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BACKGROUND: Autism spectrum disorder (ASD) is a major public health concern caused by complex genetic and environmental components.
Mechanisms of gene—environment (G X E) interactions and reliable biomarkers associated with ASD are mostly unknown or controversial. Induced
pluripotent stem cells (iPSCs) from patients or with clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9
(CRISPR/Cas9)-introduced mutations in candidate ASD genes provide an opportunity to study (G X E) interactions.

OBJECTIVES: In this study, we aimed to identify a potential synergy between mutation in the high-risk autism gene encoding chromodomain helicase
DNA binding protein 8 (CHDS8) and environmental exposure to an organophosphate pesticide (chlorpyrifos; CPF) in an iPSC-derived human three-
dimensional (3D) brain model.

METHODS: This study employed human iPSC-derived 3D brain organoids (BrainSpheres) carrying a heterozygote CRISPR/Cas9-introduced inactivat-
ing mutation in CHDS8 and exposed to CPF or its oxon-metabolite (CPO). Neural differentiation, viability, oxidative stress, and neurite outgrowth
were assessed, and levels of main neurotransmitters and selected metabolites were validated against human data on ASD metabolic derangements.

RESULTS: Expression of CHDS protein was significantly lower in CHDS heterozygous knockout (CHDS8*/ ™) BrainSpheres compared with CHD8*/*
ones. Exposure to CPF/CPO treatment further reduced CHDS protein levels, showing the potential (G X E) interaction synergy. A novel approach for
validation of the model was chosen: from the literature, we identified a panel of metabolic biomarkers in patients and assessed them by targeted
metabolomics in vitro. A synergistic effect was observed on the cholinergic system, S-adenosylmethionine, S-adenosylhomocysteine, lactic acid, tryp-
tophan, kynurenic acid, and o-hydroxyglutaric acid levels. Neurite outgrowth was perturbed by CPF/CPO exposure. Heterozygous knockout of CHDS8
in BrainSpheres led to an imbalance of excitatory/inhibitory neurotransmitters and lower levels of dopamine.

Discussion: This study pioneered (G X E) interaction in iPSC-derived organoids. The experimental strategy enables biomonitoring and environmental risk
assessment for ASD. Our findings reflected some metabolic perturbations and disruption of neurotransmitter systems involved in ASD. The increased suscep-

tibility of CHD8*/ ~ BrainSpheres to chemical insult establishes a possibly broader role of (G x E) interaction in ASD. https:/doi.org/10.1289/EHP8580

Introduction

Autism spectrum disorder (ASD) includes a cluster of neurodeve-
lopmental conditions characterized by variable deficits in social
communication and interaction, as well as restricted, stereotyped,
and repetitive interests and behaviors (Lai et al. 2014; Mandy and
Lai 2016). Individuals with ASD may show a broad range of
comorbidities: epilepsy, attention deficits, intellectual disability,
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gastrointestinal problems, and diverse motor cognitive and mood
impairments—all of which contribute to clinical heterogeneity
(Courchesne et al. 2019). ASD is a major public health concern
given that its prevalence is currently estimated at ~1.5% in
developed countries (Baxter et al. 2015; Lyall et al. 2017).

Recent developments in imaging and genetic techniques have
led to significant advances in the understanding of ASD and paved
the way for new approaches to study its pathophysiology. For
instance, genome-wide association and large-scale sequencing stud-
ies have identified hundreds of ASD risk loci with common and rare
risk variants, highlighting the heterogeneity of ASD genetic contri-
bution (De Rubeis et al. 2014; Sanders 2015; Sanders et al. 2015;
Satterstrom et al. 2020; Vorstman et al. 2017; Willsey et al. 2013).
High-confidence genes were identified and predicted to be involved
in pathways affected in ASD (Ayhan and Konopka 2019). Overall
genetic effects, however, account for ~ 59% of the etiological con-
tribution to ASD, leaving a substantial role for environment-
mediated effects (Gaugler et al. 2014). It is now generally believed
that diverse (epi)genetic factors, environmental factors, and gene—
environment (G X E) interactions increase autism risk (Chaste and
Leboyer 2012; Dietert et al. 2011; Karimi et al. 2017; Kim et al.
2019; Koufaris and Sismani 2015; LaSalle 2013; Lyall et al. 2017;
Modabbernia et al. 2017; Peter et al. 2015; Rossignol et al. 2014).
How environmental factors and genetic susceptibilities interact to
increase ASD risk remains mostly unknown.

For many years, autism research relied largely on animal mod-
els (Halladay et al. 2009). Rodent and human brain development,
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however, differ significantly (Lancaster et al. 2013; Rice and
Barone 2000). Although useful for morphological/phenotypical
and behavioral studies, animal-based models for neurological dis-
orders have shown limitations in modeling human disease and effi-
cacy of interventions. One example is Alzheimer’s disease, with a
failure rate of 99.6% in drug discovery (Mohs and Greig 2017,
Pistollato et al. 2016). In general clinical trials, success rates for
neurological disorders were half the rate of other indications
(Butlen-Ducuing et al. 2016). For ASD, in the absence of drug tri-
als, no such direct comparisons are possible. A human-relevant
model promises to find (G XE) interactions, particularly for the
study of molecular mechanisms of those interactions and bio-
markers of disease and to complement animal behavioral studies.
Advantages of stem cell-derived test systems, whether two- (2D) or
three-dimensional (3D), over traditional animal models include a)
enabling the generation of human disease-relevant cell types; b) lev-
eraging the genetic background of interest, either from patients or
introduced by gene editing; and ¢) employing those cell types for
medium- to high-throughput screening for toxicants and drugs
because cellular models require less time and costs. Simple mono-
layer in vitro models, however, do not represent human organ func-
tion, have limited shelf-lifes, and lack the complexity of in vivo
structure and physiology. Therefore, more complex systems that
better mimic human brain architecture and function are needed
(Astashkina and Grainger 2014; Marx et al. 2016, 2020; Pamies and
Hartung 2017). Emerging 3D human organoid-based culture sys-
tems (especially those derived from iPSCs), promise the possibility
of (G X E) interaction testing at the cellular and molecular levels in
human-relevant models (Yang and Shcheglovitov 2020). 3D iPSC-
derived neural cultures better recapitulate key events of neural de-
velopment (neural and glial differentiation, migration, myelination,
and synaptogenesis) than monolayer models do (Limongi et al.
2013). 3D neural cultures show increased survival and enhanced
neural differentiation compared with traditional 2D cultures (Peretz
et al. 2007; Brannvall et al. 2007), allowing them to reach the later
stages of neurodevelopment, where they can be differentiated into
astrocytes and oligodendrocytes. Thus, the 3D systems have more
heterogeneous in vivo-relevant cellular composition compared with
the more homogeneous single-cell-type 2D cultures. A prolonged
shelf-life is also beneficial in studies of the long-term and delayed
effects of toxicants. The clustered regularly interspaced short palin-
dromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9)
genome-editing of iPSCs further strengthens these models by ena-
bling the generation of gain- and loss-of-function mutations in genes
of interest, greatly facilitating the interpretation of risk allele effects
on neuronal function (Wang et al. 2017).

ASD susceptibility genes converge during certain periods in de-
velopment and on specific biological pathways, including those for
transcription/chromatin remodeling complexes and synaptic func-
tion (Modabbernia et al. 2017). Data are accumulating on environ-
mental chemicals that potentially interact with these signaling
pathways (Stamou et al. 2013). Loss-of-function mutations in regu-
lator genes can initiate developmental network dysregulations and
cause ASD (Ayhan and Konopka 2019). The CHDS8 gene is an
example of a high-risk ASD gene (Cotney et al. 2015; Neale et al.
2012; Stolerman et al. 2016). CHDS is an ATP-dependent protein
that represses transcription by altering nucleosome positioning and
regulates a network of genes critical for early neurodevelopment
(Bernier et al. 2014). Studies in human samples (Bernier et al.
2014), as well as in cellular (Wang et al. 2015; Cotney et al. 2015;
Sugathan et al. 2014) and animal (Cotney et al. 2015) models, dem-
onstrated that CHDS mutations modulate other genes involved in
ASD, affecting global development, neural differentiation, and brain
volume. Results with cerebral organoids derived from iPSCs with a
CHDS null mutation, for example, showed that CHD8 can affect
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GABAergic interneuron development consistent with abnormalities
in cortical gamma-aminobutyric acid (GABA) interneuron function
found in a subgroup of ASD (Wang et al. 2017).

Organophosphorus pesticides (OPs), such as chlorpyrifos
(CPF), are widely used in agriculture, with consequent exposures
of workers and residents of agricultural communities, as well as the
general population through consumption of OP-treated agricultural
products (Rauh et al. 2012). However, there is a vast literature
reporting their adverse effects on the developing nervous system
(Juberg et al. 2019; Mie et al. 2018; Rauh et al. 2006; Stamou et al.
2013). Several epidemiological (Rauhetal. 2011, 2012; Eaton et al.
2008) and animal studies (De Felice et al. 2016; Eaton et al. 2008)
have showed that developmental exposure to CPF, even at subtoxic
levels, has adverse effects on brain maturation—targeting path-
ways involved in ASD etiology—and may induce various neurobe-
havioral deficits as well as structural abnormalities (such as
thinning of the cerebral cortex) (Grandjean and Landrigan 2014).
In addition, exposure of mothers to CPF during the second trimes-
ter of pregnancy has been associated with a higher risk of ASD in
their children (Shelton et al. 2014).

