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Abstract
Despite the yield of recent genome-wide association (GWA) studies, the identified variants
explain only a small proportion of the heritability of most complex diseases. This unexplained
heritability could be partly due to gene-environment (G×E) interactions or more complex
pathways involving multiple genes and exposures. This article provides a tutorial on the available
epidemiological designs and statistical analysis approaches for studying specific G×E interactions
and choosing the most appropriate methods. I discuss the approaches that are being developed to
study entire pathways and available techniques for mining interactions in GWA data. I also
explore approaches to marrying hypothesis-driven pathway-based approaches with “agnostic”
GWA studies.

The term ‘interaction’ has various meanings in the epidemiologic literature, depending on
the context (Box 1). The focus of this article is on gene-environment (G×E) interaction, here
defined as a joint effect of one or more genes with one or more environmental factors that
cannot be readily explained by their separate marginal effects. By convention in
epidemiology, a multiplicative model is taken as the null hypothesis; that is, the relative risk
of disease in individuals with both the genetic and environmental risk factors is the product
of the relative risks of each separately. Thus, any joint effect that differs from this prediction
is considered a form of interaction. Other null hypotheses, such as an additive model for the
excess risk, would yield different interpretations about interaction (Box 1).

G×E interactions are worth studying for many reasons1,2 (Box 2), not least of which is the
insight they could provide into biological pathways. If some of the unexplained heritability
in genome-wide association (GWA) studies is due to interactions, then one goal might be to
use interactions to discover novel genes that act synergistically with other factors without
having demonstrable marginal effects, rather than discovery of the interaction per se3.
Conversely, one might wish to discover environmental hazards that affect only a
subpopulation of genetically susceptible individuals. For example, G×E interactions might
allow the effects of the components of a complex mixture like air pollution to be dissected4.
Understanding the failure to replicate the findings of GWA studies is another goal, as it
could provide insights to disease complexity by identifying sources of real heterogeneity5,6.
Finally, taking account of G×E interactions in risk prediction models can have important
implications for both public health and personalized medicine7.

Traditionally, G×E interactions were investigated using candidate-gene studies. This
research often begins with an established association with an environmental factor and
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proceeds to explore genes in pathways known to metabolize them. Over time, candidate
gene studies have become more elaborate investigations of entire pathways, including all the
genes, exposures, and cofactors thought to be involved in a particular mechanism. With the
advent of GWA studies, a different philosophy has gained prominence, based on “agnostic”
searches with no prior hypotheses. Understandably, most reports have focused on genetic
main effects, but now increasingly are directed at gene-gene (G×G) interactions8. Although
many GWA studies have not collected data on environmental factors, some are based on
epidemiologic cohort or case-control studies that have well-characterized exposure
information and could be scanned for novel G×E interactions. Such scans for G×G and G×E
interactions have been viewed as agnostic. Recently, however, there has been an intriguing
convergence of the two philosophies, either by using external pathway knowledge to inform
the analysis of GWA data to better detect signals that do not achieve genome-wide
significance9 or by mining patterns of interaction effects in GWA data to discover novel
pathways10.

In the current post-GWA era the focus is on integrating findings from the vast body of data
that has been generated through large consortia. A key feature of this next phase should be a
renewed focus on G×E interactions, but this will require careful consideration of
epidemiologic study design, exposure assessment, and methods of analysis, with particular
attention to harmonization of these features across the consortium. Another key feature is
the integration of GWA data with external biological knowledge from –omics databases.

I first discuss some of the challenges facing investigators studying environmental factors.
Next, I provide a tutorial for the various types of study designs and analytical methods for
studying G×E interactions in different contexts, ranging from specific interactions, to more
extensive biological pathways, to GWA studies (“Gene-Environment-Wide Interaction
Studies, GEWIS)”11. I discuss various ways that external data can be exploited in these
types of analyses. Finally, I discuss some emerging directions and needs for making further
progress.

Challenges to G × E studies
Whatever study design is used, the major challenges to the success of a G×E study — in
addition to the usual challenges for genetic association studies that have been thoroughly
discussed elsewhere — are exposure assessment, sample size, and heterogeneity.

Exposure assessment
Many environmental factors are multi-dimensional; air pollution, for example, is a complex
mixture of gases and particles with differing biological effects. Most environmental agents
have degrees of exposure intensity, usually varying over time. Even if an exposure is not
time-dependent, the resulting disease risk is likely to be modified by temporal factors like
age at or duration of exposure12. Seldom are accurate measurements of exposure over a
lifetime available on all participants in a large epidemiologic study, but more detailed
information may be obtainable on a stratified subsample to allow correction for
measurement error13. Exposures may not even be measured on individuals, but assigned on
the basis of ecologic-level exposures or a prediction model. Two-phase case-control designs
that leverage readily available exposure surrogates to select individuals for more in-depth
exposure assessment and/or genotyping might be used. Uncertainties in exposure
assignments can be large and lead to unpredictable biases, particularly if differential with
respect to disease, and can induce spurious interactions9. Although methods of correction for
exposure or genotype measurement errors are well established for main effects, they have
seldom been applied to interaction analyses14,15. In general, however, interactions are less
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likely to be biased than main effects unless the measurement errors are differentially related
to both exposure and genotype.

Sample size and power
Sample size requirements for G×E studies can be enormous. A useful rule-of-thumb is that
detection of an interaction requires at least four times the sample size than for detecting a
main effect of comparable magnitude16. Sample sizes in the thousands of cases are typically
needed for G×E analyses in candidate gene studies (Suppl. Fig. 1a) and tens of thousands in
GWA studies because of the more stringent significance levels required (Suppl. Fig. 1b). In
addition to study design, the key determinants of power or sample size requirements are the
prevalence of exposure (or its distribution if continuous), the allele frequency, mode of
inheritance, Interaction Odds Ratio ORG×E (and to a lesser extent the ORs for the main
effects), significance level, and desired power. Several programs for sample size and power
calculations are freely available, notably Quanto17 and POWER18. It is likely that at least
some of the poor track record of replicating claims of G×E interactions is due to
underpowered studies in the initial discovery or replication attempts19-21. This has led
some to suggest that the search for interactions is not worthwhile, as genes involved in
interactions are more likely to be detected through their marginal effects22. Nevertheless, a
range of interaction effect sizes can be detected in a GWA study by either a test of
interaction or a genetic effect in an environmental subgroup even when the marginal effects
are not detectable (Suppl. Fig. 1c). Despite claims that interaction in the absence of main
effects is a “ubiquitous” phenomenon in nature23,24, most examples are found at the
molecular or cellular level and there are few convincing examples in human epidemiology.
Nevertheless, there are examples of genetic effects that are apparent only groups with the
relevant environmental exposure or of environmental factors that affect only those with the
susceptible genotype (Box 1).

Heterogeneity and replication
When comparing studies with different exposure assessment tools, different distributions or
characteristics of exposure (e.g., different sizes or chemical constituents of particulate air
pollution across regions), or different confounders (e.g., co-pollutants, ethnic distributions
with differing genetic background risk), the potential for true heterogeneity is magnified. If
explanations can be found for such heterogeneity5, there is an opportunity for insights about
the complexity of the disease, but spurious inconsistency due to methodological or data
quality differences will just add confusion.

G × E interactions with candidate genes
Any of the standard epidemiological designs to study main effects of genes or environmental
factors — cohort, case-control, or hybrid designs such as nested case-control or case-
cohort25-27 — can also be applied to the study of G×E interactions. The issues for choosing
between the designs are similar for main effects and interactions — for example, control of
confounding and other biases, temporal sequence of exposure and disease, data quality,
ability to examine multiple endpoints, and efficiency to detect rare diseases or rare risk
factors (Table 1). For simplicity, I treat G in this section as a single functional
polymorphism, but it could comprise a risk-associated haplotype, several causal variants
within a gene, or some risk index composed of multiple rare variants. The same analysis
techniques could be applied in any case (e.g., multiple logistic regression) and the design
considerations would be similar. The following non-traditional designs offer particular
advantages for studying interactions.
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Case-only design
One of the earliest non-traditional designs was the case-only (or “case-case”) design28,
which can only be used for testing interactions, not main effects. This design relies on an
assumption of gene-environment independence in the source population to avoid estimating
this association among controls, thereby increasing power for the test of interaction. While
this assumption would be reasonable for most exogenous exposures like air pollution, the
case-only design will yield a biased estimate of ORG×E and an elevated type I error rate if
the independence assumption is violated. For example, genes involved in behavioral traits
such as addiction might be expected to produce a causal association between G and E (e.g.
tobacco smoking29,30) in the general population. Other G-E associations could arise
indirectly; for instance, between oral contraceptives and BRCA1 through the effect of the
gene on family history — a sister of an affected case might choose to take oral
contraceptives to lessen her risk of ovarian cancer31.

