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Abstract: Adaptive laboratory evolution has been used to improve production of influenza hemag-
glutinin (HA)-displaying virus-like particles (VLPs) in insect cells. However, little is known about the
underlying biological mechanisms promoting higher HA-VLP expression in such adapted cell lines.
In this article, we present a study of gene expression patterns associated with high-producer insect
High Five cells adapted to neutral pH, in comparison to non-adapted cells, during expression of
influenza HA-VLPs. RNA-seq shows a decrease in the amount of reads mapping to host cell genomes
along infection, and an increase in those mapping to baculovirus and transgenes. A total of 1742 host
cell genes were found differentially expressed between adapted and non-adapted cells throughout
infection, 474 of those being either up- or down-regulated at both time points evaluated (12 and 24 h
post-infection). Interestingly, while host cell genes were found up- and down-regulated in an approx-
imately 1:1 ratio, all differentially expressed baculovirus genes were found to be down-regulated in
infected adapted cells. Pathway analysis of differentially expressed genes revealed enrichment of
ribosome biosynthesis and carbohydrate, amino acid, and lipid metabolism. In addition, oxidative
phosphorylation and protein folding, sorting and degradation pathways were also found to be
overrepresented. These findings contribute to our knowledge of biological mechanisms of insect
cells during baculovirus-mediated transient expression and will assist the identification of potential
engineering targets to increase recombinant protein production in the future.

Keywords: insect cells; baculovirus expression system; influenza VLP; RNA sequencing; pathway
analysis

1. Introduction

The insect cell baculovirus expression vector system (IC-BEVS) relies on infection of
insect cells with a recombinant baculovirus genetically modified to include a nucleic acid
sequence encoding a gene of interest, commonly under the transcriptional control of very
late, strong baculovirus promoters such as polh and p10 [1]. The IC-BEVS system permits
the expression recombinant protein at high titers and, importantly, glycosylation patterns
similar to those of higher eukaryotes [2]. This expression system is widely used in the
production of enzymes, membrane proteins, viral capsids, and envelope proteins for use as
vaccines or for analytical purposes [3]. The success of the human papilloma virus vaccine
(Cervarix®) and the hemagglutinin-based influenza vaccine (Flublok®) illustrates the utility
of the system for biopharmaceutical manufacturing.

In recent years, academic and industrial research groups have sought to improve
knowledge of the molecular characteristics underpinning the efficient production of bio-
pharmaceuticals using IC-BEVS [4]. Understanding the host cell’s metabolic regulation
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during expression of a foreign gene also facilitates the design and upscaling of a production
process [5,6]. Next-generation sequencing technologies have accelerated the development
of better expression systems to produce recombinant protein [7]. Transcriptomics was
applied to analyze the transcriptional changes of both Autographa californica multiple nu-
cleopolyhedrovirus (AcMNPV) [8] and alphanodavirus-free High Five cells (Tnms42) [9]
during protein expression using IC-BEVS. It has been shown that the number of viral
transcripts increased significantly after the first 6 h of infection, concomitantly with a
decrease in expression of host cell transcripts due to global shut-off of the host protein
synthesis [10]. More recently, comparative transcriptome analysis was conducted to study
the differences in Tnms42 cell response upon expression of intracellular or secreted protein
products using IC-BEVS, identifying key proteins as promising targets for achieving higher
yields of protein secretion [11].

While genetic engineering of insect cells and/or baculovirus has been used to improve
production yields [12], strategies such as shifts in culture parameters to non-physiological
values have been shown to impact the growth performance and recombinant protein
production [13]. The use of atypical culture conditions in insect cells has also been recently
addressed through adaptive laboratory evolution approaches, i.e., by adapting cells to
grow at such non-standard culture conditions, allowing higher recombinant protein yields
both in stable cell lines [14] and IC-BEVS [15]. In the latter, adaptation of insect High Five
cells to grow at neutral pH allowed a threefold improvement in cell-specific production
rate of influenza virus-like particles (VLPs). However, relatively little is known about the
mechanisms underlying the higher recombinant protein productivity achieved with this
adapted cell line.

