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Introduction
Currently available antileukemic treatments often fail to eradicate 

drug-refractory quiescent leukemia stem cells (LSCs) and drug-

resistant proliferating LSCs and leukemia progenitor cells (LPCs). 

Previous reports suggest that altered DNA repair mechanisms may 

be responsible for enhanced survival of LSCs and/or LPCs under 

genotoxic stress caused by reactive oxygen species (ROS) and cyto-

toxic treatment (1). Thus, leukemia cells may be highly dependent 

on specific DNA repair mechanisms and targeting these pathways 

could sensitize LSCs and LPCs to the lethality of DNA damage (2).

DNA double-strand breaks (DSBs), the most lethal DNA lesions, 

are usually repaired by BRCA-mediated homologous recombina-

tion (HR) and DNA-dependent protein kinase–mediated (DNA-PK–

mediated) nonhomologous end-joining (NHEJ) (D-NHEJ) in prolif-

erating cells, whereas D-NHEJ plays a major role in quiescent cells 

(3). Poly(ADP)ribose polymerase 1–dependent (PARP1-dependent) 

NHEJ serves as a back-up (B-NHEJ) pathway in both proliferating 

and quiescent cells (Figure 1A). In addition, PARP1 may decrease or 

prevent accumulation of potentially lethal DSBs, either by stimu-

lation of base excision repair and single-strand break repair and/or 

by facilitation of DSB repair protein MRE11-mediated recruitment 

of the DNA damage marker RAD51 to promote stalled replication 

fork restart (4, 5).

Cancer-specific defects in DNA repair pathways create 

the opportunity to employ synthetic lethality, which has been 

applied against cancer cells harboring mutations in BRCA1 and 

BRCA2 by using PARP1 inhibitors (6, 7). This finding initiated 

more than 100 clinical trials, which indicated that biomarkers of 

the response to PARP1 inhibitors reach beyond that of BRCA1/2 
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PARP1 inhibitor olaparib-treated Ki67+ proliferating cells, indicating 

accumulation of DSBs (Figure 2B; BRCA1 panel, Ki67+).

While total NHEJ was reduced, B-NHEJ was activated 

in the absence of XRCC6 (Figure 2A; EJ2-GFP and EJ5-GFP, 

respectively). Olaparib exerted strong inhibitory activity against 

B-NHEJ, and also modestly diminished total NHEJ in XRCC6–/– 

murine embryonic stem cells (mESCs), but did not affect repair 

in XRCC6+/+ cells. This effect was associated with elevation of 

γ-H2AX in olaparib-treated XRCC6–/– Ki67+ and Ki67–cells, indi-

cating accumulation of DSBs in proliferating and quiescent cells, 

respectively (Figure 2B; XRCC6 panels).

PARP1i reduced growth of BRCA1-mutated MDA-MB-436 

human breast carcinoma cells (Figure 2C; BRCA1 panels) by elimi-

nation of proliferating, but not quiescent cells (Figure 2D; BRCA1 

panels). Remarkably, PARP1i reduced the number of XRCC6–/– 

cells more efficiently than XRCC6+/+ counterparts (Figure 2C; 

XRCC6 panels), but the effect depended mainly on elimination of 

quiescent cells, with modest impact on proliferating cells (Figure 

2D; XRCC6 panels).

To determine the effect of PARP1i in cells displaying dual 

BRCA/DNA-PK deficiency we applied 2 previously characterized 

models: (a) FANCA–/– XRCC6–/– mESCs (10), and (b) the RAD54–/–  

LIG4–/– human pre-B leukemic cell line Nalm-6 (11). Cells with 

BRCA/DNA-PK deficiency were equally or more sensitive to olapa-

rib and BMN673, another PARP1 inhibitor, than those displaying 

individual deficiencies (Figure 3A and Supplemental Figure 1A; 

supplemental material available online with this article; https://

status. In addition, PARP1 inhibitor–mediated synthetic lethality 

would not eradicate BRCA1/2–mutated quiescent cancer stem 

cells, including quiescent LSCs, which often are responsible for 

minimal residual disease and disease relapse (8). We hypothe-

sized that PARP1 inhibition (PARPi) can trigger dual cellular syn-

thetic lethality in proliferating LSCs/LPCs and quiescent LSCs 

that display quantitative deficiencies in BRCA and DNA-PK path-

ways (Figure 1B).

Since inactivating mutations in BRCA and DNA-PK pathways 

(e.g., Fanconi anemia D1 = BRCA2 and LIG4, respectively) are 

rare in leukemias (9), other strategies for identifying patients with 

leukemias that display BRCA and DNA-PK (BRCA/DNA-PK) defi-

ciency are needed. We developed a comprehensive gene expression 

and mutation analysis (GEMA) (Figure 1C) that identifies BRCA/

DNA-PK–deficient patients using a combination of gene expres-

sion (microarrays, reverse transcription-quantitative PCR [RT-

qPCR], and flow cytometry) and gene mutation (rare mutations in 

BRCA/DNA-PK genes and the presence of oncogenes reducing the 

expression of these genes) analyses to detect insufficient expres-

sion of at least 1 gene in each of the BRCA and DNA-PK pathways.

Results
PARP1i exerted dual cellular synthetic lethality by elimination of BRCA/

DNA-PK–deficient proliferating cells and DNA-PK–deficient quiescent 

cells. HR activity was strongly reduced in the BRCA2–/– hamster cell 

line V-C8 in comparison with wild-type V79 cells (Figure 2A; DR-

GFP), which was accompanied by abundant elevation of γ-H2AX in 

Figure 1. Proposed model of GEMA-

guided dual cellular synthetic 

lethality triggered by PARP1i in 

quiescent and proliferating leuke-

mia cells. (A) DSB repair pathways 

are cell cycle dependent. (B) The 

concept of dual cellular synthetic 

lethality triggered by PARP1i in 

BRCA- and DNA-PK–deficient pro-

liferating, and in DNA-PK–deficient 

quiescent leukemia cells. (C) The 

concept of GEMA.
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samples from The Cancer Genome Atlas (TCGA) RNA-seq data-

base revealed that 15 (9%) samples displayed BRCA/DNA-PK 

deficiency (Supplemental Figure 3D).