Broeks et al.32 used a case-only design to assess the interaction between radiotherapy (RT)
for treatment of a first breast cancer and mutations in four DNA damage repair genes
(BRCA1, BRCA2, CHEK2, and ATM) on the subsequent risk of contralateral breast cancer
(CBC). Among RT+ cases, there was a 2.2-fold higher prevalence of germline mutations in
one or more of these genes than among RT– cases. Here it seems unlikely that genotypes
would have affected the choice of treatment, except perhaps indirectly through tumor
characteristics or stage at diagnosis (factors that could be adjusted for).

It is tempting to begin by testing for G-E association in controls and then decide whether to
use the case-only test (for greater power if there is no G-E association) or the case-control
test (for greater validity if there is). However, this naïve procedure leads to biased tests and
estimates because it fails to take proper account of this two-step inference procedure33.
More appropriate empirical Bayes34 or Bayes model averaging35 approaches have been
developed that essentially provide weighted averages of the case-only and case-control
estimators, yielding an acceptable trade-off between bias and efficiency. For example,
Mukherjee et al.34 reanalyzed data on glutathione-S-transferase (GSTM1) and N-acetyl-
transferase (NAT2) genotypes in relation to smoking and dietary factors. They found a
strong association between NAT2 and smoking, so that their empirical Bayes estimate of the
interaction between the two was closer to the case-control estimate than to the case-only
one, which was in the opposite direction. However, there was no association between
GSTM1 and fruit consumption, so the empirical Bayes estimate of that interaction was
similar to both the case-control and case-only estimates, but took advantage of the smaller
standard error of the latter.

Family-based association tests
Family-based association tests (FBATs) — case-parent-trios36, case-sibling37, designs using
extended pedigrees38, and modified segregation analysis39 — are appealing because they
avoid bias from population stratification, but are generally less powerful for testing main
effects than case-control studies using unrelated controls. However, they can be more
powerful for testing G×E interactions if relatives’ exposures are not too highly correlated37.
Population stratification can bias G×E interactions only if the substructure is related to the
gene and the environmental factor differentially—different ancestry-genotype associations
in exposed and unexposed individuals—which seems unlikely. The case-parent trio design
requires exposure information only on the cases (although it does require surviving parents
for genotyping, making it more suitable for early-onset diseases) and entails a comparison of
genetic relative risks between exposed and unexposed cases. The discordant sibship design
requires exposure information on all cases and controls and uses standard conditional
logistic regression tests of interaction. Twin studies40, segregation41, and linkage
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analysis42-44 can also be used for testing the existence of G×E with unknown genes or
specific regions25.

Two-phase case-control design
Two other novel designs use different ways of selecting controls to improve the power for
detecting either main effects or interactions. The two-phase case-control design45 is useful
where a surrogate for exposure is readily available but data on exact doses, confounders, or
modifiers require additional expensive data collection46. (Note that the kinds of two-phase
sampling designs described here are fundamentally different from the two-stage genotyping
designs for GWA studies described below.) These designs entail independent subsampling
on the basis of both disease status and the exposure surrogate variable from a first-phase
case-control or cohort study. Data from both phases are combined in the analysis, with
appropriate allowance for the biased sampling in phase two. The optimal design entails
over-representing the rarer cells, typically the exposed cases. Although most applications
have focused on its use for improving exposure characterization for main effects or for
better control of confounding, it can also be highly efficient for studying interaction effects.
For example, Li et al.47 used a two-phase design nested within the Atherosclerosis Risk in
Communities (ARIC) study to study the interaction between GSTM1/GSTT1 and cigarette
smoking on the risk of coronary heart disease. Their sampling scheme was not fully efficient
for addressing this particular question because it stratified only on intima media thickness,
not smoking, and only for the controls, and did not exploit the information from the original
cohort in the analysis. Reanalyses of other data from the ARIC study48 showed the
considerable improvement in efficiency that can be obtained by using the full cohort
information.

Countermatching
Countermatching is essentially a matched variant of the two-phase design. Here one or more
controls are selected for each case on the basis of exposure so that each matched set contains
the same number of exposed individuals. Another study of CBC in relation to RT and DNA
damage repair genes49 counter-matched each CBC case to two controls with unilateral
breast cancer, such that each matched set contained two RT+ subjects. Radiation doses to
each quadrant of the contralateral breast were then estimated and DNA was obtained for
genotyping candidate DNA repair genes and for a GWA scan. Langholz50 has demonstrated
the considerable gains in power that can be obtained, both for main effects and for
interactions. In particular, for G×E interactions Andrieu et al.51 showed that a 1:1:1:1 design
counter-matched on surrogates for both exposure and genotype was more powerful than
conventional 1:3 nested case-control or 1:3 or 2:2 designs counter-matched on just one of
these factors.

Approaches for candidate pathway analyses
So far I have considered interactions between one gene and one environmental factor, but
most candidate gene studies are based on a conceptual model for one or more hypothesized
pathways. For example, most of the genetic studies being done for susceptibility to the
effects of air pollution on children's asthma and lung growth within the Southern California
Children's Health Study (CHS) have been motivated by a theoretical framework involving
oxidative stress, inflammation, and modifiers such as anti-oxidant intake52. Typically such
hypotheses lead to the selection of a set of candidate genes to be studied together. How then
can these data be analyzed in combination to learn about the overall effect of the postulated
pathway(s)?
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Multifactor dimension reduction
Many exploratory methods have been developed for multivariate analysis of high-
dimensional data ranging from standard multiple regression techniques to various machine
learning or pattern recognition methods8,53,54. Perhaps the most popular of these methods
to study interactions is Multifactor Dimension Reduction (MDR)8,55,56, which I applied in
Box 3 to data on a reported four-way interaction between two exposures (smoking and red
meat) and two genes (cytochrome P-450 (CYP1A2) and NAT2) in colorectal cancer57.
Although this study is widely quoted as one of the few examples of a higher-order
interaction, this analysis makes clear that the 4-way interaction is not internally reproducible
by cross-validation. In this instance, MDR is more useful for putting a high-dimensional
interaction in context than for discovering one, and emphasizes that if two-way interactions
require large sample sizes, higher-order interactions require even larger sample sizes.
Nevertheless, the interaction is biologically plausible (similar replicated interactions among
NAT2, GSTM1, tobacco smoking, and occupational exposures have been reported for
bladder cancer58) and is worth studying further using techniques that leverage known
pathways.

Gene set enrichment analysis and hierarchical models
Since candidate pathway studies are hypothesis-driven, it seems appropriate to carry this
reasoning through to the analysis59,60. Two approaches that attempt to leverage external
information about biological pathways are summarized below and in Box 4. These methods,
though promising, have not been widely applied to candidate gene studies so far.

Gene set enrichment analysis (GSEA)61 tests whether disease-associated genes are
significantly enriched for particular pathways. Although GSEA is widely used in the
analysis of gene-expression data, methods for applying it in association studies have only
recently been developed62-64 and have not yet been used for G×E studies.

Hierarchical models extend traditional multiple regression methods for exploring main
effects and interactions in an epidemiological dataset by regressing the first-level
coefficients on external data65-67. External information can include simple pathway
indicator variables68, genomic annotation or pathway ontologies69, functional assays70, in
silico predictions of function or evolutionary conservation71, or simulation of pathway
kinetics72,73.

Both the GSEA and hierarchical modeling approaches can be thought of as “empirical” as
they use external information only to guide the selection of terms to include in a model or to
stabilize their estimation. These approaches do not fit strong mechanistic models directly —
our understanding of the basic biology is too primitive — although there have been notable
successes. Some of the earliest were stochastic models for multistage carcinogenesis74,75,
but they have not been applied to pathways involving specific genes. Another area that has
seen extensive mathematical modeling is the pharmacokinetics and pharmacodynamics of
drug metabolism76, exposure to toxic substances77,78, and normal metabolism79,80. While
inter-individual variation in metabolic rate parameters has long been recognized, their
genetic basis has only recently been incorporated into this kind of modeling81,82.

Use of biomarkers
Even when supplemented with external information, the informativeness of epidemiological
studies of chronic disease endpoints for the purpose of pathway analysis is limited by the
dichotomous nature of the phenotype. The information content may be improved by
obtaining biomarker data on some of the intermediate steps in the process. Ideally,
biomarker specimens would be sampled longitudinally and before disease onset. This may
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be prohibitively expensive, so the two-phase case-control design samples individuals from a
cohort or case-control study based on disease, exposure, and genotype information83.
Nested case-control studies within biobanks overcome the problem of reverse causation by
using stored specimens and exposure information obtained at enrollment. Mendelian
randomization84,85 provides another way to avoid reverse causation by using genes (which
are not subject to this problem) as instrumental variables86 for the biomarker–disease
relationship. In a randomized trial of estrogen plus progestin, Dai et al.87 used a two-phase
design to assess interactions of treatment with thrombosis biomarkers and found that
estimates of the interaction effect were considerably more precise than those from the case-
control study alone or standard two-phase estimators not assuming G-E independence.

