible prenatal, perinatal, and postnatal environmental risk factors
for ASD are presented below.

PRENATAL, PERINATAL, AND POSTNATAL ENVIRONMENTAL
RISK FACTORS FOR ASD
The prenatal factors associated with autism risk in the meta-
analysis provided by Gardener et al. (52) were advanced paternal
and maternal age at birth, gestational diabetes, gestational bleed-
ing, multiple birth, being first born compared to being third or
after, and maternal birth abroad. In fact, several recent studies sug-
gest that parental immigration, especially maternal immigration
but also paternal immigration, is a risk factor for ASD (53–59).
This association between migration and autism is more partic-
ularly observed in male children of immigrant parents living in
urban areas compared to rural areas (60). In addition, concern-
ing the prenatal risk factors for AD, a rare consistent association
with AD is in utero exposure to two known teratogenic medica-
tions, thalidomide, and valproate (valproate is a broad-spectrum
anticonvulsant drug used in seizures, bipolar disorder, or migraine
headache), or the abortifactant misoprostol (7, 61–63). Thus, chil-
dren exposed to valproate in utero were seven times more likely to

develop autism than those not exposed to antiepileptic drugs (61,
62). A large population-based cohort study of all children born
alive in Denmark from 1996 to 2006 was conducted on 655,615
children, including 508 prenatally exposed to valproate and 5437
identified with autism spectrum disorder (2067 with AD). Chil-
dren of women who used a high valproate dose (>750 mg/day)
or a low valproate dose (<750 mg/day) early (first trimester) or
later in pregnancy had significantly a higher risk of ASD and AD
compared with children of women who did not use valproate
(even after adjusting for maternal epilepsy and parental psychiatric
history, or restricting the analysis to children without congeni-
tal malformations), whereas this increased risk was not observed
for other antiepileptic drugs used as monotherapy. The mecha-
nisms of action of valproate will be developed later in the next
section. Furthermore, prenatal exposure to folic acid (known to
decrease the risk of neural tube defects) has also been associated
with the risk of autism (64). As folate and folic acid are essential
for basic cellular processes (including DNA replication as well as
DNA, RNA, and protein methylation), it could not be excluded
that, depending on timing and dose, such nutritional supplements
might also have adverse effects. Also, the time period at which
folic acid was added to the diet of women of childbearing age
coincides with the apparent onset of a continuous increase in the
prevalence of autism. However, a recent well-controlled epidemio-
logical study (65) disconfirms this claim and reports, as underlined
by Berry et al. (66) or Vahabzadeh and McDougle (67), a lower
incidence of AD in children whose mothers received prenatal folic
acid supplementation around the time of conception (64/61 042
or 0.10%) than in children whose mothers did not take folic acid
(50/24 134 or 0.21%). Similarly, in children from countries with-
out folic acid supplementation, autism has been linked to two
polymorphisms of the methylenetetrahydrofolate reductase gene
(MTHFR), which is essential for DNA biosynthesis and the epige-
netic process of DNA methylation (68). Although such findings do
not establish a causal relation between folic acid use and a lower
incidence of AD, they do provide an impetus for further study.
Finally, some authors (69, 70) have suggested a low but possible
risk of neurological problems and imprinting disorders (such as
Beckwith–Wiedemann syndrome and Angelman syndrome which
are genetic disorders associated with autism) in children conceived
by in vitro fertilization (IVF). However, earlier investigations on
possible links between assisted reproductive technologies (ART)
and autism have shown inconsistent results (71, 72). More recent
epidemiological studies involving larger populations show that
IVF is not associated with autism (73), but rather with a small
increased risk of intellectual disability (74). According to Sandin
et al. (74), the risk for ASD was significantly higher following
intra-cytoplasmic spermatozoid injection (ICSI) using surgically
extracted sperm and fresh embryos compared to IVF without ICSI
with fresh embryo transfer.

During the perinatal period, Guinchat et al. (75) pointed to
three factors associated positively with the development of AD:
prematurity (the risk for autism increased with the severity of
preterm birth), abnormal presentation in general and breech pre-
sentation in particular, and planned cesarean section. However,
the role of cesarean section as an independent risk factor for AD
needs to be clarified given that breech presentation is a common
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cause of first cesarean delivery. Thus, Bilder et al. (76) reported that
after correction for breech presentation, the observed association
between cesarean section and AD lost statistical significance. Other
studies grouped cesarean section in one specific variable [for a
review, see Ref. (75, 77, 78)], but cesarean section emerged as an
independent risk factor only in the Hultman et al. (79) study. Dur-
ing the neonatal period, conditions potentially related to hypoxia,
such as umbilical-cord complications, low 5-min Apgar score,
being small for gestational age, low birth weight (especially when
<1500 g), fetal distress, or meconium aspiration, as well as birth
injury or trauma, summer birth, feeding difficulties, neonatal ane-
mia, ABO or Rh incompatibility, and hyperbilirubinemia were
significantly (P < 0.05) associated with autism [for a review, see
Ref. (8, 75)]. Thus, Maimburg et al. (80, 81) and Buchmayer et al.
(82) published large population-based studies associating hyper-
bilirubinemia with independent risks for AD that might be related
to the potential toxicity of hyperbilirubinemia on basal ganglia and
cerebellum. It is noteworthy that prematurity might be a variable
masking the effect of hyperbilirubinemia. Interestingly, summer
season [summer birth was significantly associated with an elevated
risk of autism, RR: 1.14, P = 0.02; (8)] corresponds to the longest
days of the year. It strengthens the hypothesis developed by sev-
eral authors [for a review, see Ref. (83–85)] of a possible role of a
deficit in melatonin in the development of ASD (the production
of melatonin is powerfully suppressed by light acting through the
retino-hypothalamic tract). Finally, the perinatal factors with the
strongest evidence against a role in autism risk included anesthesia
use during delivery, assisted vaginal delivery, post-term birth, high
birth weight, or head circumference (8).