In this study, the transcriptome of High Five cells adapted to neutral pH (estab-
lished in [15]), producing influenza VLPs using IC-BEVS, were assessed by RNA-seq and
compared to those of parental, non-adapted insect High Five cells in order to gain an
understanding of the mechanisms behind the higher productivity of the adapted cell line.

2. Materials and Methods
2.1. Cell Lines and Culture Media

Insect High Five cells (Invitrogen), hereon referred to as non-adapted cells, and High
Five cells adapted to neutral pH [15], hereon referred to as adapted cells, were routinely
sub-cultured to 0.3–0.5 × 106 cell.mL−1 every 2–3 days when cell concentration reached
2–3 × 106 cell.mL−1. Non-adapted cells were cultured in Insect-XPRESSTM medium (Sar-
torius Stedim Biotech, Göttingen, Germany); adapted cells were cultured in cell culture
medium composed of a 1:1 mixture of Insect-XPRESSTM and chemically defined solution
as previously reported [14]. Both cell lines were cultured in 125–500 mL shake flasks
(10% working volume) and maintained at 27 ◦C in a Inova 44R shaking incubator (Eppen-
dorf, Hamburg, Germany) set to 100 RPM and with an orbital motion diameter of 2.54 cm.

2.2. Baculovirus Amplification and Storage

Recombinant baculoviruses enclosing influenza capsid M1 from A/California/06/2009
H1N1 strain and hemagglutinin (HA) from A/Brisbane/59/2007 strain genes were kindly
provided by Redbiotec AG (Schlieren, Switzerland). Amplification of baculovirus stocks
was performed as described elsewhere [16].

2.3. Production of Influenza HA-VLPs

Influenza HA-VLPs were produced in 500 mL shake flasks (10% working volume) by
infecting non-adapted cells and adapted cells at a cell concentration at infection (CCI) of
2 × 106 cell.mL−1, with baculovirus using a multiplicity of infection (MOI) of 1 pfu/cell
(n = 3, number of replicates). Samples were taken daily for the determination of cell
concentration and viability, metabolite concentration, and detection/relative quantification
of M1 and HA proteins; for RNA-seq, samples were taken before infection, and at 12 and
24 h post-infection (hpi) (further details in Supplementary Figure S1).
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2.4. Analytics
2.4.1. Cell Concentration and Viability

Cell counting was performed in a Fuchs–Rosenthal hemocytometer chamber (Brand,
Wertheim, Germany) and viability was assessed using the trypan-blue exclusion method [17].

2.4.2. Metabolites Concentration

For metabolite quantification, cell culture samples were centrifuged (300× g, 4 ◦C,
5 min) and supernatant collected and stored at −20 ◦C. Metabolite quantification was
performed using Cedex Bio Analyzer 7100 (Roche Diagnostics, Mannheim, Germany).

2.4.3. Baculovirus Titration

Baculovirus titers were determined using the MTT assay as described elsewhere [18,19].

2.4.4. Western Blot

For M1 and HA detection/relative quantification, cell culture samples were cen-
trifuged (300× g, 4 ◦C, 5 min) and supernatant was collected and stored at 4 ◦C. Western
blot analysis was performed as reported elsewhere [14]. Briefly, for HA identification,
a mouse monoclonal antibody (IRR, Manassas, VA, USA, FR-494—mouse monoclonal
antibody to recombinant H1 HA from influenza A/Brisbane/59/2007 (H1N1)) was used
at a dilution of 1:2000, and M1 protein was identified using a goat polyclonal antibody
(Abcam, Cambridge, UK, Cat# ab20910) at a dilution of 1:2000. Secondary anti-mouse or
anti-goat IgG antibodies conjugated with alkaline phosphatase were used at a dilution of
1:2000 for identification of HA and M1, respectively. Densitometry analysis of Western blot
membranes (to assess relative productivity) was performed using the FIJI software [20].