Gene expression analysis of our set of 172 cytogenetically nor-

mal AML samples revealed a wide range of expression levels of 

HR and D-NHEJ genes (Figure 4A). AML samples were assigned 

to the BRCA/DNA-PK–deficient group if a row Z-score value of at 

least 1 gene in HR (BRCA1, BRCA2, PALB2, RAD51L1 [RAD51B], 

RAD51C, RAD51L3 [RAD51D], XRCC2, and XRCC3) and D-NHEJ 

(PRKDC [encoding DNA-PKcs], XRCC5 [KU80], XRCC6 [KU70], 

DCLRE1C, NHEJ1, LIG4, and XRCC4) was less than –1.5. Con-

versely, BRCA/DNA-PK–proficient samples displayed row Z-score 

values greater than –0.75 for all genes in HR and D-NHEJ. Using 

this approach we identified 26 BRCA/DNA-PK–deficient and 16 

BRCA/DNA-PK–proficient AMLs (Figure 4B). This finding was 

supported by detection of BRCA/DNA-PK–deficient AML sam-

ples in another microarray database (Supplemental Figure 4).

Downregulation of at least 1 protein in each of the BRCA and 

DNA-PK pathways was detected in Lin–Ki67+ proliferating cells and 

Lin–Ki67+/– proliferating/quiescent cells, respectively, from indi-

vidual BRCA/DNA-PK–deficient AMLs, compared with BRCA/

DNA-PK–proficient samples (Figure 4C). The BRCA/DNA-PK–

doi.org/10.1172/JCI90825DS1). Olaparib-treated RAD54–/– LIG4–/– 

cells and FANCA–/– XRCC6–/– mESCs accumulated DSBs measured 

by γ-H2AX (Figure 3B and Supplemental Figure 1B), resulting in 

elevated cell death in both Ki67– quiescent and Ki67+ proliferating 

subpopulations (Figure 3C and Supplemental Figure 1C). These 

effects were accompanied by downregulation of poly(ADP-ribose) 

polymer formation by PARP1i (Supplemental Figure 2).

Collectively, these data strongly suggest that PARP1i selective-

ly inhibited B-NHEJ that promoted accumulation of lethal DSBs, 

resulting in dual cellular synthetic lethality through the eradica-

tion of BRCA/DNA-PK–deficient proliferating and quiescent cells.

PARP1i eradicated BRCA/DNA-PK–deficient proliferating and 

quiescent immature leukemia cells from individual AMLs and ALLs 

identified by gene expression analysis. To identify BRCA/DNA-PK–

deficient individual leukemias we examined the expression of (a) 

HR genes, that when absent/mutated caused synthetic lethality 

with PARP1i (6, 7, 12), and (b) key D-NHEJ genes (13).

Our hypothesis was supported by detection of wide-range 

expression levels of BRCA1 and PRKDC (encodes for DNA-PK 

catalytic subunit = DNA-PKcs) in existing databases of individual 

patient leukemia samples (Supplemental Figure 3, A–C). More-

over, meta-analysis of 166 acute myeloid leukemia (AML) patient 

Figure 2. PARP1i inhibited B-NHEJ, elevated DSBs, and triggered synthetic lethality in BRCA- or DNA-PK–deficient proliferating cells and in DNA-PK–

deficient quiescent cells. (A) HR, B-NHEJ, and total NHEJ activities were measured in Brca2–/– VC8 cells, Brca2+/+ V79 cells, Xrcc6–/– and Xrcc6+/+ mESCs 

harboring DR-GFP, EJ2-GFP, or EJ5-GFP reporter cassettes, as indicated, treated or not with 1.25 μM olaparib. (B) Indicated cells were treated or not with 

1.25 μM olaparib and DSBs were measured by detecting γ-H2AX in Ki67+ and Ki67– cells. (C and D) Sensitivity of BRCA1-mutated [BRCA1–/–] and BRCA1-

reconstituted [BRCA1–/–(+)] MDA-MB-436 breast carcinoma cells, and Xrcc6–/– and Xrcc6+/+ mESCs to 1.25 μM olaparib. (C) Trypan blue exclusion, and (D) 

CPDmax quiescent cells and CPDlo proliferating cells. Results represent 3 independent experiments. *P < 0.05 in comparison with olaparib-treated BRCA1- 

and/or DNA-PK–proficient cells; **P < 0.03 in comparison with untreated counterparts using Student’s t test.
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BRCA/DNA-PK–deficient Lin–CD34+ t-MDS/AML primary 

cells from 3 patients were more sensitive to BMN673 and BMN673 

+ DNR in comparison with BRCA/DNA-PK–proficient counterparts 

from 3 patients (Figure 6C). Consistent with this finding, immature 

Lin–CD34+CTVlo proliferating cells and Lin–CD34+CTVmax quies-

cent cells from BRCA/DNA-PK–deficient t-MDS/AMLs were much 

more sensitive to BMN673 alone and in combination with DNR in 

comparison with the counterparts from BRCA/DNA-PK–proficient 

samples (Figure 6, D and E). BMN673 + DNR exerted a borderline 

synergistic effect against BRCA/DNA-PK–deficient cells.

To design a more diagnostically oriented approach for predict-

ing BRCA/DNA-PK deficiency we employed RT-qPCR to quantify 

expression of DSB repair genes compared with a housekeeping gene 

such as COX6B. Our data suggest that BRCA1 and LIG4 mRNA lev-

els lower than 1,100% and 2%, respectively, of that encoded by 

COX6B is predictive of BRCA/DNA-PK deficiency in 2 of 11 (18%) 

samples, resulting in the highest sensitivity to BMN673-driven syn-

thetic lethality (Supplemental Figure 6, A–C). Meta-analysis of the B 

cell acute lymphoblastic leukemia (B-ALL) transcriptome database 

supported our observation that a cohort of B-ALLs were BRCA/

DNA-PK deficient and that BRCA1 and LIG4 were frequently down-

regulated in these cases (Supplemental Figure 6D).

Altogether, gene expression profiling by mRNA microarrays 

and by RT-qPCR followed by flow cytometry identified individual 

cases of BRCA/DNA-PK–deficient AMLs/ALLs, in which imma-

ture quiescent and proliferating cells were highly sensitive to 

PARP1i alone or in combination with the approved first-line AML 

therapy drug, DNR.

PARP1i exerted an antileukemic effect against BRCA/DNA-

PK–deficient primary leukemia xenografts. NSG mice bearing 

BRCA/DNA-PK–deficient or –proficient primary leukemia xeno-

grafts (PLXs) were left untreated or treated with vehicle (con-

trol), doxorubicin (DA), BMN673, or DA + BMN673 (Figure 7A). 

Therapeutic effect was measured by detection of hCD45+ cells in  

deficient/proficient status of preselected samples was further 

validated by direct measurement of HR and NHEJ activities using 

specific reporter cassettes (Supplemental Figure 5A) (14). Both HR 

and NHEJ activities were downregulated in representative BRCA/

DNA-PK–deficient samples when compared with BRCA/DNA-

PK–proficient counterparts (Supplemental Figure 5B).