Effects of exposure to air pollution during pregnancy in the
first year of life deserve particular attention, especially because
they might be mediated by epigenetic mechanisms as in valproate
exposure. Epidemiological studies (86, 87) reported associations
between autism and air pollution at the birth and early life resi-
dences. Thus, residential proximity to freeways in California within
309 m during the third trimester of pregnancy and at birth was
found associated with a risk of ASD about twofold higher (88).
Studies in animal models (rodents) and humans described devel-
opmental effects of air pollution following prenatal and early life
exposure, such as altered neuronal differentiation, impaired cog-
nitive functions, and white matter abnormalities (89–91). Given
the male prevalence observed in autism, it is noteworthy that
adult male mice but not females, showed increased depression-
like responses and low resilience to stress in the tail suspension
test following prenatal exposure to urban freeway nanoparticulate
matter. In this line, Volk et al. (92) found that exposure during
pregnancy and the first year of life to traffic-related air pollu-
tion was associated with autism (DSM-IV and ICD-10 criteria
based on the ADI-R and ADOS scales). Children residing in homes
with the highest levels of modeled air pollution (>31.8 ppb) were
three times as likely to have autism compared to children resid-
ing in homes with the lowest levels of exposure (<9.7 ppb). An
increasing probability of autism was seen with increasing air pol-
lution (nitrogen dioxide and particulate matter less than 2.5 and
10 µm in diameter: PM2.5 and PM10) with a plateau reached
at a threshold above 25–30 ppb. Associations were reported for
each trimester of pregnancy but the smallest magnitude of the

effects was observed for the first trimester. Neurodevelopmental
effects of prenatal and/or early life exposure to polycyclic aromatic
hydrocarbons may be mediated by epigenetic effects (93). How-
ever, the results could also be affected by unmeasured confounding
factors associated with both autism and exposure to traffic-related
air pollution.

Furthermore, maternal depression (prenatal but also postna-
tal depression given that it is in fact very difficult to dissociate
depression during pregnancy from perinatal/postnatal depres-
sion) raises an interesting issue with regard to risk factors for ASD.
Interestingly, common genetic factors contributing to depression
and autism have been reported (45, 46). A study (94) conducted
on 4429 cases of ASD (1828 with and 2601 without intellectual
disability; antidepressant use during pregnancy for 1679 cases)
showed that a history of depression during pregnancy but not
paternal depression was associated with an approximately 60%
increase in risk of ASD in offspring (raw odds ratio 1.61, 95%
confidence interval 1.17–2.23, P = 0.004), particularly without
intellectual disability (adjusted odds ratio 1.86, 95% confidence
interval 1.25–2.77, P = 0.002), and more precisely for mothers
reporting antidepressant use during pregnancy but independently
of the type of antidepressant (adjusted odds ratio when depression
with antidepressant use 3.34, 1.50–7.47, P = 0.003; adjusted odds
ratio in case of depression without antidepressant use 1.06, 0.68–
1.66, not significant). These results are in line with the Croen et al.
(95) study reporting association between use of selective reuptake
inhibitor (SSRI) antidepressants during pregnancy and ASD in off-
spring. However, antidepressant use during pregnancy explained
only 0.6% of the 4429 cases of ASD in the Rai et al. (94) study. The
authors conclude that assuming causality, antidepressant use dur-
ing pregnancy is unlikely to have contributed significantly toward
the observed prevalence of ASD as it explained less than 1% of the
cases. In summary, the Croen et al. (95) study suggests an effect
of antidepressant use during pregnancy but, as supported by the
Rai et al. (94) study, a risk for ASD in severe maternal depres-
sion during pregnancy cannot be excluded or reduced to the effect
of antidepressant use. Further studies are requested to test fully
these hypotheses through a scientific approach and methodology.
It is noteworthy that to avoid the possibility of reverse causality
reported by Daniels et al. (96), only diagnoses of maternal depres-
sion recorded before birth were considered by Rai et al. (94).
Also, two meta-analyses (52, 97) underlined the lack of studies
with psychiatric diagnosis of parents before the birth of children
with autism, suggesting that depression during pregnancy may be
underestimated. Finally, given the continuity between prenatal and
postnatal depression, an effect of maternal postnatal depression on
early infant development cannot be ruled out.

It is difficult to establish if these prenatal, perinatal, and neona-
tal factors are independent environmental risk factors for ASD
involved in cause–effect relationship or are associated with ASD
but result themselves from other factors that still need to be identi-
fied. Thus, maternal immigration is probably not an independent
environmental risk factor for ASD but might be related to other
factors such as prenatal and/or postnatal maternal depression.
Similarly, several potential risk factors for ASD that occur dur-
ing the neonatal period, such as low Apgar scores or birth weight,
shortened gestational age or even breech presentation, may be
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the consequence of other risk factors during the prenatal and
perinatal periods, such as prematurity. Furthermore, the possible
effects mentioned previously of prematurity or severe maternal
depression on the risk for ASD could be related, for example, to
a dysfunction in brain development (e.g., prenatal depression is
associated with a modified biological profile involving, in par-
ticular, the serotoninergic system and the hypothalamo-pituitary
adrenal axis) and/or a deficit in very early social interaction and
sensory stimulation. Finally, it is noteworthy that in Gardener et al.
(8) meta-analysis, overall, preterm birth was not associated with
the risk of autism, although there was significant heterogeneity
across studies.