Although the mechanism underlying the risk of ASD from OP
exposure is unknown, it has been suggested that OPs could affect
the expression and function of ASD risk genes and derail normal
neurodevelopment. Whether there exists a particularly vulnerable
subpopulation at greater risk for pesticide exposure remains to be
clarified using (G XE) interaction studies (Stamou et al. 2013).
Establishing clear associations between environmental and genetic
ASD risk factors, however, could be particularly challenging, con-
sidering the extremely heterogeneous genetics of ASD and the sus-
ceptibility of the developing brain to multiple environmental insults.
Our approach, therefore, aimed to identify and study interactions/
synergies between one specific environmental factor and ASD risk
gene. Identified synergies may point out the signaling pathways rel-
evant for ASD, which can be potentially dysregulated by both. This
might establish a role for (G X E) interaction in ASD that could be
expanded to other developmental neurotoxicants and risk genes.

In the present study, we aimed to address the (G X E) interac-
tion hypothesis in ASD by using an iPSC-derived brain organoid
model with CRISPR/Cas9-engineered CHDS8 heterozygous knock-
out (CHD8*/~ BrainSpheres) and exposure to CPF. To account
for limiting xenobiotic metabolism in vitro, the active metabolite
chlorpyrifos-oxon (CPO), which actively inhibits acetylcholines-
terase (AChE) (Koshlukova and Reed 2014)—a primary acute
mode of action among OPs—was also included. A literature survey
identified adverse outcome pathways (AOPs) and an array of puta-
tive biomarkers of metabolic perturbation in individuals with
ASD, which were then analyzed in BrainSpheres, with or without
an ASD genetic background, exposed to CPF and CPO. The pres-
ent study demonstrates the usefulness of an approach comparing
human data with data obtained in vitro to identify possible bio-
markers of exposure, as well as to identify ASD-relevant molecular
networks perturbed by chemical exposure.

Methods

BrainSphere Differentiation

CHDS8"* and CHDS8"/~ neural progenitor cells (NPCs) were
generated earlier from the iPS-2C1 and iPS-2C4G1C4 lines, respec-
tively, authenticated and characterized by H.L..”s group (Wang et al.
2015, 2017). Frozen stocks of the NPCs were transferred to Johns
Hopkins, where the main experiments were conducted. Upon
receipt, NPCs were tested for mycoplasma contamination by the po-
lymerase chain reaction (PCR)-based MycoDtect kit (Greiner Bio-
One) at Johns Hopkins Genetics Resources Core Facility (tests were
reported as negative). NPCs were expanded in poly L-ornithine and
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laminin-coated 175-cm? flasks in NPC medium [KnockOut
Dulbecco’s Modified Essential Medium/Ham’s F-12 Medium, 5%
penicillin-streptomycin (Pen/Strep), 1 X Stempro, 2 X glutamax,
0.02 pg/mL human basic fibroblast growth factor, and 0.02 pg/mL
human epidermal growth factor]—all reagents were from Thermo
Fisher Scientific. Cells were maintained at 37°C, 5% carbon dioxide.
Half of the medium was changed daily.

CHDS*/* and CHDS8'/~ BrainSphere differentiation fol-
lowed our previously published protocol without any modifica-
tions (Pamies et al. 2017). Briefly, 2 x 10° NPCs were plated per
well in noncoated 6-well plates and cultured under constant gyra-
tory shaking (88 rpm, 19 mm orbit) in NPC medium. After 48 h,
the medium was changed to differentiation medium [Neurobasal
electro Medium (Thermo Fisher Scientific), 5% Pen/Strep,
2 X glutamax, 1 x B-27 electro (Gibco; Thermo Fisher Scientific),
0.01 pg/mL human glial cell line-derived neurotrophic factor
(GeminiBio), and 0.01 pg/mL human brain-derived neurotrophic
factor (GeminiBio)]. Cultures were maintained under constant
gyratory shaking for up to 8 wk. Differentiation medium was
exchanged every second day. The neural differentiation efficiency
was assessed by immunocytochemistry (Figure 1B; Figure S1)
and real-time PCR (RT-PCR) (Figure S2).

CPF and CPO Treatment, Cytotoxicity Assay

100 mM stocks of CPF and CPO (Sigma-Aldrich) were made in
dimethyl sulfoxide (DMSO), aliquoted, and stored at —20°C. For
all experiments, BrainSpheres were exposed to 100 uM CPF or
CPO for 24 h at 4 wk of differentiation. The high concentrations
and short-term exposures employed do not suggest a risk to
humans in the real world, but were rather used as a model expo-
sure, making use of the substance’s well-established developmen-
tal neurotoxic (DNT) hazard (as described above in the
“Introduction” section). For viability testing, an 8-wk time point
was included, as well as a CPF/CPO concentration of 47 pM.
DMSO (<0.01%) was used as vehicle control. Four weeks was
selected as the intermediate, immature stage of differentiation,
during which the main types of neurons are present but are still
further maturating, the first astroglia and oligodendrocytes are
emerging (as demonstrated by Pamies et al. 2017). Between 4
and 8 wk, expression of mature neural markers further increased.
At 8 wk, BrainSpheres represented cultures of more mature neu-
rons and glial cells with a low percentage of NPCs (Figures S1
and S2). For viability measurements, BrainSpheres were equally
distributed in a 24-well plate for 24-h exposure without shaking
(one 6-well into four wells of a 24-well plate, which is around 30
BrainSpheres per well). Four- and 8-wk spheroids were exposed
to vehicle, 47 and 100 uM CPF, or its oxon (i.e., CPO). After
24-h exposure, the resazurin reduction assay was performed
(Harris et al. 2017). Viability was measured using a multiwell flu-
orometric reader CytoFluor series 4000 (Perspective Biosystems)
in three independent experiments (two for CPO-treated spheroids
at 8-wk time point), with six to nine technical replicates in total.

Measurement of Mitochondria Membrane Potential and
Reactive Oxygen Species

Mitochondrial membrane potential (MMP) was assessed using
MitoTracker Red CMXROX (Thermo Fisher Scientific) and
images were taken with an ECHO laboratories Revolve micro-
scope with 4/0.13 magnification objective and quantified with
ImageJ (Schneider et al. 2012) as previously described in detail
(Harris et al. 2017). MMP was assessed in at least seven spheroids
per condition/per experiment in three independent experiments.
Production of reactive oxygen species (ROS) was assessed by
CellROX Green Reagent (Thermo Fisher Scientific) and quantified
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by flow cytometry. Briefly, BrainSpheres were treated with 5 uM
CellROX Green reagent for 45 min. Spheroids were washed three
times with Hibernate E medium (Gibco) and dissociated with
Collagenase IV/Papain/DNAse to a single-cell suspension as
described in (Fan et al. 2018). Levels of ROS were measured on a
BD LSRII flow cytometer using Diva software. Unstained cells
were used for gating. Data from three independent experiments
were analyzed with FlowJo (version 10.4.2; FlowJo LLC, Becton
Dickinson, https://www.flowjo.com/solutions/flowjo) and pre-
sented as means + standard errors of the mean (SEMs).

RNA Extraction and RT-PCR

Total RNA was extracted using Trizol (Thermo Fisher Scientific)
and concentrated using an RNA clean and concentrator kit
(Zymo Research). RNA quantity and purity were determined
using NanoDrop 2000c. Five hundred nanograms of RNA was
reverse-transcribed using M-MLV Reverse Transcriptase and
Random Hexamer primers (Promega) according to the manufac-
turer’s instructions. The expression of genes was evaluated using
the TagMan gene expression assay (Applied Biosystems) or
SYBRGreen assay (listed in Tables S1 and S2). Real-time quanti-
tative PCR (RT-qPCR) was performed using a 7500 Fast Real-
Time system machine (Applied Biosystems). The genes for
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 18S
were used as housekeeping genes. To demonstrate gene expres-
sion levels during differentiation, RT-PCR results were presented
as 272Ct. Fold changes were calculated using the 2722 method
if gene expression was compared between treated and control
samples and between cell lines. All 27A4C values were normal-
ized to vehicle-treated controls of the CHD8/* cell line and
underwent log, transformation. Means + SEMs from at least four
independent experiments (with 5 to 16 technical replicates in
total) were calculated.

Immunofluorescence Staining of the BrainSpheres

BrainSpheres were fixed with 2% paraformaldehyde solution for
45 min and blocked for 2 h with 0.15% saponin (Millipore), 5%
normal goat serum and 1% bovine serum albumin at room tem-
perature. The spheres were then stained with primary antibodies
(Table S3) for 48 h and with secondary antibodies (Table S4)
for 24 h in blocking solution at 4°C, as described by Harris et al.
(2017). Nuclei were stained with Hoechst 33342. BrainSpheres
were mounted on glass slides. Images were taken using a Zeiss
UV-LSM 700 confocal microscope with 20 X and 63 X magnifi-
cation objectives and Zeiss Zen software (https://www.zeiss.com/
microscopy/us/products/microscope-software/zen-lite.html).