BRCA/DNA-PK–deficient Lin– AML primary cells from indi-

vidual patients were more sensitive to BMN673, and BMN673 

plus daunorubicin (DNR), in comparison with BRCA/DNA-PK– 

proficient counterparts (Figure 5A). LSC-enriched Lin–CD38– 

AML patient cells were used to study the role of PARP1i in quies-

cent and proliferating LSCs because this subpopulation was the 

most enriched in LSCs in NSG mice (15). The BRCA/DNA-PK–

deficient phenotype was accompanied by accumulation of DSBs 

in both Lin–CD38–CTVlo proliferating cells and Lin–CD38–CTVmax 

quiescent cells treated with suboptimal doses of BMN673 and 

DNR (Figure 5B). These cell subpopulations were much more sen-

sitive to BMN673 alone and in combination with DNR in compari-

son with BRCA/DNA-PK–proficient counterparts (Figure 5, C and 

D). Moreover, BMN673 + DNR exerted a synergistic effect against 

BRCA/DNA-PK–deficient cells.

Next, Fluidigm RT-qPCR analysis of 26 therapy-related 

myelodysplastic syndrome (t-MDS)/AML samples revealed that 

3 samples (12%) displayed BRCA/DNA-PK deficiency (Z score < 

–1.5 of at least 1 gene in BRCA and DNA-PK pathways) and 11 were 

BRCA/DNA-PK proficient (Z score > –0.5 of all genes in BRCA 

and DNA-PK pathways) (Figure 6A). Immunofluorescent staining 

followed by flow cytometric analysis of BRCA/DNA-PK–deficient 

and BRCA/DNA-PK–proficient samples (Figure 6A; marked with 

blue and red squares, respectively) confirmed downregulation of 

at least 1 protein in each BRCA and DNA-PK pathway in BRCA/

DNA-PK–deficient proliferating Lin–Ki67+ cells and proliferating/

quiescent Lin–Ki67+/– cells, respectively, compared with BRCA/

DNA-PK–proficient samples (Figure 6B).

Figure 3. PARP1i elevated DSBs and trig-

gered dual cellular synthetic lethality in 

BRCA/DNA-PK–deficient proliferating 

and quiescent Nalm-6 leukemia cells. (A) 

Sensitivity of the indicated cells to olaparib 

and BMN673. (B and C) Nalm-6 parental 

cells (gray bars) and RAD54–/– LIG4–/– coun-

terparts (green bars) treated or not with 0.15 

μM olaparib for 24 (B) or 48 (C) hours. (B) 

γ-H2AX–positive Ki67–and Ki67+ cells and 

(C) dead Ki67– and Ki67+ cells; representa-

tive plots are included. Results represent 

3 independent experiments. *P < 0.05 in 

comparison with olaparib-treated parental 

cells using Student’s t test.
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Figure 4. mRNA microarrays identified BRCA/DNA-PK–deficient AMLs. (A) Gene expression analysis of 

DSB repair genes in 172 AML samples. (B) BRCA/DNA-PK–deficient and –proficient samples; those used 

in further analyses are marked by colored squares at the bottom. (C) Flow cytometric analysis of DSB 

repair proteins in Lin–Ki67+/– cells from individual AMLs predicted to be BRCA/DNA-PK deficient (blue) or 

proficient (red). Each AML sample was measured 3–6 times.*P < 0.001 in comparison with all BRCA/DNA-

PK–proficient samples using Student’s t test.
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peripheral blood and by median survival time (MST). BRCA/

DNA-PK–deficient and –proficient PLXs were preselected based 

on microarray analysis (Figure 7B), by in vitro sensitivity to 

BMN673 alone or in combination with DNR (Figure 7C), and by 

nuclear foci formation or flow cytometric detection of DSB repair 

proteins (Supplemental Figure 5, C and D).

Control mice succumbed to leukemias characterized by sple-

nomegaly (3- to 15-fold enlarged spleen) and the presence of 

hCD45+ cells in peripheral blood. Approximately 60% and 79% of 

these hCD45+ cells were also CD33+ or CD19+, respectively, thus 

confirming the development of myeloid and lymphoid malignan-

cies. BMN673 alone and a combination of DA + BMN673 reduced 

the number of BRCA/DNA-PK–deficient hCD45+ AML and B-ALL 

cells, but did not affect BRCA/DNA-PK–proficient B-ALL cells 

(Figure 7D). Moreover, DA + BMN673 exerted synergistic and 

additive effects against BRCA/DNA-PK–deficient AML and ALL, 

respectively. Selective elimination of BRCA/DNA-PK–deficient 

hCD45+ PLX cells by BMN673 and DA + BMN673 was associated 

with extended disease latency (Figure 7E). A cohort of mice treated 

with DA + BMN673 survived more than 150 (AML) and 120 (ALL) 

days and hCD45+ cells were not detected in these mice.

In addition, 2 × 106 bone marrow cells (BMCs) from untreat-

ed and DA + BMN673–treated individual mice bearing BRCA/

DNA-PK–deficient PLX (AML and ALL) were transplanted to sec-

ondary recipient mice. All mice injected with cells from untreat-

ed donors died within 27 (AML) and 21 (ALL) days, whereas 6 of 

8 (AML) and 4 of 8 (ALL) recipients of cells from DA + BMN673–

treated donors survived 100 days or more (Supplemental Figure 

7). Recipients of AML/ALL cells from mice treated with DA + 

BMN673 demonstrated significantly prolonged survival, sug-

gesting that LSCs were targeted.

PARP1i eradicated BRCA1/DNA-PK–deficient proliferating and 

quiescent immature leukemia cells identified by gene mutation analy-

sis. BCR-ABL1 oncogenic tyrosine kinase causes downregulation 

of BRCA1 and DNA-PKcs protein expression (16, 17). In concor-

dance, we detected downregulation of DNA-PKcs and/or BRCA1 

in BCR-ABL1–positive chronic myeloid leukemia (CML) in chronic 

phase (CML-CP) Lin–CD34+Ki67– quiescent and Lin–CD34+Ki67+ 

proliferating immature cells, respectively (Figure 8A). These 

observations combined with high levels of ROS-induced DSBs in 

untreated and tyrosine kinase inhibitor (TKI)–treated CML-CP 

quiescent and proliferating LSCs and LPCs (18) create an opportu-

nity to trigger dual cellular synthetic lethality by PARP1i.

BCR-ABL1–transformed Parp1–/– murine BMCs (mBMCs) 

formed approximately 2.5-fold fewer colonies than their Parp1+/+ 

counterparts (Figure 8B). To determine the role of PARP1 in disease-

mimicking settings, a tet-off SCLtTA p210BCR-ABL1–inducible 

mouse model of CML-CP was employed (19). CML-CP–like dis-

ease latency was prolonged in SCLtTA p210BCR-ABL1 Parp1–/– mice 

when compared with SCLtTA p210BCR-ABL1 Parp1+/+ counterparts 

(Figure 8C). Altogether, it appears that PARP1 plays an important 

role in BCR-ABL1–mediated leukemogenesis.