Concerning psychosocial factors occurring during the postna-
tal period, such as a severe deficit in very early social interaction,
AD has been reported in children institutionally exposed to pro-
found early social deprivation (98–100). However, several issues
have to be raised. First, if the pattern of autistic-like behavior found
by Rutter et al. (99) at 4 years of age in the sample of children
from Romanian institutions was indistinguishable from that seen
in typical children with autism, by age 6 years this “quasi-autistic”
pattern had diminished and a number of atypical features were
observed: the children displayed more flexibility in communica-
tion and a substantial social approach up to, for some of them,
an indiscriminately overfriendliness that is usually associated with
disinhibited attachment. Furthermore, the follow-up of 28 chil-
dren with “quasi-autism” from Romanian institutions, using the
autism diagnostic interview-revised [ADI-R; (101)] showed that
by age 11–12 years, just over 1 out of 10 children who experienced
profound institutional deprivation still displayed a quasi-autistic
pattern but a quarter of the children lost their autistic-like features,
and dishinibited attachment with poor peer relationships was also
observed in over half of these children (100). It is noteworthy that
most of the children with quasi-autism had an IQ in the normal
range. Finally, methodological issues can be raised concerning the
Rutter et al. follow-up that did not study the relationship between
the presence of autistic-like features and the duration of the pro-
found institutional deprivation or the age of the children when
they experienced this social deprivation.

Concerning neurophysiological factors occurring during the
postnatal period, and more specifically severe sensory deprivation,
several studies report a high risk for AD in congenitally severely
visually impaired children. Thus, AD was observed in 10 out of
24 (42%) congenitally blind children (102) and autism was also
reported in 30 out of 157 (19%) children with varying ophthalmo-
logical problems (103). In addition, only 31% of Swedish children
with AD (n= 45) were found to have normal visual acuity (104).
Similarly, several studies have reported abnormally high rates of
AD in hearing impaired individuals [from 1.7 up to 7%; (105,
106)]. Inversely, hearing problems, including hearing loss, were
described in 10% of Swedish children and adolescents with autism
(n= 199) (107). Furthermore, very high rates of ASD have been
observed in congenital conditions (up to 68% in CHARGE syn-
drome, 45% in Möbius sequence, 42% in oculo-auriculo-vertebral
spectrum) involving multiple sensory deficits such as impaired
vision associated with reduced hearing. These study groups and
case reports suggest that severe multimodal sensory deprivation
is a good candidate risk factor for AD. Genetic disorders such as

CHARGE syndrome support the hypothesis that genetic factors
could lead to multiple simultaneous sensory deficit occurring at a
critical period of development that, in turn, would play a role in
the pathogenesis of AD. Also, genetic disorders such as CHARGE
syndrome support the hypothesis of common genetic risk fac-
tors for ASD given that CHARGE syndrome is due to mutations
in CHD7, which is a homolog of CHD8, one of the most recur-
rently affected genes in autism cohorts (108). Taken together, these
studies suggest that impairment in cross-modal sensory percep-
tion (impaired vision associated with reduced hearing) contributes
more to the development of AD than impaired vision alone, which
appears to be a more important risk factor for AD than reduced
hearing alone. This is in line with a model, which postulates
that AD would be related to impairment in the developmental
sequence involving cross-modal sensory perception, body-image
construction, sense of body self, self/non-self differentiation and
in turn development of social communication (109). However,
it is noteworthy that CHARGE syndrome, Möbius sequence, and
oculo-auriculo-vertebral spectrum are associated with extended
developmental defects that might be involved in the risk for ASD.
Thus, CHARGE syndrome includes multiple malformations (see
Table 2), Möbius sequence is associated with brainstem hypoplasia
(110), and cerebral abnormalities are observed in oculo-auriculo-
vertebral spectrum (111). Finally, another limitation is related to
the assessment of ASD in congenital conditions due to the diffi-
culty to use current autism diagnostic instruments in individuals
with intellectual disability, cranial nerve palsies (most commonly
affecting the facial nerve), and sensory deficits (patients often
being severely visually impaired or blind, hearing impaired or
deaf).

In conclusion of this descriptive part on the prenatal, perina-
tal, and postnatal risk factors, it appears that no specific factor
has been identified and no individual factor has been consistently
validated as an independent environmental risk factor for ASD.
This suggests that future research on environmental risk factors
for AD, rather than focusing on a single factor, should study a
combination of factors through an integrated approach includ-
ing gene× environment interactions and conduct multivariate
analyses.

HYPOTHESES ON THE ROLE OF ENVIRONMENTAL FACTORS
IN ASSOCIATION WITH GENETIC FACTORS
First, “the epiphenomenon hypothesis” argues for a primary role
of the genetic susceptibility to autism and proposes that genetic
factors increase the risk for both autism and the associated pre-
natal, perinatal, and postnatal complications. This hypothesis is
supported by Glasson et al. (141).

A second hypothesis, “the heterogeneity hypothesis,” proposes
that the contribution of genetic and/or environmental factors
varies according to the cases. AD might be due mainly to genetic
factors in some cases [for example, neonatal congenital malfor-
mations are significantly associated with an increased risk for
autism; (8)] or mainly to environmental factors in other cases
(for example, in utero exposure to valproate) with possible cumu-
lative effects mediated by different environmental factors and/or
genetic factors (for example, see the CHARGE syndrome in
Table 2). Some authors (142–144) suggest that the greater the
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Table 2 | Genetic disorders with epigenetic mechanisms associated with autistic syndrome.