2.5. RNA Sequencing and Data Analysis
2.5.1. RNA Isolation and Library Preparation

For RNA sequencing analysis, cell culture samples were centrifuged (300× g, 4 ◦C,
5 min) and pellets collected for RNA extraction using 1 mL of Trizol (Invitrogen) and the
Direct-zol RNA mini prep kit (Zymo Research) according to manufacturer’s instructions.
RNA purity and quality were assessed by spectrophotometry (mySPEC equipment, VWR)
and fragment analysis (Agilent).

Library preparation and sequencing were performed elsewhere (Genewiz, Leipzig,
Germany). In short, Poly (A) selection on total RNA (NEBNext® Poly (A) mRNA Magnetic
Isolation Module) was performed prior to strand-specific library preparation (NEBNext®

Ultra™ II Directional RNA Library Prep Kit for Illumina®). Sequencing libraries were
quality-checked using Qubit (Invitrogen) and a fragment analyzer (Agilent), and loaded on
the Illumina NovaSeq 6000 system configured to yield a minimum of 25 million 2 × 150 bp
Paired-End (PE) reads per sample.

2.5.2. Data Processing, Alignment and Counting

Trimmomatic v0.36 was used to remove adapters and to perform quality trimming [21]
of the raw RNA-seq reads. The reads were subsequently aligned to a hybrid refer-
ence, comprising the insect Trichoplusia ni cell genome (Tnl; RefSeq assembly accession:
GCF_003590095.1) [22], the baculovirus, i.e., AcMNPV (RefSeq assembly accession:
GCF_000838485.1, ViralProj14023) [23], and the transgene (M1 and HA) sequences us-
ing STAR v2.7.3a [24]. Those reads mapping to annotated genes were counted using
HTSeq [25].

2.5.3. Differential Expression Analysis

The edgeR Bioconductor package [26] was used to determine the number of differen-
tially expressed genes between infected adapted cells and non-adapted cells. Count data
were normalized to account for variation in the number of sequenced reads in each sample
using the TMM method [27]. To assess differential gene expression, the Fisher’s exact test
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was used to identify statistically significant differences in gene expression between selected
groups [28]. Genes with expression changes of at least 1.5-fold and with a false discovery
rate (FDR)-adjusted p-value < 0.05 were considered to be differentially expressed.

2.5.4. Functional Annotation and Pathway Enrichment Analysis

For gene annotation, the amino acid sequence of protein-coding genes with at least
one read aligned was used as a query. Blastp search was applied in the NCBI nr protein
database using Blast2GO OmicsBox software [29]. No taxonomy filter was applied, and the
E-value cutoff was set to 1.0 × 10−3.

Blast2GO was used to perform pathway enrichment analysis with Fisher’s exact
test and the Gene Set Enrichment Analysis (GSEA) method [30].These tests were used to
identify statistically significant over-represented biological processes for each differentially
expressed gene list. FDR was applied as multiple test correction method with a cut-off of
0.05 [31].

3. Results
3.1. Production of Influenza HA-VLPs Using Adapted Insect High Five Cells

Adapted and non-adapted cells were infected at the optimum conditions (CCI of
2 × 106 cell.mL−1 and MOI of 1 pfu.cell−1) previously identified in our laboratory [14],
and infection kinetics and HA expression were assessed throughout. Adapted cells main-
tained higher cell concentration and viability upon infection, with the onset of cell viability
drop having a 24 h delay in comparison with non-adapted cells (Figure 1A). The specific
consumption or production rates for glucose (Glc), glutamine (Gln), and lactate (Lac) were
similar in both cell lines, with the highest variation observed for glucose (Figure 1B). Im-
portantly, M1 and HA proteins were identified by Western blot (Supplementary Figure S2),
with relative band intensities suggesting that expression of HA was approximately 2.5-fold
higher in adapted cells while M1 expression remained similar in both cell lines (Figure 1C),
in agreement with previously reported data [15].