Olaparib selectively reduced clonogenic activity of Lin–CD34+ 

CML-CP immature cells in a dose-dependent manner (Figure 8D). 

Figure 5. BRCA/DNA-PK–deficient AMLs were sensitive to dual cellular synthetic 

lethality exerted by BMN673. (A) Lin– cells from BRCA/DNA-PK–deficient (blue, 

n = 8) and BRCA/DNA-PK–proficient (red, n = 4) samples treated with BMN673 

(left) and DNR + BMN673 (right). (B) γ-H2AX immunofluorescence in BRCA/DNA-

PK–deficient (blue) and BRCA/DNA-PK–proficient (red) cells (n = 3–5) untreated 

(control) and treated with 1 μg/ml DNR, 12.5 nM BMN673, or DNR + BMN673. 

*P < 0.05 in comparison with DNR-treated counterparts by Student’s t test. (C) 

Number of proliferating Lin–CD38–CTVlo and quiescent Lin–CD38–CTVmax cells from 

individual BRCA/DNA-PK–deficient (blue) and –proficient (red) samples treated 

with DNR, BMN673, or DNR + BMN673. (D) Cumulative percentages from samples 

examined in C. *P < 0.02, **P < 0.05 in comparison with corresponding BRCA/

DNA-PK–proficient samples using Student’s t test. **P < 0.03 in comparison with 

DNR- or BMN673-treated BRCA/DNA-PK–deficient samples using 2-way ANOVA. 

nt, not tested.
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The combination of TKI imatinib and PARP1 inhibitor olaparib syn-

ergistically abrogated clonogenic potential of Lin–CD34+ immature 

cells from CML-CP and also from more aggressive CML accelerated 

phase (CML-AP) patient samples (Figure 8E); the effect was preced-

ed by the accumulation of DSBs measured by γ-H2AX and induction 

of apoptosis detected by activation of caspase 3 (Figure 8F).

Olaparib also eliminated Lin–CD34+CTVmax quiescent CML-CP 

cells (Figure 8G) and imatinib plus olaparib reduced the number of 

LSC-enriched Lin–CD34+CD38–CTVmax quiescent CML-CP cells 

(Figure 8H). The latter effect was accompanied by an accumulation 

of DSBs and annexin V–positive apoptotic cells (Figure 8H). More-

over, olaparib combined with imatinib or ponatinib exerted syner-

gistic effects against BCR-ABL1–positive and BCR-ABL1(T315I)–

positive B-ALL, respectively (Supplemental Figure 8).

Meta-analyses of transcriptome databases and other reports 

suggested that the fusion oncoprotein AML1-ETO, but not the onco-

genic partners HOXA9 and MEIS1 or the oncogenic mutant FLT3/

ITD, may negatively modulate BRCA and DNA-PK pathways (20–

22). In fact, AML1-ETO–transformed mBMCs display decreased 

expression of BRCA1, BRCA2, and/or KU70 proteins in compari-

son with HOXA9 + MEIS1–transformed cells (Supplemental Fig-

ure 9A). Parp1–/– mBMCs expressing AML1-ETO, but not HOXA9 

+ MEIS1, demonstrated reduced clonogenic activity in compari-

son with Parp1+/+ counterparts (Supplemental Figure 9B). AML1-

ETO–transformed Parp1+/+ mBMCs were highly sensitive to olapa-

rib in comparison with cells expressing HOXA9 + MEIS1 or GFP 

only (Supplemental Figure 9C). In addition, olaparib eliminated 

Lin–CD34+ immature leukemia cells, including LSC-enriched Lin– 

CD34+CD38–CFSElo proliferating and Lin–CD34+CD38–CFSEmax  

quiescent cell populations from AML patient samples carrying 

t(8;21)(q22;q22) encoding for AML1-ETO (Supplemental Figure 

9D). Moreover, the combination of olaparib and low doses of first-

Figure 6. RT-qPCR identified BRCA/DNA-PK–deficient t-MDS/AMLs sensitive to dual synthetic lethality exerted by BMN673. (A) BRCA/DNA-PK– 

deficient and –proficient t-MDS/AML samples; those used in further analyses are marked by colored squares at the bottom. Three samples (12%)  

displayed BRCA/DNA-PK deficiency (Z score < –1.5 of at least 1 gene in BRCA and DNA-PK pathways) and 11 were BRCA/DNA-PK proficient (Z score > 

–0.5 of all genes in BRCA and DNA-PK pathways). (B) Flow cytometric analysis of the indicated DSB repair proteins in BRCA/DNA-PK–deficient (blue) 

proliferating Lin–Ki67+ cells and proliferating/quiescent Lin–Ki67+/– cells, respectively, compared with BRCA/DNA-PK–proficient (red) samples. Each t-MDS/

AML sample was measured 2–3 times. *P < 0.04 in comparison with all BRCA/DNA-PK–proficient samples. (C) Colonies from Lin–CD34+ BRCA/DNA-PK–

deficient (blue, n = 3) and BRCA/DNA-PK–proficient (red, n = 3) samples treated with BMN673 (top graph) or DNR + BMN673 (bottom graph). (D) Number 

of proliferating Lin–CTVlo and quiescent Lin–CTVmax cells from individual BRCA/DNA-PK–deficient (blue) and –proficient (red) samples treated with DNR, 

BMN673, and DNR + BMN673. (E) Cumulative percentages from samples examined in panel D. *P < 0.003 in comparison with corresponding BRCA/DNA-

PK–proficient samples using Student’s t test. *P = 0.08 or 0.11 in comparison with DNR- or BMN673-treated BRCA/DNA-PK–deficient samples, respec-

tively, using 2-way ANOVA.
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exerted a 7-fold reduction (Figure 9D). Moreover, imatinib or 

BMN673 applied individually reduced the number of LSC-enriched 

Lin–CD34+CD38– cells and Lin–CD34+CD38+ LPCs (23) by 2.5- to 

4-fold, whereas the combination reduced the LSC-enriched popula-

tion and LPCs by 24- and 13-fold, respectively (Figure 9E). Imatinib  

+ BMN673 exerted borderline synergistic effects against LSC-

enriched Lin–CD34+CD38– cells.

In addition, sublethally irradiated SCID mice were injected 

with GFP+ BCR-ABL1–positive murine leukemia cells followed by 

imatinib and/or BMN673 treatment (Figure 9F). When applied 

individually, imatinib or BMN673 reduced the leukemia burden in 

peripheral blood by 7- to 10-fold, whereas the combination exert-

ed a synergistic effect and caused a 40-fold reduction (Figure 9G). 