Genetic disorder Estimated

rate (%) of

the disorder

in autism

Estimated

rate (%) of

autism in the

disorder

Degree of

intellectual

disability

Autistic behaviors Other behaviors Other symptoms

CHARGE syndrome

(CHD7, 8q21.1)

(112–116)

<1 15–68 Variable

(normal to

severe) but

often normal

IQ

Severe autistic

syndrome to Asperger

syndrome

Hyperactivity,

obsessions and

compulsion, tic

disorders

Coloboma of the eye,

heart defects, atresia of

the nasal choane,

retardation of growth,

and/or development,

genital/urinary

abnormalities, ear

abnormalities/deafness

Maternal 15q11–q13

duplication (117–119)

1–2 80–100 Severe Severe autistic

syndrome with severe

expressive language

impairment

Hyperactivity,

anxiety, tantrums,

and aggression

Facial dysmorphism,

seizures (75%),

hypotonia,

genitor/urinary

abnormalities

Angelman syndrome

(maternal 15q11–q13

deletion, paternal

uniparental disomy)

(118, 120, 121)

1 80–100 Severe No language,

stereotyped behaviors,

immutability

Attention deficit with

hyperactivity

disorder (ADHD),

paroxysmal laughter,

tantrums

Facial dysmorphism,

microcephaly, seizures

(>1 year), ataxy, walking

disturbance

Prader–Willi syndrome

(maternal 15q11–q13

disomy, paternal

deletion) (122–124)

– – Mild Motor and verbal

stereotypies, rituals

Hyperphagy,

obsessions and

compulsions,

tantrums

Obesity, growth delay

and hypogonadism,

facial dysmorphism

Fragile X

syndrome*(FXS,

Xq27.3) (125–128)

2–8 10–33 Variable Poor eye contact, social

anxiety, language

impairment,

stereotyped behaviors

Hyperactivity with

attention deficit,

sensory

hyper-reactivity

Facial dysmorphism,

macro-orchidism

Rett syndrome

(MECP2, Xq28)

(129–131)

<1 in female 80–100 Severe Stereotyped hand

movements, absence

of language, loss of

social engagement

Stagnation stage

(6–18 months) in

girls, then regression

stage

(12–36 months),

pseudostationary

stage (2–10 years),

and late motor

deterioration

(>10 years)

Head growth

deceleration,

progressive motor

neuron (gait and truncal

apraxia, ataxia,

decreasing mobility)

and respiratory (apnea,

hyperventilation, breath

holding) symptoms

Down syndrome

(Trisomy 21) (132–134)

2,5 05/10/14 Variable but

usually severe

Severe autistic

syndrome

– Facial dysmorphism,

heart and intestine

malformations

Turner syndrome(135) – 3 Usually normal

IQ

Females monosomic

for the maternal

chromosome× score

significantly worse on

social adjustment and

verbal skills

– Short stature, skeletal

abnormalities, absence

of ovarian function,

webbed neck,

lymphedema in hands

and feet, heart defects

and kidney problems

(Continued)
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Table 2 | Continued

Genetic disorder Estimated

rate (%) of

the disorder

in autism

Estimated

rate (%) of

autism in the

disorder

Degree of

intellectual

disability

Autistic behaviors Other behaviors Other symptoms

Phelan–McDermid

syndrome (PMDS) (136)

– 75–84 Severe to

profound

Variable autistic

syndrome: from autistic

disorder to autism

spectrum disorders

(ASD) including delayed

or absent verbal

language

Global

developmental delay

Dysmorphic features,

hypotonia, gait

disturbance, recurring

upper respiratory tract

infections,

gastroesophageal reflux

and seizures

Beckwith–Wiedemann

syndrome (BWS) (137)

– 6.8** Usually normal

IQ

ASD – Pre- and postnatal

overgrowth

(hemihyperplasia,

macroglossia,

visceromegaly) and

increased risk of

embryonal tumors

Williams–Beuren

syndrome (WBS)

(7q11.23 deletion) (138,

139, 216, 217)

<1 <5 Mild to

moderate

Autistic syndrome (from

social withdrawal and

absence of verbal

language to

overfriendliness and

excessive talkativeness)

Visual spatial deficit,

hyperacusis, feeding

and sleep problems

Facial dysmorphism,

short stature, heart and

endocrine

malformations,

hypercalcemia

*The estimated rate of FXS in individuals diagnosed with autistic disorder varies, according to Harris et al. (128) from 2 to 8% (in fact from 0 to 8% according to the

studies), and the estimated rate of autism among FXS individuals varies from 10 to 33% (140).

**A diagnosis of ASD was reported for 6 out of 87 children with BWS based on parental questionnaires (137). This result requires replication using valid diagnostic

assessment tools.