Mining GWA data for G × E interactions
Although the approaches described above could be used in a genome-wide context, the
enormous cost, computational burden, multiple comparisons penalty, and general absence of
prior knowledge about most SNPs pose additional complexities. For main effects of genes,
various design and analysis issues have been widely discussed88,89, so the remainder of this
Review focuses on the use of GWA data for G×E. Both two-stage genotyping designs and
two-step analyses of a single-stage design discussed below could be applied to interaction
studies (Box 5). In contrast to the pathway-based approaches in the previous section, these
novel techniques are readily applicable to GWA data now.

Two-stage genotyping design
The two-stage genotyping design90 has been extended to GWA scale91-94 and used to
discover main effects in many studies. The design is also attractive for GEWIS, but requires
choices about how to select the SNPs to be carried forward to the second stage based on
promising main effects and interactions. Any SNP for which the main effect or any of the
G×E/G×G interaction tests attained the appropriately Bonferroni-corrected significance level
would be chosen for inclusion in stage 2 genotyping. While an optimal selection of numbers
of hits of each type to pursue so as to maximize the yield of true positives would require
knowledge of the distribution of true effect sizes of each type, reasonable bets might be
made based on previous literature and calculation of the power to detect similar effects.

Two-step analysis approaches
A conventional two-step analysis of G×G interactions in a single-stage GWA study restricts
the search for interactions to gene pairs for which one or both members shows a marginal
association. It can be more powerful than an exhaustive scan for all possible pair-wise
interactions, but risks missing those with no or weak marginal effects8,95-97. In addition,
scanning for higher-order (G×G×G…) interactions is computationally infeasible without
filtering based on main effects and/or lower-order interactions. While this filtering approach
could also be applied to G×E interactions, it does not exploit the ability of the following
two-step approaches to use different designs.

The case-only design is appealing for a GEWIS because of its greater power than the case-
control design and because most GWA SNPs are unlikely to be correlated with
environmental factors in the source population. Nevertheless, some false positives due to G-
E association may occur, and even if only a small proportion of all SNPs were associated,
they could represent a high proportion of all reported G×E interactions. Since any scan for
interactions is likely to have been accompanied by a main effects scan, controls are probably
available anyway, so it would be wasteful not to use them. (The exception would be if
public controls with no environmental data, or non-comparable data, were used for the main
effects scan, combining case-only information on G×E interactions with case-control
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information on genetic main effects98.) Two basic approaches have been suggested for
taking advantage of controls to protect against false positives while exploiting the power
advantage of the case-control design. Murcray et al.99 introduced a two-step analysis of a
single-stage GWA study (FIG 1), in which G-E association is first tested in the combined
case and control sample and only the most significant SNPs are then tested for G×E
interaction using the standard case-control test. The second general approach is the empirical
Bayes34 or Bayes model averaging35 methods that combine the case-only and case-control
estimators to provide a reasonable trade-off between validity and efficiency. Simulation
studies show that these approaches can have better power than the two-step analysis over a
range of modest interaction relative risks, while the two-step approach is more powerful for
larger relative risks.

DNA pooling
Another possible approach to saving on genotyping costs is DNA pooling, at least for an
initial screen, to be followed by individual genotyping of promising loci100. Beyond the
technical challenges in forming comparable pools and assaying allelic concentrations, this
approach would be feasible for studies of G×E interactions only if the pools were stratified
on the basis of exposure, thus limiting the number of possible environmental factors that
could be considered. Recent advances in DNA bar-coding101, however, would permit the
reconstruction of individual genotypes from within pools, thereby allowing a broader range
of interaction analyses102.

Prioritization of hits to pursue
One must sift through a massive number of potential “hits” to decide which should be
considered in subsequent stages of a multi-stage genotyping design, in independent
replication studies, or in functional assays. This decision is usually based on statistical
significance, but also entails expert judgment based on the internal consistency of the results
and the coherence with other knowledge (e.g., the existence of other GWA associations for
the same or related traits or biological pathways). Coherence has tended to be a more
informal judgment, but various methods have emerged for formalizing this process. The
following techniques can be viewed as well established and available for application now,
although because of their novelty, there are few applications so far. See REF. 103 for an
excellent review of the available techniques in the context of genetic main effects.

One of the first was a weighted False Discovery Rate (FDR) approach104, which uses
external information to prioritize some SNPs or regions while maintaining a fixed overall
FDR. Bayesian versions of the FDR have also been described105,106, as well as the use of
Bayes factors107 and empirical Bayes shrinkage108. Both GSEA and hierarchical modeling
approaches are also amenable to incorporating external knowledge. Several authors109-111

have described applications of the hierarchical Bayes modeling approach to GWA data
using prior covariates extracted from genomic or pathway ontologies. While these have
focused on main effects, the methods are also applicable to GEWIS11, the limiting factor
presently being the lack of suitable ontologies for interaction effects. Meanwhile, a growing
literature is discussing various ways of using GSEA or other methods of integrating pathway
knowledge into GWA analyses9,62-64,112-116. Few studies have explicitly included G×E
interactions in formal pathway-based analyses of GWA data117. A promising approach
entails incorporating metabolomics, as in the first GWA of a large panel of metabolite
phenotypes118, which found associations of 4 genes with metabolite concentration ratios for
enzymatic activities that matched the pathways in which these enzymes act.
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Methods for discovering novel pathways
An emerging idea is to use Bayesian network analysis119-121 or similar techniques to
discover novel pathways. Bayesian networks have been widely used in the analysis of gene
co-expression data to discover cliques of interacting loci. The starting point is usually a
matrix of gene-gene correlations across multiple experimental conditions (e.g., time series of
synchronized cell cultures or different environmental stressors), which can be used to derive
a parsimonious graphical representation of the important interactions. Unlike co-expression
data, GWA data provides only a single estimate of the association between genotype and
phenotype, but no information about gene-gene connections. G×G interaction analyses do,
however, yield information about pairs of genes that could be mined in a similar way, as
could G×E interactions. Sebastiani et al.10 applied the technique to modeling the posterior
probability of genotypes and exposures given disease status, yielding graphical models that
can be interpreted in terms of interactions. However, these probabilities depend on both the
risk of disease given G and E (and their interactions) and the correlations among these
factors, so do not represent a pure interactome122 model. Alternatively, a known network
can be used as either a prior covariance matrix for main effects or as prior covariates for
interactions in a hierarchical model (Box 4). Although potentially exciting, such methods
have yet to be applied on a GWA scale.

Experimental validation of G × E interactions
Experimental studies offer unique promise for validating G×E interactions, as both exposure
and genotypes can be carefully controlled through randomization. Model organisms are
commonly used for evaluating genetic modifiers of drug response; for example, Koch and
Britton123 used selective breeding of rats on aerobic capacity to study gene-diet interactions
in body weight and various metabolic markers. In human challenge studies, a randomized
crossover design is typically used, in which volunteers are exposed to one or more
environmental exposures in random order. In one intra-nasal challenge study of allergen
alone or with diesel exhaust particles, various immunological responses were measured124.
Stratified analyses revealed that those with the GSTM1 null or GSTP1 I/I genotypes had
significantly larger increases in IgE and histamine levels after diesel challenge. Subjects
were not preselected on the basis of genotype, so results were limited by the relatively small
numbers of subjects with the susceptible genotypes. Challenge studies nested within
epidemiologic cohorts for which genotypes (and possibly various outcomes) are already
available could be more powerful.

Clinical trials also allow controlled comparisons for G×E interactions and more powerful
designs using two-phase sampling on various combinations of genotype, treatment,
outcomes, and possibly other factors93,125. For example, Israel et al.126 performed a clinical
trial of albuteral in asthmatics, matching pairs on forced expiratory volume and β2AR
genotypes, and found a highly significant gene × treatment interaction. A case-only design
nested within a clinical trial is particularly appealing for evaluating gene-treatment
interactions on survival or other treatment responses, as treatment assignment is independent
of genotype by virtue of randomization127,128.

Needs for Further Progress
Better ontologies

The biggest barrier to integrating biological knowledge with agnostic GEWIS data may be
the lack of ontologies designed to bring together information from SNPs, genes, and
pathways, but also their relevant environmental substrates, known relationships to disease,
metabolic parameters, and toxicological information. The creation of such a database is
arguably one of the most important contributions of the Human Genome Epidemiology
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Network (HuGE NET) project129, but is highly labor-intensive because expert curation of
the literature is needed; their valuable series of reviews on specific topics130,131 does not
replace the need for a searchable database that could provide prior covariate information in a
systematic and unbiased manner. Automatic literature-mining approaches132,133 have been
developed that can help assign sets of genes to shared pathways or interaction networks.
However, they are still vulnerable to bias in what is investigated and published; the current
literature on G×E interactions is very sparse, highly subject to publication bias, poorly
replicated, and tends to reflect a “looking under the lamppost” mentality in terms of what
gets studied. Other genomic or pathway ontologies134-136 tend to be limited to purely
genetic information and are only partially useful for G×E modeling.