This effect was associated with prolongation of the MST of leuke-

mic mice treated with imatinib or BMN673 by 1.7- to 1.8-fold and 

by 4.4-fold of those treated with a combination (Figure 9H). Two 

out of 6 mice treated with imatinib + BMN673 survived more than 

150 days and GFP+ cells were not detected in these animals.

line therapy drug DNR exerted anticlonogenic effects against cells 

expressing AML1-ETO, but not against those expressing HOXA9-

MEIS1 or GFP (Supplemental Figure 9E).

PARP1i exerted an antileukemic effect in vivo against BCR-ABL1–

positive CML. To test the therapeutic potential of PARP1i in CML, 

sublethally irradiated NSG mice were injected with 2.5 × 106 Lin– 

CD34+ CML-CP cells obtained from 4 individual patients followed 

by treatment with vehicle, imatinib, olaparib, or imatinib + olaparib 

(Figure 9A). Since CML-CP cells usually do not induce lethal dis-

ease, we monitored leukemia cells in bone marrow 7 days after treat-

ment. Imatinib or olaparib reduced the number of hCD45+ leukemia 

cells by 2- to 3-fold; in contrast, combination of these drugs caused a 

greater than 5-fold reduction of leukemia cells (Figure 9, B and C).

The above experiments were repeated using 1 × 107 Lin–CD34+ 

cells from a more advanced CML-AP patient; 1 week following injec-

tion mice were treated with vehicle, imatinib, BMN673, or imatinib 

+ BMN673 (Figure 9A). Imatinib or BMN673 diminished the num-

ber of hCD45+ cells by 2- to 2.5-fold, whereas imatinib + BMN673 

Figure 7. PARP1i exerted a therapeutic effect in mice bearing BRCA/DNA-PK–deficient PLXs. (A) Experimental design: NSG mice were injected with PLX cells 

and treated with diluents (control), doxorubicin + ara-C (DA), BMN673, or DA + BMN673 (8 mice/group). Human CD45+ (hCD45+) cells were detected in peripheral 

blood leukocytes (PBLs) 1 week after the treatment, and survival was determined. (B) Microarray profile of the indicated genes in AML (top plot) and B-ALL 

(middle and bottom plots) PLXs. Each circle represents an individual PLX; error bars show SD of the mean. Data from PLXs used for further experiments are 

marked in blue, gray, and red, indicating lower than average, average, and higher than average expression levels, respectively, of the indicated genes in BRCA/

DNA-PK–deficient (BRCA/DNA-PK-D) AML and B-ALL (top and middle plots, respectively) and in BRCA/DNA-PK–proficient (BRCA/DNA-PK-p) B-ALL (bottom 

plot) cells. (C) Living cells from individual PLXs treated in vitro (triplicate experiment) with diluents (green), DA (purple), BMN673 (blue), or DA + BMN673 (black). 

(D) Representative plots of PBLs from treated mice (n = 6/group); percentage of hCD45+ cells (red dots) is indicated. *P ≤ 0.001,  **P ≤ 0.001 in comparison with 

control and DA or BMN673, respectively, using Student’s t test adjusted for multiple comparisons. ***P < 0.03 in comparison with DA- or BMN673-treated mice 

using 2-way ANOVA. (E) Survival curves and MST of PLX mice treated with diluents (green), DA (purple), BMN673 (blue), or DA + BMN673 (black). * P < 0.003, 

**P < 0.003 in comparison with control and DA or BMN673, respectively, using Kaplan-Meier log-rank test.
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The success of the PARP1 inhibitor olaparib in BRCA1- and 

BRCA2-deficient breast tumors has established a proof of concept 

for personalized cancer therapy utilizing synthetic lethality (6, 7). 

Tumors from individual patients predicted to be sensitive to PARP1i 

are usually identified either by detecting mutations in genes encod-

ing BRCA pathway proteins, epigenetic-mediated downregulation 

of BRCA pathway protein expression, or by functional tests uncov-

Discussion
Quiescent and proliferating tumor cells accumulate spontane-

ous and treatment-induced DSBs, which are eventually repaired 

and thereby tolerated (18, 24, 25). Inhibition of DSB repair has 

emerged as a promising antitumor treatment, especially in the 

context of synthetic lethality, which targets specific pathways to 

eradicate tumor cells while sparing normal cells (26).

Figure 8. PARP1i inhibited BCR-ABL1–mediated transformation and eliminated BRCA1/DNA-PKcs–deficient quiescent and proliferating immature CML 

cells. (A) Expression of indicated nuclear proteins in Lin–CD34+Ki67– quiescent (Q) and Lin–CD34+Ki67+ proliferating (P) cells from CML-CP patients (black 

bars, n = 3) and normal donors (gray bars, n = 3). *P < 0.05 using Student’s t test. (B) Number of colonies from BCR-ABL1–transformed or nontransformed 

(control) Parp1+/+ and Parp1–/– mBMCs (triplicate experiment). *P = 0.006 using Student’s t test. (C) Survival curves and MST of the tet-off SCLtTA p210BCR-

ABL1 Parp1–/– (n = 12) and SCLtTA p210BCR-ABL1 Parp1+/+ (n = 10) mice. *P = 0.04 using Kaplan-Meier log-rank test. (D–H) Lin–CD34+ cells from CML-CP and 

CML-AP patients (black symbols; n = 3–10) and healthy donors (gray symbols; n = 3) were (D) treated with the indicated concentrations of olaparib or (E–H) 

left untreated (C) or treated with 1 μM imatinib (I), 5 μM olaparib (O), or a combination (I + O) for 5 days. (D and E) Lin–CD34+ clonogenic cells. *P < 0.05,  

**P < 0.001 in comparison with I using Student’s t test. **P ≤ 0.005 in comparison with I or O using 2-way ANOVA. (F) γ-H2AX immunofluorescence.  