Measurement of Acetylcholinesterase E Activity

The acetylcholinesterase (AChE) assay (Abcam; ab138873) was
performed according to the manufacturer’s instructions. Briefly,
spheroids were lysed in lysis buffer (0.3 g sodium chloride; 1 mL
of 1 M Tris, pH 7.5; 1 mL 10% NP-40; 0.2 mL of 0.5 M ethyle-
nediaminetetraacetic acid, pH 8.0; 17.8 mL double-distilled
water) and centrifuged at 600 X g for 5 min. Fifty microliters of
supernatant was combined with 50 pL of assay buffer in a 96-
well plate and incubated for 20 min in the dark. The reaction was
stopped with stop buffer. The fluorescence was measured at
540nm using a multiwell fluorometric reader CytoFluor series
4000 (Perspective Biosystems). AChE activity was measured in
three independent experiments.
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Neurite Outgrowth

The detailed protocol of neurite outgrowth was published previ-
ously (Harris et al. 2018, 2017; Zhong et al. 2020). Briefly, after
exposure to CPF/CPO, spheroids were plated in Matrigel-coated
24-well black glass-bottom plates (Cellvis) and incubated without
shaking for 24-48 h to allow outgrowth of neurites. Spheroids
were then immunostained with B-III-tubulin antibody as
described above. Spheroids were imaged with a Zeiss LSM 500
confocal microscope with a 10 X magnification objective (Figure
3; Figures S5 and S6) or with an ECHO laboratories Revolve
microscope with 4/0.13 magnification objective (Figures S5-S7).
Neurite density and length were quantified using the Image]
Sholl plug-in for each individual spheroid. The ratio was calcu-
lated for each shell (number of intersections/distance from the
edge of the spheroid) and plotted. The area under the curve
(AUC) was calculated for each spheroid and then averaged. The
experiment was repeated three times. To attenuate the CPF effect
on neurite outgrowth, the BrainSpheres were pretreated with
100 uM tocopherol 2 h prior to CPF exposure.

Western Blot Analysis

Western blots were performed as described by Zhong et al. (2020).
Briefly, spheroids were lysed with radioimmunoprecipitation assay
lysis buffer (Sigma-Aldrich). Protein concentration was quantified
with NanoDrop 2000c and the bicinchoninic acid (BCA) kit (both
from Thermo Fisher Scientific). Lysates were separated on 4-15%
gradient sodium dodecyl sulfate—polyacrylamide gels at 100 V for
120 min and transferred to a polyvinylidene difluoride membrane
by electroblotting for 120 min at 200 mA and 4°C. After 1 h of
blocking with blocking solution (phosphate-buffered saline; 0.5%
Tween-20, pH 7.4, containing 5% nonfat dry milk), the membranes
were incubated with primary antibodies [CHDS8 (Cell Signaling;
76568, 1:1,000); GAPDH (Cell Signaling; 2118S, 1:1,000)] over-
night at 4°C, followed by washing and secondary antibody incuba-
tion for 1 h (horseradish peroxidase-conjugated antimouse,
1:3,000, antirabbit 1:2,000; BIO-RAD). The protein of interest
was detected by chemiluminescence reagent (BIO-RAD; Clarity
Western ECL Substrate) and exposed to film. Quantification was
performed using Image-J (Schneider et al. 2012) software. Data
was normalized to vehicle-treated CHD8"/* BrainSpheres and
presented as means + SEMs from five independent experiments.

Liquid Chromatography/Tandem Mass Spectrometry

For liquid chromatography/tandem mass spectrometry (LC-MS/
MS) analysis, the BrainSpheres were lysed in 100% methanol/0.1%
formic acid/3,4-dihydroxybenzylamine (Sigma-Aldrich) as spike-
in, and subsequently sonicated twice for 2 min. Lysates were centri-
fuged at 25,000 x g for 30 min at 4°C. The supernatant was trans-
ferred to a new tube and 10-pL aliquots were taken for protein
quantification using the BCA kit (Thermo Fisher Scientific).
Samples were dried for at least 6 hin a SpeedVac at 35°C and recon-
stituted in 0.1% formic acid in water/acetonitrile (50:50).
LC-MS/MS was run on an Agilent 6490A triple-stage quadru-
pole MS equipped with a Jet Stream electrospray ionization ion
source and a 1260 high-performance LC system. The analytes were
separated at 35°C on a Sigma Discovery HS F5 column in reverse
phase (150X 2.1 mm, 3 um) or an Agilent Poroshell 120 hydro-
philic interaction liquid chromatography-zwitterionic (HILIC-Z),
PEEK-lined (150 2.1 mm, 2.7 um) in normal phase, depending
on retention time of the metabolite. The mobile phase [0.1% formic
acid in water (Solvent A) and 98% acetonitrile plus 0.1% formic
acid (Solvent B)] was used with a gradient elution. For reverse
phase, Solvent B was used at a flowrate of 0.3 mL/min. First, 0%
Solvent B was used for 0-3 min, then 100% Solvent B for 23 min.
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For normal-phase HILIC, 92% Solvent B was used for 0—3 min, fol-
lowed by 61% Solvent B for 23 min at a flowrate of 0.25 mL /min. It
was necessary to use benzoyl chloride derivatization for some of the
metabolites to increase sensitivity and stability of metabolite detec-
tion. Briefly, samples were dried and resuspended in freshly pre-
pared reaction buffer consisting of 1 vol% benzoyl chloride, 50 vol%
sodium tetraborate buffer, and 49 vol% acetonitrile. After incubation
at 50°C for 30 min, the reaction was stopped by adding formic acid
to a final concentration of 0.7 vol%. Metabolomics quality assurance
followed recommendations by Beger et al. (2019) and Bouhifd et al.
(2015). In brief, all metabolites were identified, transitions and
retention times established, and the measurements optimized as a
spike-in (3,4-dihydroxybenzylamine) reference metabolites in a
quality control (QC) mixture of various samples from the same
study. Each measurement run also consisted of blank cell culture
media extractions to measure background levels (if appropriate) and
two samples with spike-in reference metabolites in a QC-mixture of
all samples of the corresponding run to address possible retention
time drifts. MS transmission and quadruple tuning were checked
before and after each run, and LC-MS/MS was regularly maintained
following the recommendations of the manufacturer.

Peaks were integrated with the Agilent MassHunter Work-
Station Quantitative Analysis software (version 10.1). All
peaks were manually checked and integration was corrected if nec-
essary. The AUC for each peak was normalized on the protein
content in each sample and spike-in control (when included). The
glutamate/GABA and S-adenosylmethionine/S-adenosylhomocys-
teine (SAM/SAH) ratios were calculated as follows: AUC(gluta-
mate)/AUC(GABA) and AUC(SAM)/AUC(SAH), respectively.
All metabolites were measured in two batches (Neurol and
Neuro2; Table S5). In total, 1,536 measurements were conducted,
in which 65 (4%) failed, and those outliers were replaced by an av-
erage of the technical replicates from the same experiment. The
following outliers were identified: a) in Neurol and Neuro2
batches, two samples [CHD8*/~ CPO2 (run 2) and CHD8/*
CPO2 (run 3) were excluded due to the error in protein quantifica-
tion]; b) no peak was detected for all tested metabolites in two
samples CHD8"/* DMSO1 and CHD8*/~ CPO1 (run 3) due to a
technical error during the derivatization experiment of Neurol
batch; ¢) two DMSO controls in CHD8"/* Neuro2 batch measure-
ment had significant lower peaks than the rest of the samples due
to the sample being dried out; d) no peak was detected for cysteine
in one sample [CHD8*/* CPF2 (run 2)]; and ¢) CHD8*/~ CPF2
and CHD8*/~ CPO 2 (run 3) were identified as outliers for folic
acid and sample CHDS8*/~ CPF5 (run 2)—for the cysteine/cystine
ratio by visual inspection of Tukey’s box-and-whiskers plots and
robust regression and outlier removal function in GraphPad (ver-
sion 9.1) software. The LC-MS/MS experiment was repeated three
times, with 12 technical replicates in total. Kynurenic acid and
L-Cysteine, where measured in two experiments (8 technical repli-
cates). All metabolites were then normalized to vehicle-treated
CHDS"'* samples.