3.2. Gene Expression Profiling of Infected Adapted vs. Non-Adapted Cells

To reveal the differences at the transcriptional level between adapted and non-adapted
cells upon infection, quality-filtered reads were mapped to the reference genome and
sequences. A total of 10,850 and 10,987 reads (at 12 hpi), and 10,082 and 10,236 reads (at
24 hpi) were mapped in samples from adapted and non-adapted cells, respectively; from
these, 10,389 (at 12 hpi) and 9620 (at 24 hpi) reads are coincident in both cell lines.

A reduction in the proportion of reads mapping to the host cell genome was observed
between 12 and 24 hpi, with a concomitant increase in reads mapping to baculovirus
and transgenes; at 24 hpi, 51–60% of the total reads were mapped to baculovirus genome
and 9–14% of the total reads were mapped to transgenes (HA + M1) (Figure 2A). Dif-
ferential gene expression analysis revealed that a total of 1742 host cell genes were dif-
ferentially expressed between adapted and non-adapted cells throughout infection, 474
of those being differentially expressed at both time points evaluated (Figure 2B). The
top 20 most differentially expressed host cell genes at both 12 and 24 hpi are detailed
in Tables 1 and 2. The most up-regulated genes encode for transmembrane transports
(e.g., organic cationic transports protein-like, 93-fold at 24 hpi) and proteins involved in proteol-
ysis (e.g., xxa-Pro aminopeptidase 1, 756-fold at 24 hpi), and lipase activity
(e.g., lipase member H-like, 112-fold at 12 hpi), whereas the most down-regulated genes
encode for proteins involved in programmed cell death (e.g., homeobox protein abdominal-
A homolog isoform X1, 120-fold at 24 hpi), lipid transport (e.g., apolipophorins, 50-fold at
24 hpi), innate immune response (e.g., protein toll-like, 37-fold at 12 hpi), and oxidoreductase
(e.g., cytochrome P450 9e2-like, 163-fold at 12 hpi). Protein-coding genes involved in the
regulation of transcription and signaling were found both up- and down-regulated. While
host cell genes were found up- and down-regulated in an approx. 1:1 ratio regardless of
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infection time, all baculovirus differentially expressed genes were found down-regulated
in infected adapted cells (Figure 2C).
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Figure 1. HA-VLP production in non-adapted and adapted High Five insect cells using the bac-
ulovirus expression vector system. (A) Viable cell concentration (full circles) and cell viability (empty
circles) after infection. (B) Specific glucose (rGlc) and glutamine (rGln) consumption and lactate (rLac)
production (hence shown as negative) rates, estimated by linearization of metabolite concentration
and integral of total cells, during infection. (C) Fold-change (adapted/non-adapted) in expression of
HA and M1 proteins assessed by densitometry analysis of Western blot images (i.e., relative band
intensity). Color code: yellow represents non-adapted cells, green represents adapted cells. Data are
expressed as mean ± standard deviation of three culture replicates (n = 3).
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Figure 2. Differential gene expression analysis. (A) Percentage of reads mapping to host cell
(circles), baculovirus (triangles) and transgenes (diamonds) throughout infection. (B) Venn dia-
gram showing the number of host-cell and baculovirus genes being differentially expressed (|log2
(Fold-Change| > 0.58 and FDR < 0.05) between adapted and non-adapted cells, at 12 hpi, 24 hpi, and
both timepoints simultaneously. (C) Volcano plot showing the distribution of differentially expressed
genes with higher (in red) or lower (in blue) expression in adapted cells, compared to non-adapted
cells. Number in boxes: number of differentially expressed genes.
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Table 1. List of TOP 20 up-regulated genes in adapted cells vs. non-adapted cells.

Gene ID Gene Name hpi FC logCPM Biological Process (P) or
Molecular Function (M)