*P < 0.05, **P < 0.001 in comparison with I. Active caspase 3 (CASP3) and β-actin detected by Western blot on parallel gels. (G) Lin–CD34+CTVmax quiescent 

cells/105 cells. *P < 0.05 in comparison with C using Student’s t test. (H) Lin–CD34+CD38–CTVmax quiescent cells. (Left) Number of cells/106 cells. *P < 0.05 

in comparison with I. (Middle) γ-H2AX immunofluorescence. *P = 0.007 in comparison with I. (Right) Apoptotic cells. *P = 0.03 in comparison with I using 

Student’s t test.
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mal residual disease and disease relapse (8). Therefore, we postulat-

ed that a precision medicine–guided PARP1i-mediated dual cellular 

synthetic lethality approach that simultaneously targets quiescent 

and proliferating cancer stem and progenitor cells could be curative.

ering inefficient RAD51 foci formation (26). While these approaches 

may be effective at targeting proliferating cells, they are not able to 

simultaneously eradicate quiescent therapy-refractory cancer stem 

cells (3). However, quiescent LSCs are often responsible for mini-

Figure 9. PARP1i exerted a therapeutic effect in mice bearing BCR-ABL1–positive leukemia. (A) Experimental design: sublethally irradiated NSG mice were 

injected with Lin–CD34+ CML-CP cells (B and C) or Lin–CD34+ CML-AP cells (D and E) followed by treatment with vehicle (control), imatinib (IM), BMN673, 

olaparib, IM + BMN673, or IM + olaparib for 14 consecutive days. Leukemia burden was assessed by detection of indicated human cells in mBMCs. (B) hCD45+ 

CML-CP cells (n = 4–8/group). *P ≤ 0.003, **P < 0.02 in comparison with control and IM or olaparib, respectively, using Student’s t test adjusted for multiple 

comparisons. (C) Percentage of hCD45+ CML-CP cells (framed) in representative plots. (D) hCD45+ CML-AP cells (n = 4/group). *P < 0.01,  **P ≤ 0.001 in com-

parison with control and IM or olaparib, respectively, using Student’s t test adjusted for multiple comparisons. (E) Percentage of Lin–hCD34+CD38– (red dots) 

and Lin–hCD34+CD38+ (blue dots) CML-AP cells; representative plots from 4 mice/group are shown. *P < 0.02, **P < 0.03 in comparison with control and IM, 

respectively, using Student’s t test. ***P = 0.08 in comparison with individually treated mice by 2-way ANOVA. (F) Experimental design: sublethally irradi-

ated SCID mice were injected with GFP+BCR-ABL1 leukemia cells and 1 week later treated with vehicle (control), IM, BMN673, or IM + BMN673 for 14 consecu-

tive days. GFP+ leukemia cells in peripheral blood leukocytes (PBLs) and survival were scored. (G) Percentages of GFP+BCR-ABL1 leukemia cells (green dots) 

in representative plots from 3–4 mice/group. *P = 0.01 in comparison with control using Student’s t test. **P < 0.02 in comparison with individually treated 

mice by 2-way ANOVA. (H) Survival curves and MST (n = 6 mice/group). * P < 0.001, **P < 0.001 in comparison with control and IM or BMN673, respectively, 

using Kaplan-Meier log-rank test.
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was associated with the accumulation of DSBs and apoptosis, 

and was selective for BRCA/DNA-PK–deficient leukemia cells, 

because normal cells and BRCA/DNA-PK–proficient leukemia 

cells were mostly spared.

Gene mutation profiling showed that leukemias expressing 

BCR-ABL1 (100% of CMLs and 2%–7% of ALLs in pediatric age 

and 20%–40% of ALLs in adults) and AML1-ETO (4%–12% of adult 

and 12%–30% of pediatric AMLs) are BRCA/DNA-PK deficient. 

The mechanisms responsible for the downregulation of genes in the 

BRCA/DNA-PK pathways in leukemia cells expressing BCR-ABL1 

and AML1-ETO are characterized only partially. For example, BCR-

ABL1 kinase inhibits BRCA1 and DNA-PKcs protein expression by 

suppression of translation and/or enhanced protein degradation 

(16, 17). While expression of these proteins is partially restored in 

imatinib-treated cells, other key members of HR (RAD51) and 

D-NHEJ (LIG4, DCLRE1C, NHEJ1) are strongly downregulated by 

imatinib, thus promoting PARP1i-mediated synthetic lethality (38, 

39). The BRCA2-deficient phenotype of AML1-ETO–positive cells 

may depend on lack of stimulation of HOXA9 (22).

GEMA, with emphasis on gene mutation analysis, may also 

be applied to identify additional oncogenes that sensitize cells to 

PARP1 inhibitor treatment, for example TMPRSS2-ERG–positive 

prostate carcinomas (DNA-PKcs deficiency), EGFR mutant–positive 

lung carcinomas (Fanconi anemia deficiency), EWSR1-FLI1–positive 

Ewing’s sarcomas, and KRAS mutant–positive leukemias (40–43).

Moreover, using gene expression profiling we determined that 

9%–25% of AMLs/ALLs that did not contain these oncogenes also 

displayed BRCA/DNA-PK deficiency. It is also plausible that addi-

tional BRCA/DNA-PK–deficient AMLs/ALLs could be identified 

if the list of target genes were to be expanded. For example, inclu-

sion of Fanconi anemia genes (FANCA, FANCC, FANCG, FAN-

CI), in addition to FANCD1 (also known as BRCA2), increased 

the pool of predicted BRCA/DNA-PK–deficient samples in TCGA 

database from 9% to 12%.

BRCA/DNA-PK deficiency in individual AMLs/ALLs detect-

ed by gene expression profiling may be due to epigenetic altera-

tions. Analysis of methylome arrays revealed distinct BRCA and 

DNA-PK pathway methylome profiles in individual patients, 

which could be associated with reduced expression of methyl-

ated genes, resulting in sensitivity to PARP1i (44). Differences 

in expression of heterogeneous nuclear ribonucleoproteins (e.g., 

hnRPN C) and miRNAs (e.g., miR-101 and miR-182) may also 

contribute to a BRCA/DNA-PK–deficient phenotype of individ-

ual AMLs/ALLs (45–47).

In conclusion, we postulate that PARP1i-mediated dual cel-

lular synthetic lethality may simultaneously eradicate BRCA/

DNA-PK–deficient quiescent and proliferating LSCs/LPCs (Sup-

plemental Figure 10). In addition, we have developed a poten-

tially novel clinically oriented personalized medicine approach, 

which we refer to as GEMA, for identifying patients with AMLs/

ALLs displaying BRCA/DNA-PK deficiency, which could benefit 

from PARP1i-induced dual cellular synthetic lethality. GEMA-

guided PARP1i-mediated dual cellular synthetic lethality may 

have a broad application for cancer treatment considering that 

numerous individual samples from a variety of tumor types in 

TCGA database may display BRCA/DNA-PK deficiency (Supple-

mental Figure 11).

As expected, PARP1 inhibitors (olaparib and BMN673) ele-

vated lethal DSBs and promoted synthetic lethality in BRCA- 

deficient (BRCA1–/–, FANCA–/–, RAD54–/–) proliferating tumor 

cells. This effect is likely caused by the abrogation of PARP1-

mediated stalled replication fork restart and/or inhibition of 

PARP1-mediated B-NHEJ (27, 28). In addition, we show that 

PARP1i elevated DSBs, resulting in synthetic lethality also in 

DNA-PK–deficient (XRCC6–/–, LIG4–/–) cells; this phenomenon 

is supported by previous reports that combined use of DNA-PK 

and PARP1 inhibitors radiosensitized cells (29) and that PARP1 

inhibitor–treated Lig4–/– and Dclre1c–/– mouse embryonic fibro-

blasts accumulated DSBs, thereby reducing cell survival (30).