Literature Search of ASD-Relevant Metabolites in Human
Blood, Urine, and Brain Samples

A literature review of the articles published before 1 May 2020
was conducted in PubMed and Google Scholar. The search terms
used were “metabolites” OR ‘“amino acids” OR “neurotrans-
mitters” OR “metabolomics” OR “metabolomic analysis” AND
“autism” OR “‘autism spectrum disorder.” In addition, for each
metabolite included in our metabolomic analysis, a search with
“name of the metabolite” AND “autism” OR “autism spectrum
disorder” was performed. Only population studies looking for
metabolites in blood/serum, urine, or brain tissue and published
in peer-reviewed journals were included.
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Statistical Analysis

A detailed description of the statistical analysis is provided in each
corresponding figure legend. Briefly, all assays were conducted in at
least three independent experiments. If not specified otherwise, the
data are presented as Tukey’s box-and-whiskers plots showing
quartiles with outliers. Numeric data (mean, SD, SEM, and N) were
included either in the figures or in supplemental tables correspond-
ing to the graphs. In order to compare different treatment groups
between the cell lines in viability, AChE activity, Western blot,
Mitotracker, CellRox, gene expression, and metabolomics experi-
ments, a two-way analysis of variance (ANOVA) with posttest for
multiple comparisons by the two-stage linear step-up procedure of
Benjamini, Krieger, and Yekutieli and a desired false discovery rate
of 0.01 (metabolomics and AChE activity) and 0.05 for the rest of
the assays was used (Benjamini et al. 2006). To avoid further loss of
statistical power, only the following post hoc tests were conducted
for pairwise comparison between the groups: a) all samples were
compared with CHD8*/* DMSO; b) CPF and CPO exposures were
compared with corresponding vehicle controls within the genetic
groups; ¢) vehicle controls and CPF/CPO exposures were compared
between the CHD8"/* and CHD8"/ = (DMSO vs. DMSO, CPF vs.
CPF, and CPO vs. CPO). Statistical significance in neurite out-
growth experiment within the CHD8*/* and CHD8*/ ~ groups was
analyzed with a one-way ANOVA employing Holm-Sidak’s multi-
ple comparison test. A level of p < 0.05 was considered significant.

Results

Efficiency of BrainSphere Differentiation from CHDS*/*
and CHD8*/~ NPC

The control iPSC line (CHD8*/*) and the iPSC line carrying a
CRISPR/Cas9-induced heterozygous knockout mutation in the
CHDS gene (CHD8"/ ~ ) used in this study were generated from the
same donor, differentiated into NPCs, and fully characterized previ-
ously (Wang et al. 2015, 2017). The CHDS8*/ ~ line is heterozygous
for a two-base pair deletion, which leads to a frameshift mutation
and premature stop signal in Exon 1. A lower level of CHDS protein
in CHD8"/ ~ neuroprogenitors vs. CHD8*/* was confirmed and is
shown in Fi%ure 1A. Figure 1B shows immunostaining of control
and CHD8"/~ NPCs with the neuroprogenitor markers Sox2 and
Nestin. Both NPC cell lines were differentiated to generate 3D
BrainSphere cultures, as described in Figure 1C. We were not able
to generate BrainSpheres from a homozygous CHDS knockout line
(CHD8_/ 7). The differentiation efficiency was compared between
the two cell lines by immunostaining (Figure S1) and RT-PCR (Figure
S2; Table S6). The BrainSpheres from both cell lines contained NPCs
(Nestin®™, Ki-67"), neurons (B-IlI-tubulin®), neurofilament 200-
positive  (NF-200%), microtubule-associated protein-2-positive
(MAP2"), astrocytes [glial fibrillary acidic protein-positive
(GFAP")], and oligodendrocytes [Oligl*, myelin basic protein
(MPB)]. Co-immunostaining of neurons (B-III-tubulin*, MAP2%)
with neuroprogenitors (Nestin™, Ki-67%) at 2, 4, and 8 wk of differen-
tiation showed a progressive increase of B-Ill-tubulin* and MAP2* as
well as a decrease of Nestin® and Ki-67% cells (Figure S1A,B), dem-
onstrating neuronal maturation. GFAP* astroglia, as well as Oligl*
and MBP?' oligodendroglia, were identified. Oligodendrocyte-
specific markers were first expressed at high levels at 8 wk of differen-
tiation (Figure S1C). Notably, CHD8*/~ spheroids were slightly
larger in diameter than CHD8*/* spheroids (Figure S1D).

At the gene expression level, a panel of neural genes—along
with a set of autism risk genes and CHDS targets—were analyzed
by RT-PCR, which confirmed the similar efficiency of neural dif-
ferentiation in both cell lines. Strong reduction in expression of
progenitor marker genes (Pax6, Sox2, and Ki-67) and induction
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Figure 1. CHDS/* and CHD8*/~ NPC characterization. Scheme of
BrainSphere differentiation. Prior differentiation to BrainSpheres, NPCs
were exyanded in monolayers and characterized. (A) CHDS8 protein levels in
CHDS8*/~ vs. CHD8*/* NPCs analyzed by western blot. (B) Representative
images showing expression of the NPC markers Sox2 (green) and Nestin
(red) in CHD8*/* and CHD8*/~ NPC cultures prior to induction of differ-
entiation into BrainSpheres. The nuclei were visualized with Hoechst 33342.
Scale bar: 50 um. (C) Differentiation and toxicant treatment scheme. Note:
CPF, chlorpyrifos; CPO, oxon-metabolite of chlorpyrifos; EB, embryoid
bodies; NPC, neural progenitor cell; 3D, three dimensional.
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of neuronal (B-III-Tubulin, NeuN, Synapsinl, AChE, GABRAI,
RNXN2, SHANK3) and glial (GFAP) genes were observed in the
course of differentiation of both cell lines (Figure S2; Table S6).

Several genes, however, showed different expression levels
between CHDS8'/~ and CHDS8*/* BrainSpheres. In agreement
with previous studies (Wang et al. 2015,2017), we observed higher
expression of genes involved in GABAergic neuronal fate. DLX1,
a transcription factor known to regulate GABAergic interneuron
development, had higher expression in CHD8"/~ BrainSpheres.
Glutamate decarboxilase 1 (GAD]I), a catalizer of GABA produca-
tion form glutamic acid, was higher in CHD8*/~ NPC cultures
(not significant). Expression of GABRA I, a marker for GABAergic
neurons, was low in 2- and 4-wk BrainSpheres, but it was strongly
up-regulated at 8 wk of differentiation, with higher expression in
CHDS8"/~ BrainSpheres in comparison with the control cell line.
FOXG1, another transcription factor responsible for GABAergic
neuronal differentiation and telencephalon development, was,
however, expressed at a similar level in both cell lines.

Postsynaptic Neuroligin 3 (NLGN3) was expressed at higher
levels at 8 wk in CHDS™ ~ BrainSpheres, whereas SHANK3 did
not show significant differences. Two other CHDS targets and au-
tism risk genes, AUTS2 and POGZ, showed differing expression in
CHDS8*/~ BrainSpheres. Compared with CHD8*/*, AUTS2 level
was lower in NPCs but higher in BrainSpheres. We did not observe
any statistically significant differences in expression of the autism
risk genes TC4, RELN, and PTEN at any stage of neural differentia-
tion. Thus, these results demonstrate similar efficiency of differen-
tiation in both cell systems, with differences in expression of some
autism and/or CHDS targets [as previously reported by Wang et al.
(2015, 2017)]. These results allowed further comparison of the
response of both lines to treatment with CPF and CPO.

ACHE Activity and ROS Levels in CHD8*/* and CHDS*/~
BrainSpheres

We tested the sensitivity of both control and CHDS"/~
BrainSpheres to CPF and its active metabolite, CPO. We treated
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the spheroids at 4 and 8 wk of differentiation with 47 and found (Figure S3B), which may be attributed to assay limitations
100 uM CPF or CPO, respectively, for 24 h. The treatment and the selected 24-h exposure.

scheme is not a human relevant exposure scenario, but was rather Because AChE is the main target of CPF acutely, we quantified
used to model neurotoxic effects of the substances. Both concen- its enzymatic activity (Figure 2C). AChE gene expression was also
trations were subtoxic, as measured by the resazurin reduction assessed. As expected, CPO had a stronger inhibitory effect on

assay. CHDS*/~ BrainSpheres, however, were slightly more sen- ACHhE than CPF in both cell lines. Upon exposure to 100 uM CPF,
sitive to CPF and CPO at 8 wk (Figure 2A,B). For the next AChE activity was lower by 41% and 37% in CHD8"/* and
experiments, we selected 100 UM CPF and CPO concentrations CHDS8*/~ BrainSpheres, respectively. Exposure to 100 uM CPO
and 4 wk of differentiation as an intermediate and immature stage reduced AChE activity by 64% and 55% in CHD8*/* and
of the differentiation process. CHDS8*/~ BrainSpheres, respectively. No significant difference