Environmental pathways mediated through epigenetics and other mechanisms
One of the aims of pathway-based modeling is to understand how genetic and environmental
effects are mediated through intermediate events such as changes in gene expression,
epigenetic events like DNA methylation137, somatic mutations138, and small-interfering
RNAs139. These phenomena have been studied in relation to disease and to a lesser extent
exposure140,141, but the full pathways from genes and exposures through epigenetics to
disease remain to be studied137. For example, the seminal observation142 that MZ twins start
life with identical methylation patterns but subsequently diverge suggests the effect of
environmental factors and may provide a mechanism for their subsequent discordance in
disease. Latent variable models could be used to treat biomarker measurements as surrogate
observations of a long-term unobserved process leading to disease. Various –omics
technologies could provide high-dimensional measurements of intermediate processes on
targeted subsamples of epidemiologic study subjects, although the multiple comparisons
challenges of relating high-dimensional phenotypes to high-dimensional genotypes and
interactions are even more daunting than for regular GWA studies. Alternatively, stand-
alone studies or external databases can be used to construct prior covariates to inform G×E
analyses of epidemiologic studies. For example, GWA data on immunologic markers for a
challenge study of allergen and diesel exhaust particles are being used to define a set of
immunologic covariates associated with each SNP as priors in a hierarchical model for a
GWA study of asthma. Associations of genome-wide expression with genome-wide
SNPs143 could be used in a similar manner, and would likely be even more promising for
G×E interactions if based on expression studies conducted under a range of environmental
conditions.

Next-generation sequencing and rare variants in a G×E context
Increasing attention is being paid to the possibility that rare variants might account for at
least some of the missing heritability144. Next-generation sequencing methods are making it
feasible to sequence portions of the genome identified through a GWA study in a subset of
study subjects. Until it becomes possible to obtain and manage genome-wide sequence
information on the massive sample sizes that would be required to discover associations
with rare variants directly, some form of informative sampling approaches will be required.
For example, one might sequence a subsample of cases and controls, stratified by associated
SNPs in a given region, family history, and environmental factors, to discover novel variants
in the region and for a joint analysis of subsample and main study data94,145. The imminent
availability of the 1000 Genomes Project146 data will doubtless have a profound effect on
the design of such studies.

Public health and personal medicine implications
Insights from G×E interactions could have important policy implications for environmental
health standards147, targeting of interventions148, and treatment selection149 (Box 2). For
example, the Clean Air Act directs the U.S. Environmental Protection Agency to set
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standards to protect the most sensitive, including genetically susceptible individuals150,
although it has been argued that public health interventions aimed at the whole population
may be more effective151. As another example, suppose the joint effect of mutations in
BRCA1/2 and radiotherapy in an individual were multiplicative; then even if the radiation
effect in mutation carriers alone was not statistically significant or the joint effect was not
significantly greater than additive, it would be misleading to conclude that radiotherapy was
no more dangerous for carriers than for noncarriers, owing to their much higher baseline
risk152. Since any statement about interaction is necessarily scale dependent (Box 1), it is
essential that claims about the presence or absence of an interaction make clear whether it is
a departure from an additive or multiplicative model on a scale of absolute or attributable
risk, odds, underlying liability, or some other scale that is being discussed. Unfortunately,
translation of scientific understanding about G×E interactions into risk assessment and
prevention policies has so far been limited153.

Conclusions
The current enthusiasm for studying genetic associations with disease, recently enhanced by
the advent of GWA studies, has tended to overshadow the important role of environmental
factors and G×E interactions. While these are much more difficult to study than purely
genetic associations, requiring careful collection of exposure data and rigorous study
designs, standard epidemiologic designs can be used and several recently developed variants
of them can enhance power. Nevertheless, large consortia will likely be needed to fully
explore G×E interactions, requiring attention to these principles and harmonization across
studies. The use of powerful pathway-based methods that leverage external biological
knowledge can further enhance power and insight.

ONLINE SUMMARY

• Studies of gene-environment can be useful for investigating biological
pathways, discovering genes that act only in particular environments or
exposures that are hazardous only to genetically susceptible individuals, setting
environmental safety standards, understanding heterogeneity in genetic
associations across populations, predicting individual risk and changes that
might result from changes in modifiable risk factors, and choosing the best
treatment based on a patient's genotype.

• While basic epidemiological cohort or case-control designs can be used, more
powerful alternatives for studying G×E interactions include the case-only, two-
phase case-control, and counter-matched designs. Case-only substudies within
clinical trials are attractive for studying genetic modifiers of treatment response
because genotype and treatment can be assumed independent through
randomization.

• Various exploratory and hypothesis-driven approaches are available to examine
the joint effects of multiple genes and exposures in a common pathway.
Hierarchical models provide a way to incorporate external knowledge about the
pathway into the analysis of complex interactions in the study data.

• Two-step analyses can be used in genome-wide association studies to target a
subset of promising interactions and improve power for testing them in the same
dataset using an independent test. New methods are being developed to use
pathway information to guide the search for novel genes and interactions or to
mine agnostic genome scans for novel pathways.
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• Comprehensive ontologies that incorporate environmental and toxicological
information into genomic and pathway databases will be useful for informing
future analysis of complex G×E interactions in both pathway-driven and GWA
scans.

• Emerging areas include understanding the environmental influences on gene
expression through epigenetics, somatic mutations, and other mechanisms and
their roles in disease causation. Various types of biomarkers and high-volume
metabolomics methods can be incorporated as intermediate variables in
pathway-based analysis methods.

Box 1

Types of Interaction

Statistical: a departure from a pure main effects model, e.g., additive or
multiplicative for disease risk, natural or logarithmic for continuous traits. Any
statement about statistical interaction is scale dependent: an additive model implies
interaction on a multiplicative scale and vice versa.

Quantitative: a form of statistical interaction where the effects of one factor go in the
same direction at different levels of the other, but differ in magnitude. Lack of
interaction on one scale necessarily implies interaction on other scales. For example,
carriers of rare deleterious mutations in ATM have a more-than-multiplicative
increased risk of second primary breast cancers following radiotherapy than
noncarriers, although radiation risks are increased in both genotypes and carrier risks
are increased in both exposure groups159.

Qualitative: forms of statistical interaction where (1) the effects go in opposite
directions (e.g., exposure is deleterious in carriers and protective in noncarriers and
vice versa), (2) there is an increased effect only in the presence of both the
environmental factor and the susceptible genotype, (3) the effect of genotype is
present at only one level of the environment, or (4) where the effect of the
environment is present in only one genotype. Such interactions do not depend upon
the choice of scale. For example, in utero tobacco smoke exposure seems to have an
effect on asthma and wheeze only in children with the GSTM1 null genotype and
vice versa160. Opposite effects of a defensin beta DEFB1 haplotype on asthma were
seen between women and girls or between girls and boys, suggesting an interaction
with some aspect of the “internal environment”161.

Public health synergy: a disease burden attributable to exposure to two or more risk
factors that is greater than the sum of the excess risks from each alone. For example,
the population burden of gastric cancer attributable to the combination of H. pylori
infection and interleukin IL-1 susceptibility alleles is greater than that the sum of
their separate contributions162.

Biological: an effect of one factor that depends upon the presence or absence of
another163. For example, GST genes are inducible by oxidative stress caused by
radicals and oxidants in air pollution and myeloperoxidase levels are increased in the
respiratory extrathelial lining fluid by ozone-induced inflammation52. This concept
generally applies at the cellular or molecular level, but may have implications for
statistical interactions at the whole organism or population level.

Both public health and biological interactions lead to an additive risk model as the natural
null hypothesis164, although in epidemiology, the multiplicative model is more
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commonly used. Various authors25,165-167 have offered classifications of different types
of G×E interactions, including qualitative interactions (crossing, no effect of environment
in those not genetically susceptible, no effect of genotype in the unexposed, etc.) and
quantitative. See these papers for examples of each.

Box 2

Current and Potential Uses of G×E Interactions

• Understanding biological mechanisms and pathways. For example, the
interaction of tobacco smoking, hair dyes, and various occupational exposures
with the N-acetyl-transferase (NAT2) gene in bladder cancer suggests a role for
aryl amines58. Various pathway-based analyses of significant hits from GWA
studies have yielded insights into underlying mechanisms of disease, but to date,
none appear to have exploited G×E interactions in a GEWIS.