LOC113500835 xaa-Pro aminopeptidase 1
12 273.6 3.1

hydrolase activity (M)
24 756.1 1.6

LOC113493104
potassium channel subfamily K

member 18-like
12 102.1 1.7

transmembrane transport (P)
24 433.4 0.8

LOC113505620 serine protease HP21 precursor
12 104.1 −0.1

proteolysis (P)
24 116.2 −0.9

LOC113496461 lipase member H-like
12 111.6 −1.6

lipid metabolic process (P)
24 79.4 −1.3

LOC113506781 organic cation transporter protein-like
12 91.9 −0.3

transmembrane transport (P)
24 92.8 −1.1

LOC113504337
GATA zinc finger domain-containing

protein 4-like
12 79.8 −0.5

regulation of transcription (P)
24 74.3 −1.3

LOC113500515 alkylglycerol monooxygenase-like
12 97.8 1.0

lipid metabolic process (P)
24 46.6 −0.3

LOC113501396 transcription factor glial cells missing 2-like
12 108.6 −1.7

regulation of transcription (P)
24 29.1 −2.2

LOC113501938 monocarboxylate transporter 1-like
12 86.2 −1.8

transmembrane transport (P)
24 36.5 −1.9

LOC113494762 octopamine receptor Oamb isoform X1
12 65.3 1.1

regulation of transcription (P)
24 18.4 0.7

LOC113495982 uncharacterized protein
12 7.7 −1.0

n.a.
24 74.8 −1.3

LOC113501619 organic cation transporter protein-like
12 43.4 −2.5

transmembrane transport (P)
24 24.1 −2.3

LOC113506861 uncharacterized protein
12 37.4 −2.6

n.a.
24 24.0 −2.3

LOC113492056 glucose dehydrogenase [FAD, quinone]-like
12 34.6 −2.7

oxidoreductase activity (M)
24 26.4 −2.2

LOC113495496
thyrotropin-releasing hormone receptor-like

isoform X1
12 3.8 −0.2

signaling (P)
24 51.7 1–6

LOC113500144 uncharacterized protein
12 39.2 −0.2

n.a.
24 14.2 −1.6

LOC113506931
proton-coupled amino acid transporter-like

protein pathetic
12 36.3 −1.4

transmembrane transport (P)
24 6.1 −1.2

LOC113500825
acid sphingomyelinase-like

phosphodiesterase 3a
12 4.5 −0.9

hydrolase activity (M)
24 34.2 −2.1

LOC113498260
mitochondrial import receptor subunit

TOM40 homolog
12 29.8 0.3

transmembrane transport (P)
24 7.7 −0.6

LOC113500192 glutamate receptor ionotropic, kainate 2-like
12 18.8 3.0

regulation of transcription (P)
24 18.4 2.2

hpi: hours post-infection; FC: Fold-Change (adapted/non-adapted); CPM: Copy Per Million; n.a.: not available.

3.3. Pathway Enrichment Analysis

To further understand the biological mechanisms behind adapted cells’ higher pro-
ductivity, pathway enrichment analysis was performed. KEGG analysis using Fisher’s
exact test revealed that 14 pathways are enriched, two being up-regulated in adapted
cells (i.e., neuroactive ligand-receptor interaction, ribosome) while the remaining 12 were
down-regulated (including metabolism of xenobiotic and endogenous compounds, carbo-
hydrates, amino acids, vitamins and lipids) (Figure 3A). Additional pathways were found
to be enriched using the GSEA method, including those playing a role in protein processing
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(including proteasome and ubiquitin mediated proteolysis) and oxidative phosphorylation
(Supplementary Figure S3). For the pathways found to be enriched, heatmaps with hier-
archical clustering of all genes (differentially expressed and not) were generated. Results
suggest that there is no common trend in adapted and non-adapted samples clustering as
infection progresses, as reflected in the different dendrograms obtained—see two examples
in Figure 3B.

Table 2. List of TOP-20 down-regulated genes in non-adapted vs. adapted cells.