Previously, Slotkin and Seidler (2010) have shown that CPF was observed between the two cell lines. Interestingly, genetics
induces oxidative stress in neuronal cultures. We analyzed the affected AChE mRNA. CHD8*/~ BrainSpheres had significantly
level of ROS and MMP. There were no significant differences in lower levels of AChE mRNA (Figure 2D) when compared with
MMP aside from slightly lower levels of MMP upon treatment of CHD8*/* BrainSpheres. The level of AChE substrate—acetylcho-
CHD8*/* spheroids with CPO (Figure S3A). We observed line, measured intracellularly by MS—was higher after CPO treat-
higher levels of ROS in CHD8"/ ~ than in CHD8*/* spheroids. ~ ment in both cell lines (Figure 2E). Based on two-way ANOVA
No differences in ROS levels upon CPF/CPO treatment were analysis, genetics, exposure, and the interplay of both had
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Figure 2. Cell viability and AChE activity after exposure to CPF or CPO. Resazurin reduction assay in 47 and 100 uM (A) CPE- and (B) CPO-treated CHD8™/* (gray)
and CHD8"/ =~ (white) BrainSpheres for 24 h at 4 and 8 wk of differentiation. The data represents three independent experiments with three technical replicates each (9
replicates in total, and 6 for 8-wk CPO treatment) normalized to DMSO vehicle-treated controls. Corresponding summary data are shown in Table S7. Asterisks after E,
G, and I denote discovery of two-way ANOVA with posttest multiple comparisons for exposure effect between CHD8*/* and CHD8*/ ~ BrainSpheres by the two-stage
linear step-up procedure of Benjamini, Krieger, and Yekutieli and a desired false discovery rate (FDR) of 0.05. p < 0.05, ™p < 0.01, ™*p < 0.001. (C) AChE activity:
the data represent the AChE activity normalized to the protein amount in each sample (mean + SEM, three independent experiments, “p < 0.01, “**p < 0.0001); (D)
mRNA expression (five independent experiments, with 7 technical replicates in total, “p < 0.05, **p < 0.01); intracellular levels of (E) acetylcholine and (F) choline
measured at 4 wk of differentiation in CHD8*/* and CHD8*/ ~ spheroids after exposure to 100 pM CPF (dark gray) and 100 uM CPO (light gray). DMSO vehicle-
treated controls are depicted in white. Acetylcholine and choline were measured by LC-MS/MS in three independent experiments (12 technical replicates in total). Data
were normalized to DMSO vehicle-treated CHD8*/* controls. Discovery of effect by genetics or by exposure or by (G X E) interaction on the metabolite levels was
based on a two-way ANOVA with posttest multiple comparisons to *CHD8*/* DMSO or *CHD8/~ DMSO by the two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli and a desired FDR of 0.01. *p < 0.01, ***p <0.0001. Corresponding summary data are shown in Tables S8 and S10. Note: AChE, acetylcholin-
esterase; ANOVA, analysis of variance; CPF, chlorpyrifos; CPO, oxon-metabolite of chlorpyrifos; DMSO, dimethyl sulfoxide; E, discovery of effect by exposure; G,
discovery of effect by genetics; G X E, gene—environment; I, discovery of effects by G X E; n.s., not significant; SEM, standard error of the mean.
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significant impacts on acetylcholine levels. The basal level of ace-
tylcholine was higher in CHD8*/* than in CHD8*/~ samples.
Although the peak of acetylcholine in CHDS*/* BrainSpheres
treated with CPO was higher than in CHD8*/ ~, the magnitude of
induction was greater in CHD8*/ ~ BrainSpheres: an 18-fold vs. a
9-fold change difference in the CHD8*/* group of samples. We
observed a slightly, but not significantly, higher level of acetylcho-
line in CPF-treated samples in both cell lines. This finding is sup-
ported by significantly lower AChE activity [possibly due to the
presence of low levels of CPO in CPF-treated samples (Figure
S4)], suggesting that BrainSpheres have the capacity to metabolize
CPF to CPO. In accordance with these results, the level of choline
was already lower by 26% in the mutant cell line than in the control,
and was further reduced (59%) by CPO treatment (Figure 2F).

Neurite Outgrowth in CHDS*/* and CHDS*/~ BrainSpheres
Exposed to CPF or CPO

Because AChE is an essential factor regulating neurite out-
growth, we analyzed this process as a functional end point.
BrainSpheres exposed to CPF/CPO had significantly shorter neu-
rite length in both cell lines (Figure 3; Figures S5-S7).
Pretreatment of spheroids with an antioxidant—tocopherol—atte-
nuated the CPF effect. Although, in one of three experiments,
there was a difference in neurite outgrowth between the untreated
cell lines, the data was difficult to interpret owing to differences
in spheroid size between the two cell lines. The magnitude of

CPF and CPO effect was, however, similar in both cell lines, as
indicated by AUC measurements (percentage differences are
indicated in each figure; Figure 3; Figures S5-S7).

CHD8 mRNA and Protein Levels in CHD8*/* and CHD8*/~
BrainSpheres Exposed to CPF or CPO

The next question addressed was whether CPF/CPO exposure
could influence the level of CHDS in BrainSpheres. In agreement
with previous studies (Wang et al. 2017), we did not observe sig-
nificant differences in CHDS8 mRNA expression between
CHDS8*/* and CHD8*/~ BrainSpheres (Figure 4A). The expres-
sion pattern of CHDS reached its peak at 4 wk of differentiation
and was reduced thereafter. CPF/CPO treatment did not signifi-
cantly alter CHD8 mRNA expression at 4 wk of differentiation
(Figure 4B). We observed, however, significantly lower levels of
CHDB8 protein in BrainSpheres with the CHD8 mutation (67% of
CHDS8"'*), which were even lower (by 90%) after exposure
(Figure 4C,D). CHD8"/* BrainSpheres treated with CPF had
80% lower CHDS protein levels (Figure 4C).

Identification of ASD Metabolic Biomarkers from Literature

The key question was how to possibly validate in vitro data with
clinical findings. We decided to use an exposomics approach (Sillé
etal. 2020) in which population findings of biomarkers in biofluids
are compared with differences in the mechanistic model (i.e.,
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Figure 3. Neurite outgrowth upon 100 pM CPF treatment and co-treatment with 100 pM tocopherol. (A) Sholl analysis of neurite outgrowth in CHDS8*/* and
CHDS8*/~ showing number of intersections (neurite density) starting from the edge of the spheroid. Each curve represents the mean + SEM from 8 to 12 sphe-
roids. (B) Area under the curve (AUC), calculated for each condition shown in (A). *p <0.01 and ™ p <0.001, one-way ANOVA with Holm-Sidak’s posttest.
(C) Representative images for each treatment. Scale bar: 200 um. Note: ANOVA, analysis of variance; CPF, chlorpyrifos; DMSO, dimethyl sulfoxide; SD,

standard deviation; SEM, standard error of the mean; Vit. E, tocopherol.
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Figure 4. CHD8 expression upon CPF/CPO treatment. (A) CHDS gene expression in course of differentiation (four independent experiments). (B) CHD8 gene
expression in CHDS8*/* and CHD8*/~ BrainSpheres exposed to CPF/CPO (four independent experiments). (C) Western Blot quantification of CHDS8 protein
in CHD8/* and CHD8*/~ BrainSpheres treated with CPF. CHDS protein level was normalized to GAPDH and is expressed as a percentage of CHDS"/*
DMSO vehicle-treated control BrainSpheres. Dendrogram is shown as means + SEMs (five independent experiments). Statistical significance was calculated by
two-way ANOVA with posttest multiple comparisons to *CHDS*/* DMSO or *CHD8"/~ DMSO by the two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli and a desired false discovery rate of 0.05. “p <0.05, *p <0.01, **p <0.001, ™p <0.0001. A representative blot is shown on the right
side of (C). (D) Immunostaining of CHDS"/* and CHDS8*/~ BrainSpheres with CHDS8 antibody (red) after CPF or CPO exposure. Representative images
from three experiments are shown. Nuclei are stained with Hoechst 33342 (blue). Scale bar: 100 um. Summary data (mean, SEM, N) are shown in Table S9.
Note: ANOVA, analysis of variance; CPF, chlorpyrifos; CPO, oxon-metabolite of chlorpyrifos; DMSO, dimethyl sulfoxide; E, discovery of effect by exposure;
G, discovery of effect by genetics; G X E, gene—environment; GADPH, glyceraldehyde-3-phosphate dehydrogenase; I, discovery of effect by (G X E) interac-
tion; MS, mass spectrometry; NPC, neural progenitor cell; ns, not significant; SEM, standard error of the mean.
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BrainSpheres). A comprehensive review of the literature identified
a panel of pathways and metabolites perturbed in patients with
ASD (e.g., amino acids, fatty acid metabolism, one-carbon metab-
olism, energy metabolism, oxidative stress, neurotransmitters).
We selected a list of representative metabolites and neurotrans-
mitters and compared the levels of those in the CPF/CPO-treated
CHDS8*/* and CHD8*/~ BrainSpheres with human data (Table 1
and references therein). Notably, metabolite levels were some-
times contradictory, with some studies reporting higher and others
lower levels in ASD vs. typically developed (TD) individuals. This
might be due to the biological compartment for sampling, such as
tissue or blood/urine or stage of the disease. We were therefore pri-
marily interested in whether we could observe perturbations in
these biomarkers as an indication of a perturbation of the linked
pathways and not necessarily in the direction of the differences.

Effects of the CHD8 Mutation and CPF/CPO on Energy
Metabolism, One-Carbon Metabolism, and Selected
Neurotransmitters

We analyzed the intracellular levels of the 29 selected metabo-
lites by MS and compared them between CHDS&"/* and
CHDS*/~ BrainSpheres, with and without CPF and CPO treat-
ment (Table S5). Twenty-three metabolites, which were signifi-
cantly different (p <0.01) in at least one condition, are shown in
Table 1 and Table S10. We found perturbations in ASD meta-
bolic biomarkers under either genetic alteration (14 metabolites),
chemical treatment (17), or their combination (10).