• Identifying novel genes acting through interactions that are manifest by their
marginal effects. In GWA studies, in particular, these interactions could provide
an explanation for some of the “missing heritability.” GWA scans are currently
underway to search for genes conferring susceptibility to air pollution in
childhood asthma, to ionizing radiation in second breast cancers, or for dietary
factors in colorectal cancer, amongst others.

• Understanding heterogeneity in results across studies due to differences in
exposure distributions. A meta-analysis of NAT2 and GSTM1 associations in
bladder cancer168 revealed some between-study heterogeneity in main effects,
but found the smoking × NAT2 interaction to be robust and no GSTM1 ×
smoking interaction.

• Identifying environmental factors that affect only a subgroup of genetically
susceptible individuals. For example, maternal smoking during pregnancy seems
to cause asthma only in children with the GSTM1 null genotype160.

• Dissecting the effects of complex mixtures (such as air pollution) into
components that are metabolized by different genes. For example, the
interaction between red meat consumption and NAT2 in colorectal cancer
suggests that it is the heterocyclic amines generated during cooking that is the
responsible agent4.

• Establishing environmental regulation aimed at setting standards to protect the
most vulnerable individuals. Although the U.S. Environmental Protection
Agency currently takes identifiable susceptible population subgroups (e.g.,
children, elderly, asthmatics) into account in setting standards, it has so far
limited the use of genetic data to understanding mechanisms169; use of specific
genotypes in regulation raises difficult practical and ethical concerns. However,
there are some voluntary employer-sponsored screening programs for HLA-DP
sensitivity to beryllium170.

• Predicting individual risk of disease or prognosis and potential changes in risk in
relation to modifiable environmental factors. For example, the optimal
mammographic screening interval for women with a strong family history of
breast cancer may differ depending on whether they carry a BRCA1 or BRCA2
mutation171. The potentially protective or deleterious effects of folate
supplementation on colorectal cancer risk could depend upon genes involved in
its metabolism, such as methylenetetrahydrofolate reductase (MTHFR)172.
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• Choosing the best treatment for an individual to maximize response or minimize
side effects based on genetic predisposition. For example, a single SNP in the
solute carrier organic anion transporter gene SLCO1B1 identified in a GWA
study appears to dramatically affect the risk of cardiomyopathy following
treatment with statins70

Box 3

Multifactor Dimension Reduction

A reanalysis by the author of grouped data from Le Marchand et al.44 on colorectal
cancer in relation to two exposures, smoking and red meat (RM, R/M=rare/medium,
WD=well done), and phenotypic markers of two genes, CYP1A2 and NAT2 (S/I=slow/
intermediate, R = rapid acetelators) using the MDR technique. Blue shading indicates
low risk strata, yellow high risk.

Training subset (9/10):

Smoking: Never Ever

RM doneness: R/M WD R/M WD

CYP1A2 NAT2 Numbers of cases / controls

≤ median S/I 31/51 15/11 39/44 12/19

R 15/23 9/14 25/30 10/12

> median S/I 32/46 16/19 16/23 8/6

R 51/58 20/32 9/21 10/2

Testing subset (1/10)

Smoking: Never Ever

RM doneness: R/M WD R/M WD

CYP1A2 NAT2 Numbers of cases / controls

≤ median S/I 1/6 3/1 1/11 1/3

R 1/3 0/1 2/5 0/0

> median S/I 0/7 1/0 0/5 1/0

R 10/12 5/1 2/0 2/0

The proportion correctly classified in the testing subset by the rule derived from the
training data for this realization is 58/85 = 68.2%. Across 10 random training/testing
subsets, however, the mean classification accuracy is only 49.7% (range 31.9–74.1%);
this is no better than chance, due to the small numbers of subjects (12 cases, 2 controls)
in the highest risk stratum. MDR explored all possible models (combinations of genes
and environmental factors) and found that only the main effect of smoking on CRC risk
was replicable.
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Box 4

Pathway-based approaches to GWAS analysis

Gene set enrichment analysis

This approach shifts the emphasis from the effects of individual SNPs to sets of genes
known a priori to have related functions. First, each SNP is assigned to one or more
genes, typically based on proximity and a summary statistic for each gene is obtained
(e.g., the minimum p-value for all SNPs assigned to it). Then genes are assigned to gene
sets and the distribution of gene-specific summary statistics for each set is compared with
its null distribution, typically using the Kolmogoroff-Smirnoff test. Permutation may be
used to allow for the non-uniformity of the null distributions. This method seems to have
been applied only to purely genetic analyses, but could be extended to the genes involved
in G×E interactions.

Hierarchical models

This approach supplements a traditional epidemiologic analysis (e.g., multiple logistic
regression) with a second level in which the first-level regression coefficients are
modeled in relation to a set of “prior covariates” derived from external information, such
as pathway or genomic databases (see the figure). This shifts the main focus of inference
from the effects of specific exposures, genes, or interactions to the effects of the
pathways or other external predictors. It also provides more stable estimates of the
individual risk factor effects by “borrowing strength” from related risk factors. The first-
level associations may comprise a mixture of null and non-null ones, with probability
depending upon prior covariates. The prior means of the non-null effects are regressed on
prior covariates and their covariances can depend on a matrix of gene-gene connections.
Rebbeck et al.18 provide a discussion of various sources of prior covariate information.
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BOX 5

Designs for Genome Wide Interaction Scans

Although any of the designs for studying G×E interactions with single genes could be
used for GWA studies including interactions (GEWIS), the following five have the
potential to greatly improve power or cost-efficiency:

• Two-phase case-control: combines GWA SNPs data on a subsample of a large
epidemiologic case-control or cohort study stratified jointly by disease and
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exposure with the data on exposure (and possibly established genes) from the
parent study, with adjustment for the biased sampling. For example, Li et al. 47

compared CHD cases with a stratified subcohort based on age, gender, and
carotid intima thickness (IMT) and found an interaction between smoking and
the GSTT1 null genotype.

• Two-stage genotyping: Uses a high-density genotyping chip or array
technology to assay hundreds of thousands or over a million SNPs on a random
sample of cases and controls and then selects the most promising of these based
on main effects and interactions for custom genotyping in the remainder of the
sample. The final analysis combines the information on the selected SNPs and
environmental factors from both samples.

• Two-step analyses: The multiple comparisons penalty for looking at all
possible interactions within a sample with complete GWA SNP data is reduced
by restricting the final analysis to only a subset of the possible interactions
based on a preliminary filtering step. Two approaches to this filtering have been
suggested:

○ Restrict to the subset of G and E variables that show marginal effects at
some liberal significance level95

○ First test all possible G–E associations in the combined case-control
sample and then test only those combinations for G×E interaction using a
standard case-control comparison (FIG 1).

• Joint case-only/case-control: Apply the empirical Bayes or Bayes model
averaging combination of the case-only and case-control tests to all possible
interactions.

• DNA pooling: pools of DNA from cases and controls, stratified by exposure,
are tested for differences in allele frequency, followed by individual genotyping
in the same or new samples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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DEFINITIONS TO APPEAR IN THE MARGINS

Marginal effects The effect of a specific risk factor (gene or exposure) in the
population as a whole, averaging over all other variables.

Genome-wide
association studies

A scan of the entire genome for association with a disease or trait
using a standard panel of ~500K to 1M haplotype-tagging SNPs.
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Cohort study A follow-up study of unaffected individuals to compare their
rates of new disease in relation to their genotypes and exposures
at start of follow-up (and possibly changes in exposure during
follow-up)

Case-control study A comparison of cases of a disease with randomly selected or
matched individuals from the source population free of disease in
terms of their genotypes and exposures prior to disease onset.

Gene-Environment-
Wide Interaction
studies

A scan of the entire genome for interactions with various
environmental exposures.

Ecologic-level studies Observational epidemiology studies that rely on comparisons of
aggregate disease rates across groups in relation to aggregate
exposure information rather than comparisons between
individuals.

Two-phase case-
control design

A form of case-control study in which subjects are subsampled
based on both disease and surrogates for exposure or genes.

Interaction odds
ratio

The ratio of odds ratios for the relationship of one factor (e.g., a
gene) with disease across the levels of another factor (e.g., an
environmental exposure); as such, it is a measure of departure
from a multiplicative joint effect.

Nested case-control
study

Hybrid design that selects matched controls for each case from
the cohort members who are still disease free at that time.

Case-cohort study A hybrid design based on an unmatched comparison of all cases
with a random sample of the cohort at entry using survival
analysis methods.

Confounding A spurious association between a risk factor (gene or exposure or
interaction) and disease induced by the joint associations of some
other variable with the risk factor and with disease independently
of the risk factor. Confounding can also distort the magnitude of
a true risk factor to disease association or mask it.

Case-only study A test of multiplicative interaction based on testing G–E
association among cases, under the assumption of gene-
environment independence.

