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Gene expression associated with white
syndromes in a reef building coral, Acropora
hyacinthus
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Abstract

Background: Corals are capable of launching diverse immune defenses at the site of direct contact with
pathogens, but the molecular mechanisms of this activity and the colony-wide effects of such stressors remain
poorly understood. Here we compared gene expression profiles in eight healthy Acropora hyacinthus colonies
against eight colonies exhibiting tissue loss commonly associated with white syndromes, all collected from a
natural reef environment near Palau. Two types of tissues were sampled from diseased corals: visibly affected
and apparently healthy.

Results: Tag-based RNA-Seq followed by weighted gene co-expression network analysis identified groups of
co-regulated differentially expressed genes between all health states (disease lesion, apparently healthy tissues of
diseased colonies, and fully healthy). Differences between healthy and diseased tissues indicate activation of
several innate immunity and tissue repair pathways accompanied by reduced calcification and the switch towards
metabolic reliance on stored lipids. Unaffected parts of diseased colonies, although displaying a trend towards
these changes, were not significantly different from fully healthy samples. Still, network analysis identified a group
of genes, suggestive of altered immunity state, that were specifically up-regulated in unaffected parts of diseased
colonies.

Conclusions: Similarity of fully healthy samples to apparently healthy parts of diseased colonies indicates that
systemic effects of white syndromes on A. hyacinthus are weak, which implies that the coral colony is largely able
to sustain its physiological performance despite disease. The genes specifically up-regulated in unaffected parts
of diseased colonies, instead of being the consequence of disease, might be related to the originally higher
susceptibility of these colonies to naturally occurring white syndromes.
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Background

Increasing rates of disease have contributed greatly to

global coral population declines over the last few de-

cades [1,2]. The broadly defined “white syndromes” in

Indo-Pacific regions, characterized in the field by tissue

loss resulting in exposure of the coral skeleton, have

been attributed to Vibrio spp. [3], a genus of bacteria in-

volved in several coral diseases [4-8]. Other reports find

no evidence of pathogenic bacteria in diseased corals [9]

and instead blame stress-triggered programmed cell

death for the manifestation of symptoms [10]. These

conflicting conclusions, drawn mostly from culturing as-

says and histological observations, are further con-

founded by insufficient knowledge of the cnidarian

immune response.

Corals, like all invertebrates, rely entirely on innate

immunity for protection from invading pathogens. Fea-

tures of innate immunity in corals include physical bar-

riers [11], molecular pattern recognition [12], secretion

of antimicrobial macromolecules [13], and cellular re-

sponses (e.g., phagocytosis) [14-16]. Recent efforts to

characterize those features of immunity using various

cnidarian genome and transcriptome sequence databases

have identified putative components of coral stress
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management and immune response pathways by hom-

ology with better-studied organisms. The Acropora digiti-

fera genome project revealed striking differences in innate

immunity complexity in corals compared to a closely re-

lated cnidarian, Nematostella vectensis [17]. Whereas the

N. vectensis genome encodes only a single Toll/Toll-like

receptor (TLR), the A. digitifera genome included at least

four TLRs, along with other related immune signaling

molecules. Miller et al. reported the presence of TLR sig-

naling components, including adaptor proteins that link

that cascade with other signaling events, in the expressed

sequence tag library of another acroporid coral, A. mille-

pora [12]. Together these elements suggest an ability of

corals to respond to pathogen-associated molecular pat-

terns (PAMPs) via TLR recognition and integrate that sig-

nal to cellular responses such as inflammation and

apoptosis. Toll/TLR signaling can activate NF-κB transcrip-

tion factor that, upon nuclear localization, up-regulates

transcription of immune response genes. In corals, the

identities of those response genes and the roles they play

remain unclear. Some suggested immune response genes

include lectins, complement c3 and apextrin, proteins

involved in non-self recognition, aggregation and cell lysis

respectively [18]. Metabolism and calcification genes dem-

onstrated differential expression in addition to immunity

genes in A. millepora challenged with bacterial and viral

immunogens, providing a more comprehensive picture of

cellular events during an acute infection [19]. Global RNA-

sequencing of A. cervicornis displaying signs of White Band

Disease (WBD) revealed that disease significantly affected

the expression of genes involved in immune processes and

apoptosis [20]. The up-regulation of phagocytic cell surface

receptors and reactive oxygen species (ROS) producing en-

zymes suggested that the phagocytosis and degradation of

damaged cells drives the WBD response in corals.

These coral sequencing projects and experimental im-

mune challenges have provided conclusive evidence that

corals are capable of launching defensive responses upon

direct contact with pathogens. A coral’s ability to com-

municate the recognition of that pathogen along the col-

ony, however, is less understood. Coral polyps utilize a

gastrovascular system lined with flagellated gastrodermal

cells to transport organic products and zooxanthellae

within the colony [21]. These channels are used to allo-

cate energetic resources to areas that need them most,

such as fast-growing branch tips [22-24] and wounded

regions [25]. Radiolabeled carbon accumulation experi-

ments have shown that corals preferentially direct ener-

getic resources towards physically damaged regions [25]

but away from disease-induced lesions [26]. These find-

ings suggest that healthy coral tissues might possess

means to detect and respond to an advancing disease le-

sion, but it is still unclear what the physiological conse-

quences of this action might be.