Gene ID Gene name hpi FC logCPM Biological Process (P) or Molecular
Function (M)

LOC113496224 cuticle protein 16.5-like
12 168.3 −1.0

structural molecule activity (M)
24 84.3 −1.4

LOC113492802 juvenile hormone esterase-like
12 11.5 −0.1

hydrolase activity (M)
24 165.3 −0.5

LOC113495404 cytochrome P450 9e2-like
12 163.0 −1.1

oxidoreductase activity (M)
24 13.6 −1.3

LOC113496454
homeobox protein abdominal-A

homolog isoform X1
12 41.7 0.7

programmed cell death (P)
24 120.1 −0.9

LOC113508341 uncharacterized protein
12 31.2 1.2

n.a.
24 83.5 0.2

LOC113498352 apolipophorins isoform X2
12 16.2 1.3

lipid transport (P)
24 49.9 0.2

LOC113493958
solute carrier family 15

member 1-like
12 36.2 −1.3

transmembrane transport (P)
24 26.3 −2.3

LOC113496890 Acanthoscurrin-1-like
12 25.3 −1.7

n.a.
24 34.5 −2.1

LOC113501789 uncharacterized protein
12 19.4 2.7 anatomical structure

development (P)24 31.2 1.3

LOC113499613 gloverin-like
12 21.3 2.9

n.a.
24 26.4 1.5

LOC113503497 chondroitin proteoglycan 2-like
12 14.2 −0.7

chitin binding (M)
24 31.3 −1.0

LOC113496839 protein toll-like
12 36.6 0.3

immune system process (P)
24 8.8 −1.3

LOC113492804 esterase FE4-like
12 29.1 1.3

hydrolase activity (M)
24 15.1 0.5

LOC113494776 myb-like protein D
12 7.0 −2.3

n.a.
24 34.2 −2.1

LOC113494175 alpha-tocopherol transfer protein-like
12 12.7 −1.0

n.a.
24 25.3 −2.3

LOC113503288
acetylcholine receptor subunit

alpha-like 1
12 23.4 −0.3

signaling (P)
24 14.4 −0.8

LOC113507593
probable E3 ubiquitin-protein ligase

bre1 isoform X1
12 6.1 −1.0

n.a.
24 30.2 −1.0

LOC113503500 odorant receptor 67c-like
12 4.7 −1.8

signaling (P)
24 31.3 −2.2

LOC113505115
irregular chiasm C-roughest

protein-like isoform X1
12 16.5 −0.3

programmed cell death (P)
24 15.3 −1.7

LOC113506962
neural retina-specific leucine zipper

protein-like
12 25.1 2.3

regulation of transcription (P)
24 5.5 1.1

hpi: hours post-infection; FC: Fold-Change (non-adapted/adapted); CPM: Copy Per Million; n.a.: not available.
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Figure 3. Pathway enrichment analysis. (A) Pathway enrichment analysis of differentially expressed
genes using Fisher’s exact test. Bar plots indicate enriched terms at 12 and 24 hpi (i.e., longer
bars denote pathways more significantly enriched). Color code: red identifies pathways found
up-regulated and blue identifies pathways found down-regulated in adapted cells, over non-adapted
cells. (B) Heat map of tyrosine metabolism pathway and genes encoding for ribosome subunits;
the z-score (gradient color code) is defined for all the genes found to be involved in these specific
pathways (differentially expressed or not). BI denotes before infection.

4. Discussion

In this work, we assessed the gene expression profile of insect High Five cells adapted
to neutral pH during production of influenza HA-VLPs using IC-BEVS, and compared it to
that of non-adapted cells.

During infection, the number of reads mapping to the host cell genome decreased,
whereas those aligned to baculovirus (AcMNPV) and transgene (M1 and HA) sequences
increased. Such a trend is a consequence of the global takeover of the cellular transcription
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machinery by baculoviruses towards overproduction of viral proteins during infection [4].
The percentages of reads aligned to host cells and virus genome throughout the course
of infection is similar to those reported previously in other studies [9,11]. Differential
expression analysis revealed that all baculovirus-derived genes were found to be down-
regulated in adapted cells. Together with distinct onset cell viability drop, this suggests
that adapted and non-adapted cells have different susceptibility to infection.