Gene-environment
independence

The independent distribution of genotype and environment in the
source population.

Empirical Bayes A technique for estimating the effects of each component of a
large ensemble of related variables by assuming the ensemble
has some common distribution and estimating the parameters of
that distribution. Empirical Bayes estimators typically have
better prediction error than estimating each one separately.

Bayes model
averaging

A technique for accounting for uncertainty about the correct
model form (e.g., selection of variables to include in a multiple
regression model) by averaging the effects of each possible
variable over the set of all plausible models.
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Case-parent trio
design

A design for testing gene-disease associations by comparing the
genotypes of cases to the set of genotypes they could have
inherited from their parents; for G×E interactions, only the case's
exposure is needed, the comparison being of genetic relative
risks between exposed and unexposed cases.

Case-sibling design A standard matched case-control design using unaffected
siblings (or other relatives, such as cousins) as controls

Modified segregation
analysis

This analysis applies likelihood-based methods to pedigree data
in which one or more members have genotypes available at a
major gene, summing untyped individuals over their conditional
genotype probabilities given the available genotypes.

Population
stratification

The phenomenon of an apparently homogeneous population
comprising subgroups of individuals with distinct ancestral
origins and differing allele frequencies at many loci, leading to
bias in the assessment of the significance of associations of a
trait with particular loci.

Twin studies Estimate heritability for G×E interactions with all unknown
genetic loci combined by comparing twin pairs that are
concordant or discordant for exposure.

Joint segregation
and linkage analysis

Uses family studies to estimate parameters of a penetrance
model, which could include interaction terms between the
unobserved major gene linked to a marker and environmental
factors

Countermatching A form of case-control study in which controls are individually
selected for each case to be discordant for exposure or a
surrogate for it.

Multiple regression A standard statistical technique to relate a single outcome
variable to multiple explanatory variables, either all at once or
using some variable selection method, such as stepwise, forward
selection, or backward elimination.

Machine learning Any of many data analysis techniques for mining large datasets
derived from the computer science field, not specifically based
on mathematical statistics theory.

Pattern recognition Any technique from exploratory data analysis or machine
learning for discovering non-random patterns in large datasets.

Gene set enrichment
analysis

A method for combining data on the association between disease
and a large set of genes with data on the pathways that subsets of
genes have in common by assessing the extent to which genes in
the same pathway tend to show similar associations with disease.

Hierarchical
modeling

A statistical analysis method that uses multiple levels of
regression models in which the parameters of the first-level
model for the study data (e.g., RR estimates for many genes) are
treated as the dependent variables in a second-level model to be
regressed on external data describing their characteristics (e.g.,
the pathways in which specific genes are thought to act).
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First level
coefficients

In a hierarchical model, the regression coefficients (e.g., log
relative risks for each variable) for the subject-level data on the
association between risk factors and disease. Unlike a non-
hierarchical model, these coefficients are treated as random
variables with distributions described in the higher level(s) of the
model rather than as model parameters to be estimated directly.

Pathway indicator
variables

One of various types of information that can be used as predictor
variables in the higher levels of a hierarchical model, specifically
binary variables indicating whether a particular gene or
interaction is thought to have a role in a particular pathway.

Ontology A formal system for organizing knowledge, here used in the
context of biological pathways as a means of synthesizing
information about the function of genes and exposures and their
joint roles in disease causation.

Reverse causation A bias in the estimation of the causal effect of a biomarker on
disease when biospecimens are obtained after diagnosis, because
the disease or its treatment alters the underlying intermediate
variable or measurement of it

Mendelian
randomization

A technique for studying the relationship between a biomarker
and disease indirectly by studying the relationship of each to a
gene that influences the biomarker.

Instrumental
variable

In statistics, a variable that can be used to predict the value of an
explanatory variable that is measured with error and thereby
indirectly yields an unbiased estimate of the relationship of the
explanatory variable with an outcome variable.

Multiple
comparisons penalty

Any of several adjustment methods aimed at taking account of
the higher degree of statistical significance required for a
particular association to be considered noteworthy when many
possible associations are analyzed simultaneously. Best known is
the “Bonferroni correction”.

Two-stage
genotyping design

A design for a GWA study in which a subset of the available
samples are tested using a high-density genotyping array and
only the most strongly associated SNPs are then tested using a
custom array on the remaining samples, using a joint analysis of
both stages (allowing for their overlap) for final significance
testing.

Two-step analysis Any of several analytical approaches to analyzing all the data
from a single-stage genotyping design in two-steps, the set of
associations being considered in the second step being based on a
screening test in the first step.

Bonferroni
correction

A multiple comparisons adjustment based on multiplying the p-
value for a specific test by the total number of tests performed,
for testing at a conventional significance level; this procedure
approximately controls the overall Type I error rate (the
probability of at least one false positive association) at the
chosen significance level if the predictors are independent.
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False Discovery Rate An approach to judging which of many associations are
noteworthy by controlling the expected proportion of all reported
positive associations that are false positives rather than the
conventional significance level (the expected proportion of all
truly null associations that are reported as significantly positive).

DNA pooling An approach to genetic association analysis by creating multiple
pools of case DNA and control DNA and then comparing the
mean density of variant alleles at each locus between case and
control pools.

DNA bar coding The addition of a unique molecular tag to each fragment of an
individual's DNA so that after pooling with other DNA samples,
the genotype of each individual in the pool can be reconstructed.

Coherence The extent to which the data at hand is concordant with other
types of biological knowledge, reinforcing a causal
interpretation.

Bayesian network
analysis

A technique for developing a minimal graphical representation of
the connections among a large set of variables by examining the
conditional independence relationships among pairs of variables
given the other variables connected to them within the graph.
This technique has been widely used for analysis of gene co-
expression data, for example.

Challenge studies Various experimental designs to assess the effects of a noxious
agent by exposing individuals to trace amounts in a controlled
setting (as in a randomized or crossover trial). For G×E, the
effects can be compared across subgroups with different
genotypes; efficiency can be improved by stratified sampling
based on genotype.

Latent variable
models

A model involving one or more unobservable intermediate
variables representing the pathway connecting a cause (e.g.,
exposures and genotypes) and an effect (e.g., disease);
identifiability typically requires surrogate measures (e.g.,
biomarkers) of these latent variables, in addition to the cause and
effect variables.

1000 Genomes
Project

A large-scale effort to obtain and catalog the full genome-wide
DNA sequence of 1000 individuals selected from a range of
races.
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Figure 1.
Schematic representation of the two-step GEWIS test for G×E interaction of Murcray et al.
G1,…GM denotes the genotypes at each SNP in a GWAS and E denotes a binary exposure
variable. G-E association is first tested in the combined case and control sample and only the
most significant SNPs are then tested for G×E interaction using the standard case-control (in
this example, the second and fourth rows are taken forward to the second step). Despite the
dilution of the induced G-E association in the first step by the inclusion of the controls, this
approach yields a second-step test that is independent of the first and hence need only be
corrected for the number of SNPs actually taken forward to the second. They showed that
the resulting procedure has dramatically better power than a conventional single-step case-
control comparison. The optimal design depends only weakly on the true model parameters.
For rare diseases with a 1:1 ratio, any first-stage significance level of α1 ~ 0.0001 yields
roughly similar power, although a common disease would require a much larger α1. In an
application to the CHS GWA study for asthma, the first-stage test of association between
SNPs and in utero tobacco smoke exposure in the combined case-control sample identified
15,006 SNPs that attained the optimized first-step threshold of α1 = 0.025; of these, the
second stage case-control test yielded one nearly significant interaction (the second example
in the figure), which would not have been deemed genomewide significant in a traditional 1-
step test, nor by its main effect. This SNP shows no effect in the absence of in utero tobacco
exposure and exposure shows no effect in non-carriers of the minor allele. The first row
illustrates the most significant SNP × E interaction in a conventional single-stage test that
fails the first-step procedure and hence is declared non-significant in the two-step procedure.
The fourth row illustrates the most significant SNP–E association in the first step, which
shows no sign of SNP×E interaction in the second step. (The marginal totals differ slightly
from row to row because of missing genotypes.)