Folate-dependent, one-carbon metabolism is a central hub in
the cellular pathways and is essential for producing methyl
groups for all methylation reactions. One-carbon metabolism
plays a critical role in autism (James 2013; Orozco et al. 2019;
Schaevitz and Berger-Sweeney 2012). SAM was affected by both
genetics and exposure and its levels were higher in CHDS"/ ~
BrainSpheres treated with CPF (+65%) and CPO (+134%) when
compared with CHD8*/* DMSO samples. The basal level of
SAH was 64% higher in CHD8*/~ and further increased by CPF
(+93%)- and CPO (+104%)-treated BrainSpheres, when com-
pared with CHD8*/* DMSO samples. The SAM/SAH ratio was
higher in CPO-treated samples in both cell lines (79% for
CHDS8*/* and 62% in CHD8*/ ) compared with corresponding
DMSO-treated controls (Figure 5A). Although SAH levels were
elevated in the urine and blood of patients with ASD, SAM levels
were reduced (Table 1). Folic acid levels were higher in samples
treated with CPF and CPO in both cell lines (Figure 5A); no
effect of genetics was observed. No differences in methionine,
reduced glutathione, and oxidized glutathione levels were
detected. Cystathionine levels were significantly lower (—45%)
only in CHDS8"/* samples treated with CPO (Table 1).

Energy cycle (i.e., the citric acid cycle) metabolites were per-
turbed in patients with ASD (Orozco et al. 2019). In our experimen-
tal setup, creatine levels were slightly affected by the genetic factor,
whereas lactic acid levels were found to be higher only in
CHDS8*/ ~ BrainSpheres by 119% (CPF) and by 158% (CPO) when
compared with DMSO-treated CHD8*/* BrainSpheres, and by
81% (CPF) and 113% (CPO) when compared with DMSO-treated
CHDS8*/~ BrainSpheres. Similarly, L-tryptophan and its metabolite
kynurenic acid (KA) had both significant genetic and exposure
effects as assessed by two-way ANOVA, and their levels were ele-
vated following CPF/CPO treatment only in the mutant cell line.
Tryptophan levels were 58% higher in CPF- and 61% higher in
CPO-treated CHDS*/~ BrainSpheres, when compared with
DMSO-treated CHD8"/* control BrainSpheres. When compared
with DMSO-treated CHD8*/ ~ BrainSpheres, levels were 43% and
46% higher for CPF and CPO, respectively. KA levels were higher
after CPF and CPO treatment by 62% and 90%, respectively, when
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compared with DMSO-treated CHDS*/* control BrainSpheres
(Figure 5C; Table 1). Levels of o-hydroxyglutaric acid were 433%
higher in CHDS8*/~ spheres treated with CPO compared with
DMSO-treated CHDS*/* control BrainSpheres, and 418% when
compared with DMSO-treated CHDS8"/~ BrainSphere samples
(Figure 5D).

Glutamate/GABA Ratio in CHD8/* and CHD8*/~
BrainSpheres

The imbalance of excitatory/inhibitory neuronal systems is known
from population studies to be associated with ASD (reviewed by
Gao and Penzes 2015). Consequently, we measured the levels of in-
tracellular GABA and glutamate neurotransmitters. CHDS*/~
BrainSpheres had 70% lower basal levels of GABA in comparison
with CHD8*/* BrainSpheres, and a 255% higher ratio of glutamate
vs. GABA (Figure 6). Exposure to CPF and CPO did not alter the
glutamate/GABA ratio, but BrainSpheres treated with CPO had glu-
tamate levels 67% and 75% higher in CHDS8*/* and CHDS8*/~
BrainSpheres, respectively. Metabolites of arginine/ornithine/aspar-
tate (urea) cycle were assessed. Arginine levels were significantly
higher (+35%) in CHD8*/* BrainSpheres treated with CPF vs. cor-
responding controls. Although arginine had only exposure effects,
both genetics and exposure affected ornithine—its levels were 55%
lower in mutant BrainSpheres compared with CHDS8*/*
BrainSpheres and increased following CPF/CPO treatment by 66%/
69% in the latter (Table 1). Higher ornithine and arginine levels
were reported in the blood and urine in patients with ASD (Table 1).

CHDS8 KO and CPF/CPO Effects on Dopaminergic System

We analyzed several parameters of the dopaminergic metabolism
in our system. We observed no statistically significant differences
in the levels of phenylalanine, exposure effects on tyrosine, higher
levels of 1-3,4-dihydroxypyhenylalanine (levodopa; L.-DOPA) due
to the genetic factors, and 44% lower dopamine levels in
CHDS8*/~ BrainSpheres with no differences due to treatment
(Figure 7A). Gene expression of tyrosine hydroxylase (TH), an
enzyme responsible for conversion of tyrosine to L-DOPA, was
higher in BrainSpheres treated with CPF (Figure 7B). COMT (cate-
chol-O-methyltransferase) expression was higher in CHDS*/~
samples compared with CHDS8*/* BrainSpheres (Figure 7B).
Similarly, levels of SAM were also higher in the CHDS8"/~ group
than in the control group (Figure 5A). Finally, we assessed the
presence of TH* dopaminergic neurons in the cultures and
observed higher numbers of dopaminergic neurons in CHDS*/~
and in CHD8*/* BrainSpheres exposed to CPO compared with
CHDS*/* BrainSpheres (Figure 7C). Two different morphologies
of the TH* signal were observed: flat, nonneuronal-like cells were
predominantly found in CHD8"/* BrainSpheres (marked with
blue arrows in Figure 7C), and TH* cells with distinctive neuronal
morphology (marked with white arrowheads in Figure 7C) were
predominantly found in CHDS*/~ BrainSpheres.

Discussion

ASD is a genetically and phenotypically heterogeneous condition,
making it difficult to identify factors that trigger the disease and
influence the severity of symptoms. Although genetics has a sub-
stantial impact (Persico and Napolioni 2013), environmental fac-
tors also appear to play a role (Landrigan et al. 2012; Rylaarsdam
and Guemez-Gamboa 2019; Sandin et al. 2014). Earlier studies
showed that valproic acid, thalidomide, misoprostol, lead, and or-
ganophosphates contribute to ASD risk (Geier et al. 2009;
Kuwagata et al. 2009; Landrigan 2010). We follow the hypothesis
that exposures synergize with an individual’s increased suscepti-
bility, which would explain why genetic and environmental factors
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Figure 5. Effects of CHDS mutation and CPF/CPO exposure on key adverse outcome pathways of ASD. (A) Methyl donor system: SAM, SAH, SAM/SAH ra-
tio, and folic acid. (B) L-alanine and lactic acid, (C) tryptophan and KA, and (D) a-hydroxyglutaric acid levels were measured by LC-MS/MS. DMSO vehicle-
treated controls are depicted in white, CPF-treated in dark gray, and CPO in light gray. Data are normalized to DMSO vehicle-treated CHDS8*'* control and
represent results from three independent experiments (12 technical replicates in total, 8 for KA). Discovery of effect by genetics or by exposure was based on a
two-way ANOVA with posttest multiple comparisons to “CHD8*/* DMSO or *CHD8*/~ DMSO by the two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli and a desired false discovery rate of 0.01. **p <0.01, **p <0.001, ***p <0.0001. Summary data (mean, SD, SEM, N) are shown in
Table S10. Note: ANOVA, analysis of variance; ASD, autism spectrum disorder; CPF, chlorpyrifos; CPO, oxon-metabolite of chlorpyrifos; DMSO, dimethyl
sulfoxide; E, discovery of effect by exposure; G, discovery of effect by genetics; KA, kynurenic acid; LC, liquid chromatography; MS/MS, tandem mass spec-
trometry; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; SD, standard deviation; SEM, standard error of the mean.

are so difficult to identify in isolation. Accordingly, understanding
of the mechanisms by which environment contributes is limited.
One possibility is that environmental chemicals and susceptibility
genes act on common targets. Assessing whether and how (G X E)
interaction contributes to the etiology and severity of ASD could
help rationalize prevention measures and drug development

strategies. We suggest that a strong genetic background (e.g.,
mutation in a high-risk autism gene that alone can trigger the dis-
ease) can still synergize with environmental cofactors, thereby
worsening symptoms and severity. Individuals with similar genetic
variants can have significantly different symptoms and degrees of
disease progression, including being on different levels of the ASD
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Figure 6. Excitatory/inhibitory neurotransmitters detection in CHDS*'* and CHDS*/~ BrainSpheres after CPF/CPO exposure. (A) Glutamate and (B) GABA
levels and (C) their ratio in CHD8"/ ~ vs. CHD8*/* BrainSpheres treated with CPF (dark gray), CPO (light gray), or vehicle (white) were assessed by LC-MS/
MS. Data from three independent experiments (12 technical replicates in total) normalized to DMSO vehicle-treated CHDS8*/* controls is shown. Discovery of
effect by genetics or by exposure was based on a two-way ANOVA with posttest multiple comparisons to *CHD8** DMSO or *CHD8*/~ DMSO by the

two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli and a desired false discovery rate of 0.01. **p <0.01,

sk

p<0.0001. Summary data

(mean, SD, SEM, N) are shown in Table S10. Note: ANOVA, analysis of variance; CPF, chlorpyrifos; CPO, oxon-metabolite of chlorpyrifos; DMSO, dimethyl
sulfoxide; E, discovery of effect by exposure; G, discovery of effect by genetics; GABA, gamma-aminobutyric acid; Glu, Glutamate; Gly, glycine; LC, liquid
chromatography; MS/MS, tandem mass spectrometry; SD, standard deviation; SEM, standard error of the mean.

spectrum, leaving substantial room for the contribution of environ-
mental factors (Rylaarsdam and Guemez-Gamboa 2019). A cellu-
lar test with genetic susceptibility might be advantageous for
identifying hazardous chemicals.