DNA-PK–deficient proliferating cells repair DSBs by HR and/

or B-NHEJ (31); thus, PARP1i would abrogate B-NHEJ activity 

and also delay stalled replication fork restart and HR (32), which 

is consistent with a modest but significant degree of synthetic 

lethality. Interestingly, the lethal effect of PARP1i was more pro-

nounced in DNA-PK–deficient quiescent rather than proliferating 

cells. Quiescent cells accumulate potentially lethal DSBs, which 

are repaired by NHEJ (D-NHEJ and/or B-NHEJ) (25, 31); thus, tar-

geting PARP1 in DNA-PK–deficient quiescent cells is synthetically 

lethal. This idea is supported by the observation that radiation- 

induced DSBs in Lig4–/– cells reduced cell survival independently 

of DNA replication (30).

We report here that olaparib and BMN673 induced synthetic 

lethality in both proliferating and quiescent BRCA/DNA-PK–

deficient cells. This dual cellular synthetic lethality effect results 

from the accumulation of lethal DSBs in PARP inhibitor–treated 

BRCA/DNA-PK–deficient cells in S-G2/M of the cell cycle, and in 

PARP1 inhibitor–treated DNA-PK–deficient cells in G0/G1 phase. 

However, it is plausible that BRCA/DNA-PK–deficient cells with 

PARP1i-induced DNA damage/DSBs can continue through the 

G2/M checkpoint and/or spindle-assembly checkpoint, leading to 

the accumulation of excessive lethal DNA damage/DSBs in DNA-

PK–deficient G0/G1 cells, thus resulting in cell death (33, 34).

It has been reported that BRCA-deficient tumors with low 

D-NHEJ activity might be less responsive to PARPi (35). These 

studies, however, relied on short-term disabling of the DNA-PK 

pathway by using genetic or pharmacologic approaches. BRCA/

DNA-PK–deficient cells tested here harbored long-term DNA-PK 

deficiency, presumably enforcing substantial remodeling of DSB 

repair pathways, which promotes sensitivity to PARP1i. This infer-

ence is supported by this work and other reports that BCR-ABL1 

leukemia cells, which display BRCA1 and DNA-PKcs deficiencies 

(16, 17), are highly sensitive to PARP1i, and that hyperactive NHEJ 

caused resistance to PARP1i in BRCA-deficient Fanca–/– and Fancc–/– 

hematopoietic stem and progenitor cells (36).

PARP1i-induced dual cellular synthetic lethality in BRCA/

DNA-PK–deficient cell lines prompted us to test PARP1i in 

BRCA/DNA-PK–deficient individual tumors identified by our 

personalized medicine strategy referred to as GEMA. Leuke-

mias were used as testing models because their hierarchical 

compartments of quiescent LSCs and proliferating LSCs/LPCs 

are well characterized (37). Our report suggests that PARP1i 

eliminated not only proliferating LSCs/LPCs, but also therapy-

refractory quiescent LSCs if they displayed BRCA/DNA-PK–

deficient status detected by GEMA. The lethal effect of PARP1i 
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racycline. CML-CP–like leukemia was characterized by splenomegaly 

and leukocytosis associated with expansion of mature myeloid cells as 

described previously (18, 19).

Transfection of Parp1–/– and Parp1+/+ cells. mBMCs were infected with 

MSCV retroviruses containing AML1-ETO9a-IRES-GFP, HOXA9-

IRES-MEIS1, BCR-ABL1-IRES-GFP, and IRES-GFP as described pre-

viously (49). GFP+ cells were sorted and used for experiments.

Microarray analysis. Gene expression data for 15 genes were used 

to select BRCA/DNA-PK–deficient and –proficient AMLs from a data-

set of 172 samples arrayed on an Illumina HT-12 (supplemental data: 

AML gene expression levels). Peripheral blood or bone marrow sam-

ples were collected from subjects with AML after obtaining informed 

consent according to the procedures approved by the Research Ethics 

Board of the University Health Network (Toronto Princess Margaret 

Cancer Centre). The AML samples were cytogenetically normal. Bio-

informatic analysis was performed in R. The log2 expression values 

for each gene were centered to a zero mean and Z scores were gener-

ated by dividing by the SD.

RT-qPCR

B-ALL. Total RNA from human leukemia cells was extracted using 

an RNeasy Plus Micro Kit (QIAGEN) according to the manufacturer’s 

instructions. cDNA was generated using a poly(dT) oligonucleotide 

and SuperScript III Reverse Transcriptase according to the manufac-

turer’s protocol (Invitrogen). The levels of gene expression were mea-

sured using the SYBRGreenER mix (Invitrogen) with primers listed in 

Supplemental Table 5. The reactions were performed using the ABI 

7900HT real-time PCR system (Applied Biosystems) and analyzed 

with the SigmaPlot version 12.0 software program.

t-MDS/AML. Human CD34+ cells from t-MDS patients and nor-

mal controls were isolated by using magnetic bead selection (Miltenyi 

Biotec). Total RNA was extracted using the RNeasy Plus Micro Kit. 

First-strand cDNA was synthesized from 200 cells using a Superscript 

III First-Strand Synthesis System (Invitrogen) and preamplified for 18 

cycles, and qPCR analysis performed by multiplex qPCR using the Flu-

idigm system and primers listed in Supplemental Table 6. Results are 

expressed as the ratio to β2 microglobulin.

Detection of DSB repair proteins

Flow cytometry. The cells were fixed and permeabilized using a PerFix 

EXPOSE kit according to the manufacturer protocol (Beckman Coulter) 

followed by staining with specific antibodies: rabbit polyclonal anti-Ki67 

(Abcam, ab15580), rabbit polyclonal anti-XRCC3 (Abcam, ab133736), 

rabbit polyclonal anti–ligase IV (Abcam, ab26039), mouse monoclonal 

IgG2b anti-BRCA1 (R&D Systems, MAB22101), mouse monoclonal 

IgG1 anti-BRCA2 (R&D Systems, MAB2476), rabbit polyclonal anti-

PALB2 (Bethyl Laboratories, A301-246), rabbit polyclonal anti-KU80 

(Bethyl Laboratories, A302-627A), rabbit polyclonal anti-KU70 (Bethyl 

Laboratories, A302-623A), rabbit polyclonal anti–DNA-PKcs (Bethyl 

Laboratories, A300-518A). For FACS analysis the antibodies were conju-

gated with fluorochromes (Alexa Fluor 405, Alexa Fluor 488, or allophy-

cocyanin) using a Zenon labeling kit (Life Technologies). Isotype control 

antibodies (Abcam) were labeled and used as a background staining 

control. For DSB detection the rabbit polyclonal antibody against histone 

H2A.X phosphorylated at Ser193 (Biolegend, 613403) was used. Flow 

cytometric analysis was performed using the LSRFortessa (Becton Dick-

inson) equipped with lasers 355, 405, 488, and 635 nm.