genetic contribution, the more dysmorphic signs, and cognitive
impairment are present. Thus, children with AD showing a higher
number of minor physical anomalies have lower IQ and are more
at risk for genetic variations (142). The finding that unbalanced
chromosome abnormalities are found predominantly in children
with autism who are dysmorphic (142, 143, 145), strengthens this
hypothesis. It is noteworthy that large chromosomal abnormali-
ties are more often found in children with dysmorphic features,
whereas smaller CNVs involving the same region and de novo
single-nucleotide variants of major effect are found often in indi-
viduals without dysmorphic features. However, there is no evi-
dence that the role of environment is more important in the case
of absence of de novo event, as common variants were shown to
contribute substantially to autism risk (42). The debate does not
focus anymore on a possible contribution of genetic factors to
the risk for autism but on the magnitude of this contribution.
Contemporary research efforts are moving away from the search
for a condition-specific genetic factor to embrace a more cumu-
lative model based on elevated risk as a function of smaller gene
point mutations. Interestingly, the hypothesis, mentioned previ-
ously, related to genes altering the synaptic homeostasis leads to
the perspective of possible autism phenotype reversals (146) and
raises issues concerning a possible role of environmental factors
associated with genetic factors. Indeed, it has been shown in mouse

models of autism that certain neuronal defects can be reversed in
the mature mouse brain, either by restoring the gene function,
decreasing mRNA translation, or modulating the balance between
excitation and inhibition. The early signs of autism are in fact still
largely unknown, which hints that during this premorbid period,
there might be a discrete window for reversing the pathological
process. This window of development could correspond to early
critical periods when brain development is particularly sensitive
to experience and when brain plasticity, involving sensory systems
but also motor functions and cognition, is possible (147). After
these critical periods, the level of plasticity is reduced due to the
development of myelin and perineuronal networks that drastically
prune neuronal outgrowth in the mature brain and lead to func-
tional modifications or fine-tuning in the excitation–inhibition
balance (148).

Finally, another hypothesis is to consider the genetic pre-
disposition to AD as resulting from different chromosomal or
gene variations and to propose that environmental factors asso-
ciated with these genetic factors would modify the phenotypic
expression of AD and lead to a similar clinical phenotype. The dif-
ferent genetic disorders associated with autistic syndrome might
share the same environmental factors that could contribute to the
expression of behavioral autistic impairments. For example,oxida-
tive stress might be a candidate mechanism linking genetic and
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environmental factors in genetic disorders associated with autism
(149–151). Thus, regarding the possible molecular mechanisms
that might be shared in autism and fragile X syndrome (FXS), it has
been proposed that increased oxidative stress in the brain might be
a common factor. The loss of FMR1 expression in FXS leads to the
absence of fragile X mental retardation protein (FMRP), which is
primarily involved in binding mRNAs. The absence of FMRP, as
shown in FMR1-knockout mice, leads to increased oxidative stress
(152–154). It can be hypothesized that any chromosomal or gene
variations leading to increased oxidative stress would contribute
to the expression of a behavioral autistic phenotype. Inversely,
heterogeneity of environmental factors may lead to clinical sub-
groups with different cognitive–behavioral phenotypes. Lacaria
et al. (155) developed a mouse model for Potocki–Lupski syn-
drome (PTLS) (PTLS is a genetic disorder associated with autism
and caused by a 3.7-Mb duplication in 17p11.2), and rearing this
animal model in an enriched environment (enriched cages were
larger and contained enrichment items such as increased num-
ber of mice per cage to enhance social behavior) mitigated the
autistic-like abnormal behavioral phenotypes, suggesting a role
for gene–environment interactions in the determination of CNV-
mediated autism severity. The authors suggest a potential link
between the behavioral benefits of environmental enrichment and
the underlying changes observed in their study for the serotonin-
ergic and dopaminergic pathways. This is particularly interest-
ing with regard to the abnormalities of the serotoninergic and
dopaminergic systems reported in autism [for a review, see Naka-
mura et al. (156)]. Furthermore, epigenetics is a good illustration
of the effects of environmental factors on gene expression. Epige-
netics can be viewed as a candidate biological mechanism that is a
part of the more general hypothesis of “gene× environment inter-
actions.” Environmental factors/events can occur during early life
and be involved in the regulation of neural development asso-
ciated with synaptic plasticity even at later developmental stages
(157). This hypothesis states that environmental factors interact
with genetic factors that would not or less influence development
otherwise. Gene× environment studies are needed to test this
hypothesis and raise the issue of power. The issue of power refers
to the possibility to detect an effect based on sample size. Indeed,
interaction effects, such as gene× environment ones, require large
samples and high power in order to detect the effects as these effects
are often small but perhaps truly present and worth integrating in
models. Furthermore, interaction effects are known to be difficult
to observe because measurement errors or random noise associ-
ated with the variables involved in the interaction cumulate, thus
“hiding” interaction effects unless they are very strong. The use
of large samples reduces the tendency for noise in the data to be
an issue, as errors tend to cancel each other out in a large sample,
thereby increasing the ability to see an interaction effect.

More precisely, epigenetics refers to functionally relevant mod-
ifications to the genome that influence gene expression without
involving a change in nucleotide sequence. Epigenetic modifica-
tions include DNA methylation and various modifications (e.g.,
methylation, acetylation) of histone proteins that are complexed
with DNA to form the chromatin. Epigenetic modifications of
histone proteins are generally transient and reversible, whereas
epigenetic modifications of DNA are usually more stable. It