Thomas Page 31

Nat Rev Genet. Author manuscript; available in PMC 2011 April 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thomas Page 32

Ta
bl

e 
1

St
ud

y 
de

si
gn

s f
or

 G
×E

 in
te

ra
ct

io
ns

D
es

ig
n

A
pp

ro
ac

h
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

Se
tti

ng
s

E
xa

m
pl

es

Ba
sic

 e
pi

de
m

io
lo

gi
c 

de
sig

ns

C
oh

or
t

C
om

pa
ris

on
 o

f i
nc

id
en

ce
 o

f n
ew

ca
se

s a
cr

os
s g

ro
up

s d
ef

in
ed

 b
y

E 
an

d 
G

Fr
ee

do
m

 fr
om

 m
os

t b
ia

se
s

C
le

ar
 te

m
po

ra
l-s

eq
ue

nc
e 

of
ca

us
e 

&
 e

ff
ec

t

La
rg

e 
co

ho
rts

 a
nd

/o
r l

on
g 

fo
llo

w
-u

p
ne

ed
ed

 to
 o

bt
ai

n 
su

ff
ic

ie
nt

 n
um

be
rs

 o
f

ca
se

s
Po

ss
ib

le
 b

ia
se

d 
lo

ss
es

 to
 fo

llo
w

-u
p

C
ha

ng
es

 in
 e

xp
os

ur
e 

m
ay

 re
qu

ire
re

cu
rr

in
g 

ob
se

rv
at

io
n

C
om

m
on

 d
is

ea
se

s o
r

m
ul

tip
le

 e
nd

po
in

ts
;

es
pe

ci
al

ly
 w

ith
in

bi
ob

an
ks

PI
 ×

 fi
br

in
og

en
 in

pl
at

el
et

 a
gg

re
ga

tio
n 

in
Fr

am
in

gh
am

 c
oh

or
t1

54

C
as

e-
co

nt
ro

l
C

om
pa

ris
on

 o
f p

re
va

le
nc

e 
of

 E
an

d 
G

 b
et

w
ee

n 
ca

se
s a

nd
co

nt
ro

ls

M
od

es
t s

am
pl

e 
si

ze
s n

ee
de

d 
fo

r
ra

re
 d

is
ea

se
s

C
an

 in
di

vi
du

al
ly

 m
at

ch
 o

n
co

nf
ou

nd
er

s

R
ec

al
l b

ia
s f

or
 E

Se
le

ct
io

n 
bi

as
, p

ar
tic

ul
ar

ly
 fo

r c
on

tro
l

gr
ou

p

R
ar

e 
di

se
as

es
 w

ith
co

m
m

on
 E

 a
nd

 G
 ri

sk
fa

ct
or

s

C
YP

1A
2,

 N
AT

2,
sm

ok
in

g,
 a

nd
 re

d 
m

ea
t

in
 c

ol
or

ec
ta

l c
an

ce
r5

7

C
as

e-
on

ly
Te

st
 o

f G
-E

 a
ss

oc
ia

tio
n 

am
on

g
ca

se
s, 

as
su

m
in

g 
G

-E
in

de
pe

nd
en

ce
 in

 th
e 

so
ur

ce
po

pu
la

tio
n

G
re

at
er

 p
ow

er
 th

an
 c

as
e-

co
nt

ro
l

or
 c

oh
or

t
B

ia
s i

f G
-E

 a
ss

um
pt

io
n 

is
 in

co
rr

ec
t

G
×E

 st
ud

ie
s w

he
re

 G
-E

in
de

pe
nd

en
ce

 c
an

 b
e

as
su

m
ed

R
ad

io
th

er
ap

y 
× 

D
N

A
re

pa
ir 

ge
ne

s i
n 

se
co

nd
br

ea
st

 c
an

ce
rs

32

R
an

do
m

iz
ed

 tr
ia

l
C

oh
or

t s
tu

dy
 w

ith
 ra

nd
om

as
si

gn
m

en
t o

f E
 a

cr
os

s
in

di
vi

du
al

s

Ex
pe

rim
en

ta
l c

on
tro

l o
f

co
nf

ou
nd

er
s

Pr
ev

en
tio

n 
tri

al
s f

or
 d

is
ea

se
 in

ci
de

nc
e

ca
n 

re
qu

ire
 v

er
y 

la
rg

e 
sa

m
pl

e 
si

ze
s

Ex
pe

rim
en

ta
l

co
nf

irm
at

io
n 

fo
r

ch
ro

ni
c 

ef
fe

ct
s

A
lb

ut
er

al
 a

nd
 β

2A
R

 in
as

th
m

at
ic

s1
26

C
ro

ss
ov

er
 tr

ia
l

Ex
po

se
s e

ac
h 

in
di

vi
du

al
 to

 th
e

di
ff

er
en

t E
s i

n 
ra

nd
om

 o
rd

er
Ex

pe
rim

en
ta

l c
on

tro
l o

f
co

nf
ou

nd
er

s
W

ith
in

-in
di

vi
du

al
 c

om
pa

ris
on

s

Sm
al

l s
am

pl
e 

si
ze

s
O

nl
y 

lo
w

 d
os

es
 p

os
si

bl
e,

 if
 p

ot
en

tia
lly

ha
rm

fu
l

Ex
pe

rim
en

ta
l

co
nf

irm
at

io
n 

fo
r a

cu
te

ef
fe

ct
s

Im
m

un
ol

og
ic

 m
ar

ke
rs

ch
an

ge
s f

ol
lo

w
in

g
al

le
rg

en
 a

nd
 d

ie
se

l
ex

ha
us

t p
ar

tic
le

s1
24

H
yb

rid
 d

es
ig

ns
:

N
es

te
d 

ca
se

-c
on

tro
l

M
at

ch
ed

 se
le

ct
io

n 
of

 c
on

tro
ls

fo
r e

ac
h 

ca
se

 in
 a

 c
oh

or
t f

ro
m

di
se

as
e-

fr
ee

 su
rv

iv
or

s f
ro

m
 th

e
co

ho
rt

B
as

ic
 fr

ee
do

m
 fr

om
 b

ia
s o

f a
co

ho
rt 

de
si

gn
, a

nd
 e

ff
ic

ie
nc

y 
of

ca
se

-c
on

tro
l d

es
ig

n
Si

m
pl

e 
an

al
ys

is

Ea
ch

 c
as

e 
gr

ou
p 

re
qu

ire
s a

 se
pa

ra
te

co
nt

ro
l s

er
ie

s
St

ud
ie

s w
ith

in
 c

oh
or

ts
re

qu
iri

ng
 a

dd
iti

on
al

da
ta

 c
ol

le
ct

io
n

A
nt

io
xi

da
nt

s ×
 M

PO
 in

br
ea

st
 c

an
ce

r1
55

C
as

e-
co

ho
rt

U
nm

at
ch

ed
 c

om
pa

ris
on

 o
f c

as
es

fr
om

 a
 c

oh
or

t w
ith

 a
 ra

nd
om

sa
m

pl
e 

of
 th

e 
co

ho
rt

Sa
m

e 
as

 n
es

te
d-

ca
se

 c
on

tro
l

C
an

 u
se

 sa
m

e 
co

nt
ro

l g
ro

up
 fo

r
m

ul
tip

le
 c

as
e 

se
rie

s

C
om

pl
ex

 a
na

ly
si

s
St

ud
ie

s w
ith

in
 c

oh
or

ts
w

ith
 st

or
ed

 b
as

el
in

e
bi

os
pe

ci
m

en
s

AP
O

-E
 a

nd
 sm

ok
in

g 
fo

r
co

ro
na

ry
 h

ea
rt 

di
se

as
e 

in
Fr

am
in

gh
am

 o
ff

sp
rin

g
co

ho
rt1

56

Tw
o-

ph
as

e
St

ra
tif

ie
d 

sa
m

pl
in

g 
on

 D
, E

, a
nd

G
 fo

r a
dd

iti
on

al
 m

ea
su

re
m

en
ts

(e
.g

., 
bi

om
ar

ke
rs

)

H
ig

h 
st

at
is

tic
al

 e
ff

ic
ie

nc
y 

fo
r

su
bs

am
pl

e 
m

ea
su

re
m

en
ts

C
om

pl
ex

 a
na

ly
si

s
Su

bs
tu

di
es

 w
he

re
ou

tc
om

e 
an

d 
pr

ed
ic

to
r

da
ta

 a
re

 a
lre

ad
y

av
ai

la
bl

e

G
ST

 g
en

es
 a

nd
 to

ba
cc

o
sm

ok
in

g 
in

 c
or

on
ar

y
he

ar
t d

is
ea

se
47

C
ou

nt
er

m
at

c 
he

d
M

at
ch

ed
 se

le
ct

io
n 

of
 c

on
tro

ls
 to

be
 d

is
co

rd
an

t f
or

 a
 su

rr
og

at
e 

fo
r

E

Pe
rm

its
 in

di
vi

du
al

 m
at

ch
in

g
H

ig
hl

y 
ef

fic
ie

nt
 fo

r E
 m

ai
n 

ef
fe

ct
an

d 
G

×E

C
om

pl
ex

 c
on

tro
l s

el
ec

tio
n

Su
bs

tu
di

es
 w

he
re

 a
m

at
ch

ed
 d

es
ig

n 
is

ne
ed

ed

R
ad

io
th

er
ap

y 
× 

D
N

A
re

pa
ir 

ge
ne

s i
n 

se
co

nd
br

ea
st

 c
an

ce
rs

49

Nat Rev Genet. Author manuscript; available in PMC 2011 April 14.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thomas Page 33