Adapted and non-adapted cells respond differently to baculovirus infection as re-
flected by the major differences observed in their gene expression profiles. For instance,
genes involved in lipid metabolism processes (i.e., biosynthesis, hydrolysis, and transport)
were found to be either up- or down-regulated in adapted cells at both 12 and 24 hpi. Insect
cells are known to have a limited lipid metabolism, reflected in their limited capacity in
synthesizing, desaturating and elongating fatty acids [32], and lipid deprivation is linked
to cell degeneration and impairment in the production of baculovirus [33]. Moreover,
lipids such as cholesterol are especially important during the production of enveloped
viral particles in mammalian culture systems [34] and IC-BEVS [35], such as the case of
the influenza HA-VLPs herein produced. Therefore, distinct lipid metabolism could be
associated with different productivity of adapted and non-adapted cells.

Pathway enrichment analysis revealed that genes encoding ribosome subunits were up-
regulated in adapted cells at 24 hpi. Since baculovirus is known to promote the shutdown
of host cell protein synthesis upon infection for overproduction of viral proteins [10,36],
this result suggests that the host cell translation machinery was less impaired in adapted
cells, thereby leading to higher protein biosynthesis (including of HA-VLPs). The oxidative
phosphorylation pathway was also found to be up-regulated in adapted cells at 24 hpi,
allowing lower substrate consumption when compared to non-adapted cells. In contrast,
pathways associated with drug, carbohydrate, and amino acid metabolism were down-
regulated in adapted cells. Interestingly, the set of genes driving such enrichment is shared
between most pathways; these code for proteins such as UPD-glucuronosyltransferases-
like and glutathione S-transferase-like proteins, enzymes associated with cellular protection
and resistance to oxidative stress [37]. In addition to these, genes involved in oxidative
metabolism were also down-regulated in adapted cells, some of which have been already
identified as differentially expressed in insect cells resistant to harmine and fungi (e.g.,
cytochromes 450) [38,39]. Pathways associated with baculovirus infection such as immune
response, protein processing in the endoplasmic reticulum, proteosome and ubiquitin
mediated proteolysis, which are known to be up-regulated upon infection [4,40], were
also found down-regulated in adapted cells. Taken together, these results suggest that
adapted cells cope better with the stress induced by baculovirus infection when compared
to non-adapted cells.

The major AcMNPV fusion protein, GP64, plays an essential role in mediating virus–
receptor binding, internalization, and membrane fusion during virus entry into both
mammalian and insect cells [41]. The fusogenicity of GP64 is low-pH-dependent, and fusion
of the viral envelope with the endosomal membrane is triggered in the acidic endosomal
lumen [42]. Virus fusion was shown to be impaired at relatively high-pH conditions in
mammalian cells [43]; thus, baculovirus entry could be less efficient in adapted cells. In
this regard, the baculovirus gene ACNVgp64 was found to be significantly down-regulated
in adapted cells at 12 hpi (1.7-fold) and 24 hpi (2.0-fold). While the amount of differentially
expressed host cell genes in adapted cells was equally distributed between those being
up- or down-regulated, all the differentially expressed baculovirus-derived genes herein
identified were shown to be down-regulated in adapted cells, hence showing that virus
transcripts are produced earlier (or at higher quantity) in non-adapted cells. Whether
this outcome is a consequence of less efficient virus entry in adapted cells still remains
unknown, but such a fact could be behind the different cell growth kinetics observed for
adapted cells, i.e., a slight increase in cell concentration and delayed onset of cell viability
drop. The apparent lower burden caused to adapted cells at initial stages of infection may
have been the key to achieving prolonged infection and consequently higher productivity.
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5. Conclusions

In this study, comparative transcriptome analysis revealed significant differences be-
tween adapted and non-adapted insect High Five cells during production of influenza
HA-VLPs using IC-BEVS. Differential gene expression analysis showed baculovirus genes
being down-regulated in adapted cells, revealing less susceptibility to infection. Several
pathways were found enriched and differently regulated, such as those associated with
protein synthesis, metabolism of xenobiotic and endogenous compounds, carbohydrates
and amino acids. The gene expression signatures herein identified can be exploited for
rational genetic engineering of insect cells and/or baculovirus to further improve produc-
tion yields. Furthermore, single-cell RNA sequencing could help us to further understand
the molecular signatures playing a role in systems’ productivity, as well as to conclude on
adapted cell population heterogeneity.
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GSEA method.
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