is noteworthy that environmental events involved in epigenetic
mechanisms may be, as underlined by Bagot and Meaney (157),
internal or external to the organism (e.g., changes in the avail-
ability of glucose, electrical impulses, or social interaction and
maternal care). Thus, maternal care such as pup licking/grooming
from the mother over the first week of postnatal life provides
tactile stimulation for the neonate, which increases hippocampal
glucocorticoid receptor gene expression through epigenetic modi-
fications of DNA and decreases HPA responses to stress (158, 159).
Inversely, manipulations imposed on the mother that decrease
pup licking/grooming such as chronic stressors, are associated
with decreased hippocampal glucocorticoid receptor expression,
increased hypothalamic expression of CRF, and enhanced behav-
ioral and HPA responses to stress (160, 161). According to Bagot
and Meaney (157), these findings suggest that maternal care can
stably affect gene expression that in turn mediates the expression of
individual differences in behavioral and neuroendocrine responses
to stress in adulthood. Futhermore, epigenetic modifications of
DNA are stable and can also be transmitted across generations.
Indeed, early-life postnatal adversity in animal models can per-
sistently affect behavior across generations and DNA methylation
in the germline. Thus, chronic and unpredictable early maternal
separation from day 1 to 14 induces in mice depressive-like behav-
iors and DNA methylation changes in the separated male pups
(this finding was not observed in female pups confirming previ-
ous findings that maternal separation and prenatal stress have a
negative influence primarily in males [162]), but also in female
offspring of males subjected to maternal separation, despite the
fact that these males were reared normally (163). The authors
(163) showed that chronic and unpredicatble maternal separation
alters DNA methylation in the promoter of several genes in the
germline of the separated males and these changes are transmit-
ted across several generations through a complex and sex-specific
mode (transmission occurs through males by epigenetic germline
inheritance and affects the offspring in a sex-dependent manner).

Environmental events occurring during early development can
activate cellular signaling pathways associated with synaptic plas-
ticity even at later stages in development. The critical period could
be during fetal development [as suggested by in utero exposure to
valproate; (164)] but also during early-postnatal development [as
suggested by studies in animal models concerning the first weeks
of postnatal life (157)]. In animal studies, autistic behaviors have
been observed following administration of valproate during pre-
natal life or during weaning (stereotyped behaviors, social inter-
action deficit, self-injurious behaviors, enhanced anxiety as well
as impaired cognitive, motor, and attention development) (165–
167). In addition, Rodier’s group exposed rat embryos to valproate
at the period of neural tube closure and it led to a reduction of the
vermal posterior lobe (168). This study, showing that early chemi-
cal exposure can provoke late developmental cerebellar anomalies
is of interest but the face validity and construct or etiological
validity of this model of autism are questionable considering that
animal behaviors have not been studied and cerebellar vermian
anomalies reported in individuals with autism are controversial.
In fact, several authors have proposed exposure to valproate as a
possible neurobehavioral model of autism (169–172). However, as
underlined in our review on animal models relevant to autism and
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schizophrenia (173), the main interest of animal models is not to
validate a specific categorical model of autism, but rather to study
behavioral and neurobiological mechanisms possibly involved in
ASD through a multidimensional approach. Concerning its mech-
anisms of action,valproate has known epigenetic effects. Phiel et al.
(174), using cell lines, showed that valproate at therapeutic con-
centrations inhibits histone deacetylases; this inhibition correlates
with increased expression of multiple genes. Milutinovic et al.
(175) reported that valproate affects not only histone modifica-
tion and gene expression, but also DNA de-methylation in human
embryonic kidney cell lines, linking epigenetic modifications of
both histones and DNA to gene expression.

Oh et al. (176) studied effects of other environmental factors
on DNA methylation, using a mouse model of maternal adver-
sity – based on a deficit in the maternal 5-HT1A receptor [reduced
binding of 5-HT1A has been found in peri/postpartum depres-
sion, a condition that can represent early life adversity for the
offspring (177)], which causes innate anxiety, increased stress
reactivity, and impaired vocal communication in the offspring –
and genome-wide DNA methylation analyses. One rationale for
this study was that adverse gestational and postpartum mater-
nal environment might be a contributing factor in the develop-
ment of autism based on autistic behaviors following prenatal
exposure to valproate (as mentioned above), mental disorders
associated with parental adversities during early-postnatal life
(178), and also effects of deficit in maternal care on increased
stress responses in the offspring (157). The authors found that
adverse maternal environment induced DNA methylation changes
in the offspring and the affected genes encode proteins involved
in synapse formation and function (reduced expression of cell
adhesion and neurotransmitter receptor genes was observed).
They conclude that the differential methylation expression of a
large number of pre- and post-synaptic cell adhesion molecules
and neurotransmitter receptor genes all involved in neuronal
excitability as well as anxiety, suggests a wide-ranging and per-
manent epigenetic effect of the adverse maternal environment
on synaptic plasticity and neuronal excitability. It is noteworthy
that mutations in some of these genes such as genes encod-
ing cadherins and neurexin–neuroligins in human, which were
differentially methylated following exposure to adverse mater-
nal environment in mice, have been associated with ASD (179–
182). A limitation of this animal model is that it does not offer
a model of autism, but rather a model of 5-HT1A receptor-
deficient maternal environment. However, studying the effect of
5-HT1A receptor-deficient maternal environment on DNA methy-
lation as well as on anxiety-like behavior and impaired vocal
communication in the offspring is of interest in autism, espe-
cially given central and peripheral alterations in serotonin in
autism (156, 183).

Concerning epigenetic histone modifications possibly involved
in autism, epigenetic anomalies in histone methylation patterns
may contribute to the cerebellum neuroanatomical alterations,
especially concerning Purkinje cells, observed in some individu-
als with ASD [for a review of cerebellar abnormalities reported in
autism, see Ref. (184) and (185)]. The Purkinje cell maturation
in the cerebellum is signaled by a normal downregulation of the

engrailed-2 (EN-2) gene during late prenatal and early-postnatal
development (186). James et al. (187) conducted a study on post-
mortem cerebellar samples from 13 individuals with autism and
found histone methylation modifications in the EN-2 promoter
associated with increased EN-2 gene expression and EN-2 protein
levels. These results suggest a postnatal persistence of EN-2 over-
expression in some individuals with autism that may contribute
to autism cerebellar abnormalities.