D
es

ig
n

A
pp

ro
ac

h
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

Se
tti

ng
s

E
xa

m
pl

es

C
as

e-
on

ly
/c

as
e-

co
nt

ro
l

B
ay

es
ia

n 
co

m
pr

om
is

e 
be

tw
ee

n
ca

se
-o

nl
y 

an
d 

ca
se

-c
on

tro
l

co
m

pa
ris

on
s

Po
w

er
 a

dv
an

ta
ge

 o
f c

as
e-

on
ly

co
m

bi
ne

d 
w

ith
 ro

bu
st

ne
ss

 o
f

ca
se

-c
on

tro
l

So
m

e 
bi

as
 w

he
n 

G
-E

 a
ss

oc
ia

tio
n 

is
m

od
er

at
e

G
×E

 st
ud

ie
s w

he
re

 G
-E

in
de

pe
nd

en
ce

 is
un

ce
rta

in

G
SM

1,
 N

AT
2,

 sm
ok

in
g,

an
d 

di
et

 in
 c

ol
or

ec
ta

l
ca

nc
er

34

Fa
m

ily
-b

as
ed

 d
es

ig
ns

:

C
as

e-
si

bl
in

g 
(o

r –
 c

ou
si

n)
C

as
e-

co
nt

ro
l c

om
pa

ris
on

 o
f E

an
d 

G
 u

si
ng

 u
na

ff
ec

te
d 

re
la

tiv
es

as
 c

on
tro

ls

M
or

e 
po

w
er

fu
l t

ha
n 

ca
se

-c
on

tro
l

fo
r G

×E
Im

m
un

e 
to

 p
op

ul
at

io
n

st
ra

tif
ic

at
io

n 
bi

as

D
is

co
rd

an
t s

ib
sh

ip
s d

iff
ic

ul
t t

o 
en

ro
ll

O
ve

rm
at

ch
in

g 
fo

r G
 m

ai
n 

ef
fe

ct
s

Po
pu

la
tio

ns
 w

ith
po

te
nt

ia
l s

ub
st

ru
ct

ur
e

G
ST

M
1 

× 
ai

r p
ol

lu
tio

n
in

 c
hi

ld
ho

od
 a

st
hm

a1
7

C
as

e-
pa

re
nt

 tr
ia

d
C

om
pa

ris
on

 o
f G

 fo
r c

as
es

 w
ith

w
ha

t c
ou

ld
 h

av
e 

be
en

 in
he

rit
ed

fr
om

 p
ar

en
ts

, s
tra

tif
ie

d 
by

 c
as

e's
E

M
or

e 
po

w
er

fu
l t

ha
n 

ca
se

-c
on

tro
l

fo
r G

×E
Im

m
un

e 
to

 p
op

ul
at

io
n

st
ra

tif
ic

at
io

n 
bi

as
 fo

r G
 m

ai
n

ef
fe

ct
s

D
iff

ic
ul

t t
o 

en
ro

ll 
co

m
pl

et
e 

tri
ad

s
Po

ss
ib

le
 b

ia
s i

n 
G

×E
 if

 G
 &

 E
 a

re
as

so
ci

at
ed

 w
ith

in
 p

ar
en

ta
l m

at
in

g
ty

pe
s

Su
bs

tru
ct

ur
ed

po
pu

la
tio

ns
,

pa
rti

cu
la

rly
 fo

r d
is

ea
se

s
of

 c
hi

ld
ho

od

TG
Fα

 ×
 m

at
er

na
l

sm
ok

in
g,

 a
lc

oh
ol

 &
vi

ta
m

in
s i

n 
cl

ef
t

pa
la

te
15

7

Tw
in

 st
ud

ie
s

C
om

pa
ris

on
 o

f d
is

ea
se

co
nc

or
da

nc
e 

be
tw

ee
n 

M
Z 

an
d

D
Z 

pa
irs

 in
 d

iff
er

en
t

en
vi

ro
nm

en
ts

N
o 

ge
ne

tic
 d

at
a 

re
qu

ire
d

C
an

 b
e 

ex
te

nd
ed

 to
 in

cl
ud

e 
ha

lf-
si

bs
, t

w
in

s r
ea

re
d 

to
ge

th
er

 o
r

ap
ar

t, 
or

 c
om

pa
re

 d
is

co
rd

an
t

pa
irs

 o
n 

m
ea

su
re

d 
ge

ne
s a

nd
en

vi
ro

nm
en

t

U
se

d 
m

ai
nl

y 
to

 id
en

tif
y 

in
te

ra
ct

io
ns

w
ith

 u
nm

ea
su

re
d 

ge
ne

s
A

ss
um

pt
io

n 
of

 si
m

ila
r e

nv
iro

nm
en

ta
l

sh
ar

in
g 

be
tw

ee
n 

M
Z 

an
d 

D
Z 

pa
irs

Ex
pl

or
at

or
y 

st
ud

ie
s o

f
po

te
nt

ia
l f

or
 G

×E
be

fo
re

 sp
ec

ifi
c 

ge
ne

s
ha

ve
 b

ee
n 

id
en

tif
ie

d

C
on

co
rd

an
ce

 o
f i

ns
ul

in
le

ve
ls

 in
 re

la
tio

n 
to

 n
on

-
ge

ne
tic

 v
ar

ia
tio

n 
in

ob
es

ity
 1

58

G
W

A
 d

es
ig

ns
:

Tw
o-

st
ag

e 
ge

no
ty

pi
ng

U
se

 o
f h

ig
h-

de
ns

ity
 p

an
el

 o
n

pa
rt 

of
 a

 c
as

e-
co

nt
ro

l s
am

pl
e 

to
se

le
ct

 su
bs

et
 o

f S
N

Ps
 w

ith
su

gg
es

tiv
e 

G
 o

r G
×E

 in
te

ra
ct

io
n

fo
r t

es
tin

g 
us

in
g 

a 
cu

st
om

 p
an

el
in

 a
n 

in
de

pe
nd

en
t s

am
pl

e,
 w

ith
jo

in
t a

na
ly

si
s o

f b
ot

h 
sa

m
pl

es

H
ig

hl
y 

co
st

-e
ff

ic
ie

nt
O

nl
y 

pa
rt 

of
 sa

m
pl

e 
ha

s G
W

A
ge

no
ty

pe
s

G
W

A
 st

ud
ie

s f
or

 w
hi

ch
co

m
pl

et
e 

SN
P 

da
ta

 o
n

al
l s

ub
je

ct
s i

s n
ot

ne
ed

ed

N
on

e 
id

en
tif

ie
d

Tw
o-

st
ep

 in
te

ra
ct

io
n 

an
al

ys
is

Pr
el

im
in

ar
y 

fil
te

rin
g 

of
 a

 G
W

A
sc

an
 fo

r G
-E

 a
ss

oc
ia

tio
n 

in
co

m
bi

ne
d 

ca
se

-c
on

tro
l s

am
pl

e,
fo

llo
w

ed
 b

y 
G

×E
 te

st
in

g 
of

se
le

ct
ed

 su
bs

et

M
uc

h 
m

or
e 

po
w

er
fu

l f
or

 G
×E

 o
r

G
×G

 in
te

ra
ct

io
ns

 th
an

 a
 si

ng
le

-
st

ep
 a

na
ly

si
s

C
an

 m
is

s s
om

e 
in

te
ra

ct
io

ns
G

W
A

 st
ud

ie
s w

ith
co

m
pl

et
e 

SN
P 

da
ta

 a
nd

fo
cu

s o
n 

G
×E

G
× 

in
 u

te
ro

 to
ba

cc
o 

in
ch

ild
ho

od
 a

st
hm

a

D
N

A
 p

oo
lin

g
C

om
pa

ris
on

 o
f a

lle
lic

 d
en

si
ty

 in
po

ol
s o

f c
as

es
 a

nd
 c

on
tro

ls
st

ra
tif

ie
d 

by
 E

, f
ol

lo
w

ed
 b

y
in

di
vi

du
al

 g
en

ot
yp

in
g

H
ig

hl
y 

co
st

 e
ff

ic
ie

nt
Te

ch
ni

ca
l d

iff
ic

ul
tie

s i
n 

fo
rm

in
g

po
ol

s a
nd

 a
ss

ay
in

g 
al

le
lic

 d
en

si
ty

Li
m

ite
d 

po
ss

ib
ili

tie
s f

or
 te

st
in

g
in

te
ra

ct
io

ns

G
W

A
 st

ud
ie

s w
he

re
in

iti
al

 sc
an

 is
 se

ve
re

ly
lim

ite
d 

by
 c

os
t

N
on

e 
id

en
tif

ie
d

Nat Rev Genet. Author manuscript; available in PMC 2011 April 14.