Approximately 65 high-autism-risk genes caused by de novo
mutations were identified and can be clustered into two large
groups: genes expressed early in development (during the first
and second trimesters of pregnancy) and genes expressed later in
pregnancy and after birth (Sanders 2015; Sanders et al. 2015).
The first group includes transcription factors and chromatin
remodelers, whereas the second group consists mainly of genes
involved in synaptogenesis (Sanders 2015; Sanders et al. 2015).
CHD&8—a focus of this proof-of-principle study—belongs to the
first group and is one of the nine high-confidence autism genes
(Willsey et al. 2013) that can also regulate the expression of other
autism-related genes (Cotney et al. 2015). It is therefore an attrac-
tive candidate for synergies with exposures at early embryonic
stages as reflected in the BrainSphere model. Notably, the model
without genetic alteration was sensitive to the pesticide rotenone
(Pamies et al. 2018) and the drug paroxetine (Zhong et al. 2020),
demonstrating its utility as a developmental toxicity model. The
model is also supported by the U.S. Environmental Protection
Agency for developing an animal-free method for this purpose
(Wheeler 2019).

Traditional validation of the findings with animal studies is
not only cost prohibitive [at $1.4 million per chemical (Smirnova
et al. 2014)], but animal findings on the effects of CPF are also
controversial (Mie et al. 2018). The rat is the standard species
used for neurotoxicity and developmental neurotoxicity tests
[according to Organisation for Economic Co-operation and
Development test guidelines 424 (OECD 1997), 426 (OECD
2007), and 443 (OECD 2018)]. Chd8 KO rats are not available,
and although there is a Chd8 KO mouse model (Platt et al. 2017;
Suetterlin et al. 2018) that shows ASD features, the mouse is not
a standard model organism for neurotoxicity testing. Although
autism is unique for humans, animal models can provide some
insight into the behavioral biology, whereas complex in vitro
models—as used here—allow mechanistic studies with the focus
on biomarkers and molecular signatures. (G X E) interaction anal-
yses focusing on neurotoxicity and carried out using brain orga-
notypic cultures specifically will provide more complex cellular
architecture and interactions than traditional monolayer cultures.
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In addition, using human brain models provides an opportunity to
compare in vitro findings with clinical data from patients.
Finally, the established AOPs for developmental neurotoxicity
(Bal-Price et al. 2015, 2017; Li et al. 2019) allow us to focus on
specific key events associated with neurotoxicity and develop-
mental neurotoxicity AOPs. The current in vitro models, how-
ever, including the one described here, still have some
limitations, including, for example, the lack of interorgan com-
munication, the absence of hormonal factors and the immune sys-
tem, limited metabolism, and inability to predict behavioral
outcomes. The combination of in vitro, in vivo, nonmammalian
models, and human clinical data are most promising (Halladay
et al. 2009) until the in vitro approach is mature enough to
replace the animal and translate to the human situation.

A key use of our model is for regulatory testing of chemicals
for possible effects on neurodevelopment by using a cell system
susceptible to developmental neurotoxicants. This regulatory use
requires formal validation (Hartung et al. 2004; Leist et al. 2012)
of the model. However, an insufficient number of chemicals have
been tested in the respective animal guideline tests. We suggested
earlier mechanistic validation of a model (Hartung et al. 2013),
that is, by demonstrating that relevant mechanisms are reflected
instead of the mere correlation with findings from animal studies.
This would ideally be done on the basis of an agreed AOP, but,
in this case, the AOP of DNTs have not been sufficiently devel-
oped and accepted. Nevertheless, there is a substantial body of
clinical and epidemiological findings on autism pathophysiology,
metabolic biomarkers, and associations with the environment.
These lend themselves to validation by correlation with findings
obtained with the model system. This was suggested as a human
exposome approach (Sillé et al. 2020).

Here, we attempted to correlate the metabolic perturbations
observed in our human brain model carrying a high-risk autism
mutation in the CHDS8 gene, exposed to a model environmental
toxicant—CPF—with findings in epidemiological and clinical
studies. We established a synergy between the risk gene and the
risk exposure. Our results demonstrate that, based on the resaz-
urin assay, CHDS"~ was slightly more sensitive to CPO insult
in general. A key finding of our study was that CHDS*/~ cells
exposed to CPF had lower levels of the CHDS protein compared
with those exposed to the control condition, showing potential
synergy of CPF and CPO with the CHDS8 mutation and possible
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Figure 7. Perturbations of the dopaminergic system in CHD8*/* vs. CHD8*/~ BrainSpheres after CPF/CPO treatment. (A) Levels of phenylalanine, tyrosine, L-DOPA,
and dopamine were measured by LC-MS/MS. Data from three independent experiments (12 technical replicates in total) normalized to DMSO vehicle-treated CHD8*/*
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further interactions on downstream targets that may be crucial for
neural development and disease progression. In addition, the fact
that lower levels of CHDS were observed at the protein level, but
not at the mRNA level, suggests a posttranscriptional interaction.
However, further research is needed to address the effects of CPF
and CPO on CHDS8 molecular networks during development.

Further potential synergy between the CHDS mutation and
CPF/CPO exposure emerged from our metabolomics analysis
where we were able to demonstrate the potential of comparing
in vitro findings with human clinical data. Alterations of some
metabolites associated with ASD were also affected by the com-
bination of the CHDS8 mutation and CPF and/or CPO treatment.

Dysfunction of cholinergic activity in individuals with ASD
has been linked to social and behavioral abnormalities, including
sensory processing and attention reorienting behavior (Ford and
Crewther 2016; Orekhova and Stroganova 2014). The supposed
primary acute mode of action of OPs is via AChE—the main target
of CPO. Choline levels were lower in patients with ASD (Table 1),
as mirrored by the CHDS mutation in our model. Synergistically,
CPO ex]posure led to a greater accumulation of acetylcholine in
CHDS8*/~ BrainSpheres—demonstrating an increased suscepti-
bility of mutant BrainSpheres to CPF/CPO toxic effects with
respect to cholinergic dysfunction (Figure 2C-F).

Folate-dependent, one-carbon metabolism, and transsulfura-
tion pathways can be perturbed in ASD (Orozco et al. 2019),
showing alterations of methyl donor SAM in patients with ASD.
Although lower levels of SAM and higher levels of SAH were
reported in the biofluids of patients with ASD (Table 1), in our
system, we detected elevated levels of both SAM and SAH only
in mutant BrainSpheres, suggesting additive effects of genetics
and exposure (Figure 5A). Higher expression of the methyltrans-
ferase COMT (Figure 7B) and elevated SAM would suggest hy-
permethylation in CHDS8"/~ BrainSpheres, but in this case,
lower SAH levels would be expected—which is not what we
observed. More detailed analyses are required to clarify mecha-
nisms, but the findings indicate a perturbation of this pathway by
both mutation and exposure.

Elevated plasma alanine and lactate in patients with ASD sug-
gest peripheral mitochondrial dysfunction associated with this
disorder (Aldred et al. 2003; El-Ansary et al. 2017; Orozco et al.
2019). Although we were not able to see any significant differen-
ces in MMP in our system, lactic acid levels were higher after
treatment with both CPF and CPO in CHDS"/~ BrainSpheres
only (Figure 5B)—an indication of additive effects from exposure
and genetics.

Plasma levels of tryptophan and its metabolite KA were
reported to be attenuated in ASD (Table 1), whereas higher brain
levels of KA were found in animal models of ASD and attention
deficit hyperactivity disorder (Murakami et al. 2019; McTighe SM
et al. 2013) and in the postmortem brains of patients with schizo-
phrenia (Iaccarino et al. 2013). This was associated with the cogni-
tive, behavioral, and learning impairments characterizing these
disorders (Iaccarino et al. 2013; Murakami et al. 2019; Scharfman
etal. 2000; Vohraetal. 2018; Yerys et al. 2009). In agreement with
those findings, we found higher levels of tryptophan and KA in our
CHDS'/~ BrainSpheres exposed to CPF/CPO (Figure 5C).
Tryptophan is known as the precursor of serotonin, but it was sug-
gested that the great majority of tryptophan enters the kynurenine
pathway, leading to the production of several neuroactive com-
pounds, including KA (Katuzna-Czapliniska et al. 2017). KA can
interact with N-methyl-p-aspartate, nicotinic, and G-protein
coupled receptor 35 receptors, affecting cognition, neural plastic-
ity, and brain development through the modulation of glutamate,
dopamine, acetylcholine, and GABA release (Iaccarino et al. 2013;
Katuzna-Czapliniska et al. 2017). Furthermore, KA functions as a
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ROS scavenger, thereby playing a role in redox homeostasis
(Ramos-Chavez et al. 2018). A higher level of oxidative stress is a
known feature of ASD (Chauhan and Chauhan 2006). Thus, com-
pensatory elevated KA may be a result of the higher oxidative
stress observed in CHD8*/ ~ BrainSpheres (Figure S3B).