Another possible epigenetic mechanism that may underlie
autism is RNA editing, a neurodevelopmentally regulated post-
transcriptional mechanism responsible for producing mRNA mol-
ecules with sequence information not specifically encoded in the
genome. More particularly, adenosine-to-inosine (A-to-I) RNA
editing fine-tunes synaptic function (strength and duration) in
response to environmental stimuli, affecting the transmission of
all sensory stimuli to the CNS. A recent study (188) surveyed A-
to-I RNA editing in autistic brains and found differential editing
patterns and a dysfunctional form of the adenosine deaminase
enzyme involved in RNA editing in post-mortem cerebella from
individuals with autism.

Epigenetic mechanisms have been also reported in various
genetic disorders associated with autism, including maternal
15q11–q13 duplication and several syndromes such as Fragile X,
Rett, Down, Turner, Phelan-McDermid, Beckwith–Wiedemann,
Williams–Beuren, CHARGE, Angelman, or Prader–Willi syn-
drome (see Tables 2 and 3). It is noteworthy that among the
most commonly recurrent cytogenetic abnormalities associated
with autism are duplications of sequences in a region on the
proximal part of the long arm of chromosome 15, specifically
the interval 15q11–q13. The behavioral phenotypes associated
with 15q11–q13 defects show a parent-of-origin specific effect
on phenotypic expression. More specifically, it is the maternally
derived duplications that convey a high risk of autism (189–191).
Similarly, paternal-specific deletion of multiple imprinted, pater-
nally expressed genes on the 15q11–q13 region results in Prader–
Willi syndrome, whereas maternal deletion of a single, imprinted,
maternally expressed gene encoding a ubiquitin-protein ligase
(UBE3A) on this same region gives rise to the Angelman syn-
drome phenotype. Phenotypic comparisons between Prader–Willi
syndrome, Angelman syndrome, and maternal 15q11–q13 dupli-
cation reveal commonalities possibly related to a shared genetic
basis. These phenotype overlaps concern common areas of cog-
nitive impairment (or, more rarely, superior performance in dis-
crete cognitive domains), motor stereotypies, motor coordination,
seizures, language impairment, or behavioral manifestations such
as compulsions or tantrums (see Table 2).

Given the number of genetic disorders associated with epige-
netic etiologies comorbid with autism, it can be suggested that epi-
genetic mechanisms involving gene× environment interactions
might be a common pathway for many cases of ASD. Further-
more, as underlined by Grafodatskaya et al. (164), new molecular
technologies allowing the identification of critical epigenetic deter-
minants open interesting perspectives, including therapeutic ones.
It might serve in the development of innovative therapeutic strate-
gies, as already applied with the treatment by the histone deactylase
inhibitor valproate.
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1185 1242
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1187 1244

1188 1245
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1190 1247
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1195 1252

1196 1253

1197 1254
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Table 3 | Epigenetic mechanisms and potential therapeutic targets in genetic disorders associated with autistic syndrome.

Genetic disorder Etiology Epigenetic mechanisms Potential therapeutic targets

CHARGE

syndrome (192)

Mutations/deletions of CHD7

(8q12.1)

Chromatin remodeling –

Maternal

15q11–q13

duplication (118,

119, 164)

Maternal duplications of

15q11–q13 region

Possible disruptions of normal parental

homolog pairing, DNA methylation patterns,

and gene expression patterns within

15q11–q13. However, according to some

authors, such as Grafodatskaya et al. (164),

the epigenetic mechanisms that mediate the

development of ASD in association with

15q11–q13 duplication are still unidentified

–

Angelman

syndrome (AS)

(118, 193–195)

Mutation or deletion of the

maternal UBE3A gene paternal

UPD at 15q11–q13

Lack of expression of maternally expressed

gene UBE3A in brain due to loss of DNA

methylation at maternal allele of IC. The

paternal allele of neuronal UBE3A, a

ubiquitin-protein ligase (15q11), is

epigenetically silenced

Topoisomerase inhibitors to restore UBE3A

expression in neurons. Unsilence the

imprinted paternal UBE3A allele with

topotecan. Inhibition of paternal UBE3A

antisense RNA transcript expression

Prader–Willi

syndrome (PWS)

(118, 196–198)

Paternal deletions, maternal UPD

at 15q11–q13, deletions and

epimutations of IC,

translocations disrupting SNRPN

Gain of DNA methylation at paternal allele of

IC blocks expression of paternally expressed

genes from imprinted cluster at 15q11–q13

Folate fortification during at-risk pregnancies.

DNMT inhibitors to release silenced maternal

genes, combined with other epigenetic

mechanisms for gene activation

Fragile X

Syndrome (FXS)

(199–203)

Inactivation of FMR1 gene (Xq28)

due to a CGG expansion (>200

repeats) at the 5′ UTR region

DNA hypermethylation coupled with histone

H3 and H4 tail deacetylation, histone H3-K9

methylation, and histone H3-K4

de-methylation

Pharmacologically restore FMR1

transcription through the use of the DNA

demethylating agent 5′-aza-2′-deoxycytydine

and/or inhibitors of histone deacetylases

Rett syndrome

(119, 204–207)

MeCP2 (Xq28) loss-of-function

missense/non-sense mutations

or deletions

De novo (>90%) missense/non-sense

mutations or deletions disrupt binding to

methyl-CpG, causing anomalous gene

transcription; disruptions in mRNA

translation, histone methylation (H3K4,

H3K9), and acetylation. Neurons mainly

implicated, also astrocytes and microglia

Normalize MeCP2 levels by viral delivery of

complementary DNA under native promoter

to restore physiological levels of MeCP2;

protein, microglial, bone marrow or other

modes of MeCP2 transfer; folate

supplements; aminoglycoside antibiotics for

read-through suppression of non-sense

mutations leading to full MeCP2 protein

expression

Down syndrome

(119, 208)