Here we examine the gene expression profiles of A.

hyacinthus displaying white syndromes (Figure 1) to de-

termine the molecular consequences of the diseased

condition. White syndromes advance along a colony in a

way such that a distinct lesion forms between affected

and unaffected tissues. Tissues ahead of the lesion are

presumably healthy, while tissues at the lesion boundary

are actively sloughing cells in response to infection. We

compared gene expression profiles among three health

states: affected tissues (diseased, “D”), apparently healthy

tissues from diseased colonies (“ahead of the lesion”,

“AL”), and tissues from completely unaffected colonies

(healthy, “H”). Comparing healthy regions of diseased

colonies to completely disease-free individuals provided

an opportunity to look for expression patterns that

might indicate a colony-wide systemic effect of infection

and/or disease susceptibility. We used tag-based RNA-

Seq [27] followed by weighted gene correlation network

analysis [28] to achieve systems-level insight into mo-

lecular responses to chronic disease in corals.

Results
Differential gene expression between health states

Sequencing yielded an average of 6,367,219 reads per sam-

ple. An average of 19.5% of these remained after filtering

and of these, an average 31.45% mapped to the transcrip-

tome. A total of 44,701 isogroups (clusters of contigs repre-

senting the same gene, from here on referred to as “genes”)

were detected. Reads were converted to unique transcript

counts by removing PCR duplicates, yielding an average of

156,650 counts per sample (Additional file 1). A generalized

linear model with contrasts between all three tissues de-

tected differentially expressed genes between health states

(Additional file 2). The disease-healthy contrast yielded 646

DEGs passing a Benjamini-Hochberg FDR cutoff of 10%.

The disease-AL contrast yielded 333 DEGs passing an FDR

cutoff of 10%. No genes passed the 10% FDR cutoff for the

healthy-AL contrast. Between all contrasts, a total of 757

genes passed the FDR cutoff of 10%.

Principal coordinate analysis of the variance-stabilized

data for all genes revealed expression differences mainly

between disease (D) and the other two health states

(Figure 2A). PCoA using the 3827 isogroups with an un-

adjusted p-value of less than 0.05 for any contrast revealed

more differences between health states, but a significant

overlap in expression of healthy and AL tissues remains

(Figure 2B).

Gene Ontology (GO) Enrichment

Functional enrichments between all three contrasts allow

a general examination of the molecular functions and bio-

logical processes being differentially regulated between

health states. The enriched groups of both the disease-

healthy and disease-AL contrasts were largely identical
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(Figure 3 and Additional file 3). Ribosomal proteins, oxi-

dative stress responses, and translation factor activity were

up-regulated in diseased tissues compared to both AL and

healthy tissues. Likewise, receptor activity, regulation of

biological quality, and extracellular matrix components

(collagens) were down-regulated in diseased tissues com-

pared to both healthier states. No GO terms were signifi-

cantly enriched (FDR 10%) for the healthy-AL contrast.

Gene expression analysis by contrast

Gene expression heatmaps were constructed to show the

relative expression patterns of the top most significant

DEGs for each contrast (Figure 4A and Additional files

4, 5). Complete lists of all annotated DEGs with log fold

changes for each contrast can be found in Additional

files 6, 7 and 8.

Diseased vs. healthy

Genes found to be up-regulated (Benjamini-Hochberg

FDR < 0.01) in diseased tissues compared to healthy

corals include key members of the oxidative stress

response in corals (e.g., catalases and peroxidases) and

pentose phosphate metabolism (transketolase, transaldo-

lase, and 6-phosphogluconate dehydrogenase). Both

proteinases (astacin and cathepsin L) and protease inhib-

itors (alpha-macroglobulin and serine proteinase inhibi-

tor Ku-type) were up-regulated in diseased tissues. Two

of the genes annotated as C-type lectin, a carbohydrate-

binding protein, and malate synthase, a key enzyme of

the glyoxylate cycle, were also up-regulated in symptom-

atic tissues. Down-regulated genes (Benjamini-Hochberg

FDR < 0.01) include those encoding extracellular matrix

constituents (collagens, heparin sulfate proteoglycans)

and carbonic anhydrase, a key enzyme in coral skeletal

deposition. Red fluorescent protein was also down-

regulated in diseased tissues, a hallmark of the coral

stress response [29-33].

AL vs. diseased and healthy

The expression differences between diseased and AL tis-

sues within a colony paralleled the expression differences

between diseased tissues and healthy corals. At the same

significance threshold (Benjamini-Hochberg FDR < 0.01),

almost the exact same top-candidate genes were identi-

fied (Additional files 4, 5). No differentially expressed

genes passed the Benjamini-Hochberg 10% FDR when

comparing the AL tissues and healthy corals.