The physiological functions of a-hydroxyglutaric acid remain
widely unknown, but its accumulation was found to be toxic to the
mammalian brain (van Schaftingen et al. 2009). a-Hydroxyglutaric
aciduria in the urine, plasma, and cerebrospinal fluid were associ-
ated with diverse neurologic deficits (Zafeiriou et al. 2008).
Interestingly, o-hydroxyglutaric aciduria was observed in a few
ASD case reports (Zafeiriou et al. 2008; Kiykim E et al. 2016).
Furthermore, o-hydroxyglutaric acid has been shown to inhibit mi-
tochondrial creatine kinase and to induce oxidative stress in the cere-
bellum (van Schaftingen et al. 2009). Our metabolomic analysis
revealed higher levels of o-hydroxyglutaric acid in CHDS8*/~
BrainSpheres exposed to CPO when compared with both CHD8*/*
and CHD8"*/ = DMSO-treated controls (Figure 5D), suggesting that
the CHDS8 mutant BrainSpheres are more sensitive to CPO and the
higher 2-hydroxyglutaric acid levels might be due to the synergistic
effect of the CHDS8 mutation and exposure to CPO. It is difficult,
however, to speculate about the mechanism behind this finding.
Further analysis is needed to distinguish between o and 3 forms.

We also observed one of the main ASD features: an imbalance
in excitatory and inhibitory neurotransmitters in CHD8/~
BrainSpheres (Figure 6). About 80% of the neurons in the cerebral
cortex are excitatory, and the remaining 20% are inhibitory (repre-
sented primarily by GABAergic interneurons). In some studies,
lower levels of GABA and numbers of GABAergic interneurons
were found in mouse models of ASD (Gogolla et al. 2009; Rippon
et al. 2007; Rubenstein and Merzenich 2003), which was also con-
sistent with a higher incidence of epilepsy in humans with ASD
(Lewine et al. 1999) and in ASD mouse models (Belmonte et al.
2004; Rubenstein and Merzenich 2003). The lower level of GABA
neurotransmission in sound processing and motor control regions
may be the cause of hypersensitivity of autistic patients to loud
sounds and motor impairment (Gaetz et al. 2014). In other studies
involving iPSCs (Mariani et al. 2015) and postmortem samples of
five individuals with autism and five without (Lawrence et al.
2010), a higher number of GABAergic interneurons was associ-
ated with the ASD phenotype. This discrepancy may be due to the
genetic heterogeneity of autistic patients, changes occurring during
the life span, or different brain regions analyzed in reported studies.
In our system, the CHDS heterozygous KO condition resulted in
lower levels of GABA, which were not significantly altered with
CPF/CPO treatment. Interestingly, expression of the GABAergic
transcription factor DLX1, which regulates glutamic acid decar-
boxylase 1 (GADI) expression (among many other genes), was
higher in CHDS8"'~ BrainSpheres, such that an elevated level of
GABA might be expected. But neither GAD1 nor GABA levels
were higher. Here, more experiments are needed to understand and
validate the exact mechanism of this circuit. Excessive and unbal-
anced excitatory glutamatergic signaling was associated with the
high epilepsy rates in ASD (Zheng et al. 2016). Glutamate levels
were significantly higher in both CHDS8*/* and CHDS8"/~
BrainSpheres exposed to CPO. In a recent meta-analysis, Zheng
et al. (2016) established overall higher blood glutamate levels in
ASD than in typically developing individuals, with a positive cor-
relation between glutamate levels in ASD blood and brain samples.
Thus, further investigations are needed to elucidate whether CPO
is specifically correlated with an increased risk of developing
forms of ASD associated with epilepsy, which is present in about
20% of patients with ASD (Besag 2017). Abnormalities in the argi-
nine/ornithine/aspartate (urea) cycle in patients with ASD has also
been reported (Liu et al. 2019). Given that glutamate and ornithine

129(7) July 2021



are linked, alterations in the urea cycle can play a role in the excita-
tory/inhibitory imbalance.

CPF has been found to affect dopaminergic neurons in vivo
(Aldridge et al. 2005; Torres-Altoro et al. 2011; Zhang et al.
2015). Imbalanced levels of dopamine have been reported in
ASD (Paval 2017; Marotta et al. 2020), but the observations were
not consistent. The dopamine synthesis pathway was perturbed in
our experimental model system by both exposure to CPF/CPO
and CHDS8 mutation (Figure 7). Interestingly, we observed
slightly higher levels of L-DOPA along with lower level of dopa-
mine in CHD8"/~ BrainSpheres, but no changes due to CPF/
CPO treatment. Moreover, TH expression was higher due to ex-
posure, whereas COMT expression was higher due to genetics.
Although there is some controversy in the literature reporting
both higher and lower levels of dopamine in ASD vs. TD individ-
uals, the perturbation of catecholamine synthesis in ASD has
been established (Ernst et al. 1997; Katuzna-Czaplinska et al.
2010). COMT gene variations have been associated with ASD,
anxiety, and bipolar disorders (James et al. 2006; Lachman 2008;
Lachman et al. 1996; Schmidt et al. 2011). Elevated COMT ac-
tivity due to functional polymorphism (Vall158) has been associ-
ated with lower levels of dopamine, poorer cognitive
performance, and greater predisposition for psychiatric disorders
(Kamath et al. 2012; Simpson et al. 2014). Given that COMT ini-
tiates catecholamine degradation by transferring a methyl group
from SAM to catecholamines, the higher expression of COMT
and lower levels of dopamine, in our analysis, suggests that dopa-
mine is metabolized more rapidly in CHD8"/ ~ BrainSpheres.

Overall, our targeted metabolomics findings are consistent
with a dysregulation in glutamate, GABA, catecholamines, and
acetylcholine neurotransmitter systems, as previously reported in
ASD and summarized by Cetin et al. (2015) and Marotta et al.
(2020). Here, we recapitulated some of the key findings from the
literature and demonstrated the potential contribution of a (G X E)
interaction to an imbalance in neurotransmission. Although the
changes in biofluids and in our model, as well as in the aforemen-
tioned animal models, were sometimes contradictory (such as
those in tryptophan and SAM/SAH), we interpret them as pertur-
bations in the same pathway. Alternatively, the differences could
be due to analysis of intracellular metabolites in vitro, whereas
the clinical findings are mainly in blood and urine. Additional
quantification of these metabolites and neurotransmitters in the
medium supernatant to model clinical biofluid findings could
contribute to a better understanding of the perturbation of these
pathways.

As a direct outcome of perturbations in energy metabolism
and acetylcholine degradation, the highly energy-dependent pro-
cess of neurite outgrowth was assessed (Figure 3; Figure S7). As
expected, both CPF and CPO significantly impaired neurite out-
growth. This effect could be rescued by pretreatment with to-
copherol, confirming perturbation in energy metabolism and
oxidative stress. We have not directly observed higher ROS lev-
els in response to CPF or CPO exposure (Figure S3B), likely due
to the 24-h exposure selected. Because of the different spheroid
sizes, we were unable to draw a conclusion about synergistic
effects on neurite outgrowth between exposure and CHDS muta-
tion, but based on our data the magnitude of the alterations were
similar in the two cell lines. Axonal growth was shown to be per-
turbed by OPs in the developing nervous system. In neural cell
lines, CPF has been shown to inhibit neurite outgrowth, whereas
axonal growth has been shown to be perturbed by CPF in rat pri-
mary neurons (Howard et al. 2005; Yang et al. 2008). Taken to-
gether, the data indicate that CHDS''~ and CPF/CPO can both
impair neurodevelopment, given that increased ROS production
and impaired neurite outgrowth are key events of the DNT AOP.
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In conclusion, this study demonstrated how an iPSC-derived
3D brain model can be used in studying a known genetic ASD
risk factor and the exposure to an environmental chemical and to
address whether and how these two factors can synergize.
Remarkably, common metabolic targets for both the CHDS muta-
tion and CPF/CPO exposure suggest that CPF can mimic some
effects of CHD8*/~ and vice versa, especially because cells
treated with CPF had lower CHDS8 protein levels than those
treated with vehicle. This suggests that in patients with CHDS8
mutations, severity of symptoms might be exacerbated if they are
exposed to this toxicant. Although only two cell lines were used
in this study (control and selectively mutated), the findings point
to potential targets and adverse outcomes to evaluate when per-
forming (G X E) interaction studies. Extension of these findings
to more human-relevant exposure scenarios, different develop-
mental neurotoxicants, and more cell lines (including patient-
derived iPSCs), is needed to validate the findings presented here.
The identification of defined (G X E) interaction factors converg-
ing on common metabolic pathways could then foster the devel-
opment of treatments tailored to specific clusters of patients.

These types of (GXE) interaction in organotypic models
(Marx et al. 2016, 2020) represent a way forward to study the
interplay of genetic and environmental components of autism and
other neurodevelopmental disorders. The mechanistic validation
through consensus AOP, and especially the corroboration with
biomarker identification and correlation between clinical and
mechanistic studies, opens new approaches for establishing the
relevance of such findings.
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