Trisomy for chromosome 21 Trisomy for chromosome 21 results in

overexpression of genes leading to abnormal

brain development

Suppress expression from one chromosome

21
Whole chromosome silencing in trisomic

neurons

Insertion of an inducible X-inactive specific

transcript (XIST) into DYRK1A locus in

induced pluripotent stem cells from a

Down syndrome patient

XIST-mediated silencing reversed the

deficits in neuronal proliferation and neural

rosette formation

Turner syndrome

(135, 164)

Most common monosomy for X

chromosome

The syndrome is caused by dosage changes

in genes of the X chromosome that escape X

chromosome inactivation

–

Potential imprinted gene on chromosome X

(Continued)
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1255 1312

1256 1313

1257 1314

1258 1315

1259 1316

1260 1317

1261 1318

1262 1319

1263 1320

1264 1321

1265 1322

1266 1323

1267 1324

1268 1325

1269 1326

1270 1327

1271 1328

1272 1329

1273 1330

1274 1331

1275 1332

1276 1333

1277 1334

1278 1335

1279 1336

1280 1337

1281 1338

1282 1339

1283 1340

1284 1341

1285 1342

1286 1343

1287 1344

1288 1345

1289 1346

1290 1347

1291 1348

1292 1349

1293 1350

1294 1351

1295 1352

1296 1353

1297 1354

1298 1355

1299 1356

1300 1357

1301 1358

1302 1359

1303 1360

1304 1361

1305 1362

1306 1363

1307 1364

1308 1365

1309 1366

1310 1367

1311 1368

Tordjman et al. Epigenetic mechanisms in autism

Table 3 | Continued

Genetic disorder Etiology Epigenetic mechanisms Potential therapeutic targets

Phelan–

McDermid

syndrome

(PMDS) (209–211)

Inherited, de novo deletions

(70% paternal) at 22q13 leading

to loss of SHANK3

SHANK3 plays important roles in the

formation, maturation, and maintenance of

synapses. It controls dendritic spine function;

binds Homer; influences neurexin–neuroligin

coupling and controls glutamatergic,

PI3-Kinase and mTOR signaling

Excitatory synaptic transmission in PMDS

neurons can be corrected by restoring

SHANK3 expression or by treating neurons

with insulin-like growth factor 1 (IGF1). IGF1

treatment promotes formation of mature

excitatory synapses that lack SHANK3 but

contain PSD95 and N -methyl-d-aspartate

(NMDA) receptors with fast deactivation

kinetics

Beckwith–

Wiedemann

syndrome (BWS)

(212–214)

Mutations, epimutations, UPD,

and chromosome

rearrangements at imprinted

gene cluster on11p15.5

Overexpression of paternally expressed

growth factor IGF2 due to gain of DNA

methylation at paternal allele of IC1 and/or

underexpression of maternally expressed

growth suppressor CDKN1C due to loss of

DNA methylation at maternal IC2

Overexpression of paternally expressed

growth factor IGF2 due to gain of DNA

methylation at paternal allele of IC1 and/or

underexpression of maternally expressed

growth suppressor CDKN1C due to loss of

DNA methylation at maternal IC2

Williams–Beuren

syndrome (WBS)

(215)

Deletion of contiguous genes at

7q11.23 including GTF2I and

GTF2IRD1 genes

Possible epigenetic alteration through GTF2I

and GTF2IRD1 encode a family of

transcription factors (TFII-I, BEN) critical in

embryonic development. “Feed-forward

model” of gene regulation to explain the

specificity of promoter recognition by TFII-I

–

CHD7, chromodomain helicase DNA binding protein 7; FMR1, fragile X mental retardation 1; IC, imprinting center; MECP2, methyl-CpG binding protein 2; SNRPN,

small nuclear ribonucleoprotein polypeptide N; UBE3A, ubiquitin-protein ligase E3A; UPD, uniparental disomy. IGFI 1, insulin-like growth factor 1or 2 (IGF1 or IGF2);

DNMT, DNA methyltransferases; CDKN1C, cyclin-dependent kinase inhibitor 1C.

CONCLUSION
Considering that environmental factors can modify the expression
of genes and the potential role of epigenetic mechanisms in the
development of ASD, it appears necessary to study in concert the
genetic factors and the environmental factors in autism. Despite
recent studies on environmental risk factors for ASD, no single and
major environmental factor has been identified, suggesting that
further research should study a combination of factors through an
integrated approach including gene× environment interactions.
This integrated clinico-biological approach takes into account the
interactions between the genetic factors and the postnatal or pre-
natal environmental factors (psychosocial environment but also
cytoplasmic and uterine environment with placental exchanges
and hormonal effects). An allelic form can be present in the
genotype without expressing itself if it is inhibited by signals
mediating environmental, epigenetic, or genetic contributions. It
is therefore important not to focus on the “genes of autism,” which
implies determinism, but to study instead the effects of the genome
integrated with the effects of the environment with possible plas-
ticity. Epigenetic remodeling by environmental factors opens new
perspectives for a better understanding, prevention and early ther-
apeutic intervention of ASD. Finally, autism could be considered
as the result of several genetic and environmental factors. Given
this multifactorial etiology, it is probably through multivariate
analyses and a multidisciplinary approach including the partic-
ipation of biologists as well as clinicians that advances will be
made.
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