Methods
Primary cells. Peripheral blood and bone marrow samples from 

patients with newly diagnosed CML-CP, CML-AP, ALL, AML, and 

t-MDS/AML were obtained from: (a) Stem Cell and Leukemia Core 

Facility of the University of Pennsylvania, Philadelphia, Pennsylva-

nia, USA; (b) Department of Internal Medicine I, Division of Hema-

tology & Hemostaseology, Medical University of Vienna; (c) Princess 

Margaret Cancer Centre; (d) Department of Hematology, Institute of 

Hematology and Blood Transfusion, Warsaw, Poland; and (e) Division 

of Hematopoietic Stem Cell and Leukemia Research, City of Hope 

National Medical Center. Clinical annotations for these samples are 

listed in Supplemental Tables 1–4. Samples of normal hematopoietic 

cells were purchased from Cambrex Bio Science. Lin–CD34+ cells were 

obtained from mononuclear fractions by magnetic sorting using the 

EasySep negative selection human progenitor cell enrichment cocktail 

followed by Human CD34 Positive Selection Cocktail (StemCell Tech-

nologies). PLXs containing greater than 80% and greater than 90% of 

AML and B-ALL cells, respectively, were used.

Cell lines. BRCA1-mutated and BRCA1-reconstituted MDA-MB-436 

human breast carcinoma cells were obtained from Neil Johnson (Fox 

Chase Cancer Center). BRCA2–/– V-C8 and BRCA2+/+ V79 hamster cell 

lines carrying the DR-GFP reporter cassette were obtained from Maria 

Jasin (Memorial Sloan Kettering Cancer Center, New York, New York, 

USA) (48). XRCC6–/– and parental mESC lines with EJ2-GFP and EJ5-

GFP reporters and FANCA–/– and FANCA–/– XRCC6–/– mESC lines were 

obtained from Jeremy Stark (Beckman Research Institute of the City of 

Hope) (10). Nalm-6 parental cells and RAD54–/–, LIG4–/–, and RAD52–/– 

LIG4–/– isogenic lines were purchased from Horizon.

Transgenic/knockout mice. SCLtTA p210BCR-ABL1 mice (19) were 

cross-bred with Parp1–/– mice (provided by Roberto Caricchio, Temple 

University School of Medicine) to generate SCLtTA p210BCR-ABL1 

Parp1–/– and SCLtTA p210BCR-ABL1 Parp1+/+ animals. Transgenic/

knockout mice were identified by PCR of tail snip DNA. DNA iso-

lation and purification from mice tails were performed using the 

REDExtract-N-Amp Tissue PCR Kit (Sigma-Aldrich). Genotyping 

for the SCLtTA and p210BCR-ABL1 transgenes and Parp1 was per-

formed using transgene/knockout–specific primers (Operon) and 

2× GoTaq polymerase Master Mix (Promega). BCR-ABL1-specific 

primers (forward, 5′-GAGCGTGCAGAGTGGAGGGAGAACA-3′; 
reverse, 5′-GGTACCAGGAGTGTTTCTCCAGACTG-3′) amplified a 

500-bp fragment using amplification conditions of 40 cycles at 94°C 

for 45 seconds, 55°C for 1 minute, and 72°C for 1 minute. SCLtTA-

specific primers (tTA, 5′-TTTCGATCTGGACATGTTGG-3′; SCL, 

5′-AGAACAGAATTCAGGGTCTTCCTT-3′) yielded a 750-bp product 

using amplification conditions consisting of 40 cycles at 94°C for 40 

seconds, 60.5°C for 1 minute, and 72°C for 1 minute. Parp1-specific 

primers used were: forward, 5′-CATGTTCGATGGGAAAGTCCC-3′; 
wild-type reverse, 5′-CCAGCGCAGCTCAGAGAAGCCA-3′; and 

mutant reverse, 5′-CATGTTCGATGGGAAAGTCCC-3′. The primers 

amplified a 112-bp fragment if wild type, a 350-bp fragment if Parp1 

null, and both 112- and 350-bp fragments if heterozygous using ampli-

fication conditions consisting of 35 cycles at 94°C for 1 minute, 60°C 

for 1 minute, and 72°C for 3 minutes. PCR products were run in a 1.5% 

agarose gel containing ethidium bromide, and visualized using the Gel 

Doc XR+ Molecular Imager System (Bio-Rad). Mice were provided 

with drinking water supplemented with 0.5 g/l tetracycline hydrochlo-

ride (Sigma-Aldrich) and leukemia was induced by withdrawal of tet-
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total-body irradiated (250 cGy) and inoculated i.v. with 1 × 106 AML 

and ALL PLX cells, 2.5 × 106 CD34+ CML-CP cells, or 1 × 107 CD34+ 

CML-AP cells. Seven or 10 days later mice were treated with vehicle 

(control), BMN673 (0.33 mg/kg/day by oral gavage for 7 or 14 days; see 

ref. 51), olaparib (50 mg/kg daily i.p. for 14 days; see ref. 52), DA (1.5 

mg/kg/day i.v. [days 1–3]) + ara-C (50 mg/kg i.v. [days 1–5]; see ref. 53), 

imatinib (100 mg/kg twice daily by oral gavage; see ref. 54), and a com-

bination of imatinib + BMN673/olaparib or DA + BMN673. Leukemia 

burden was analyzed by flow cytometry 7 days after the end of treat-

ment. Murine leukemia cells were GFP+. Human leukemia cells were 

detected by anti–human CD45 antibody and leukemia stem and pro-

genitor cells were detected by anti–human CD34 and CD38 antibodies 

as described previously (18). Median survival time was determined.

Statistics. Data are expressed as mean ± SD. When conducting 

subgroup comparisons between 2 groups, a 2-tailed t test was used. 

When multiple comparisons were conducted using a t test, Bonfer-

roni’s method was used for adjusting P values for multiple testing. The 

synergistic effect was evaluated by 2-way ANOVA. MST of the mice 

± SEM was calculated by Kaplan-Meier log-rank survival analysis. P 

values less than 0.05 were considered significant.

Study approval. Human studies were approved by the appropriate 

IRBs and met all requirements of the Declaration of Helsinki. Animal 

studies were approved by the Temple University IACUC. 
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