Figure 1 White syndrome in A.hyacinthus sampled in this study. (A) Close-up of the lesion area. (B) Position of sampled locations in diseased
colonies: “D” – diseased, “AL” – ahead of the lesion. Tissues were also sampled from completely healthy individuals (“H”, not pictured). Photo
credit: Carly Kenkel.

Figure 2 Principal coordinate analysis clusters samples by health
state. Samples cluster by the presence of disease symptoms (D vs.
AL and H) when all genes are included in the PCoA (A). Differences
between health states become more evident when PCoA is
performed on DEGs (unadjusted p-value < 0.05) only (B).
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To better quantify the behavior of disease-responsive

genes in AL samples, the expression of genes passing a

10% FDR cutoff for the disease-healthy comparison was

studied using principal coordinate analysis. Tukey’s test

based on the first principal coordinate values revealed

highly significant differences between H and D as well

as between AL and D (P < 0.001 in both cases). Al-

though AL samples appeared to be intermediate be-

tween H and D samples (Figure 4B), their scores along

the first principal coordinate axis were not significantly

different from healthy samples (P = 0.11).

Correlation between gene network modules and health

states

A total of 6737 DEGs with unadjusted p-value < 0.1 were

input into WGCNA for network analysis. A sample net-

work was constructed to identify outlying samples with a

standardized connectivity score of less than −2.5. One sam-

ple (diseased individual “4”) was identified as an outlier and

removed from subsequent analysis (Additional file 9).

Twelve unique modules, assigned arbitrarily color labels,

remained after merging highly correlated modules. Of these

twelve modules, eight were highly correlated to a single

coral individual and one (grey) is reserved to contain genes

that do not fall into any co-expression module. The

remaining three modules were highly correlated with the

health states (Additional file 10). Since we assembled these

modules using a signed network, the sign of the correlation

is equivalent to the direction of expression change with re-

spect to the trait. For example, a module that is significantly

negatively correlated to diseased corals contains genes that

are down-regulated in that state.

The eigengene of the dark green module (1155 genes)

was strongly correlated with diseased-healthy contrast

(Pearson’s R2 = 0.83, Pcor = 1e-6, Additional file 10). The

genes within this module are up-regulated in diseased

tissues and down-regulated in healthy tissues, while tend-

ing to be down-regulated in AL samples. Conversely, the

Figure 3 Gene ontology categories enriched by genes up-regulated (red) or down-regulated (blue) in diseased compared to fully healthy samples,
summarized by molecular function (MF), biological process (BP), and cellular component (CC). The size of the font indicates the significance of the term
as indicated by the inset key. The fraction preceding the GO term indicates the number of genes annotated with the term that pass an
unadjusted p-value threshold of 0.05. The trees indicate sharing of genes among GO categories (the categories with no branch length
between them are subsets of each other).
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turquoise module (669 genes) was up-regulated in healthy

tissues and down-regulated in diseased tissues (Pearson’s

R2 = −0.83, Pcor = 9e-7, Additional file 10). Expression of

these two modules in AL samples demonstrated similar

direction of change as in healthy tissues, although the

change was not statistically significant. Notably, one mod-

ule was identified (green, 661 genes) that was significantly

up-regulated in AL (Pearson’s R2 = 0.64, Pcor = 0.001) and

(to a lesser extent) down-regulated in diseased tissues

(Pearson’s R2 = −0.44, Pcor = 0.04), while remaining un-

changed in healthy tissues (Additional file 10).

Within module gene expression analysis

Hierarchically clustered gene expression heatmaps were

constructed to show the relative expression patterns of

the genes within each module that best represent the

module and show significant correlations to the health

state, based on module membership and gene signifi-

cance values (Figure 5 and Additional file 11).

Discussion
The major pattern of variation in gene expression was

between asymptomatic (healthy and AL) and diseased

(D) corals (Figure 2). There were no statistically signifi-

cant differences in gene expression between healthy col-

onies (H) and asymptomatic parts of diseased colonies

(AL), suggesting that these states are physiologically

similar. The genes that are differentially regulated be-

tween diseased and healthy corals show a subtle trend

towards disease-like gene expression in asymptomatic

tissues of diseased colonies (Figure 4). This trend is,

however, not statistically significant, indicating that

white syndromes have little effect on the physiology of

the unaffected portion of A. hyacinthus colony. Gene

co-expression network analysis revealed groups of

genes co-regulated with respect to each of the three

states, including a group of genes specifically up-regulated

in AL samples.

Diseased tissues up regulate immune response elements

Innate immunity provides immediate protection against

non-self and responds to physical injury. Three general

steps are involved in an innate immune response: detec-

tion, defense activation, and effector responses to

neutralize the threat. Tissues sampled from the lesion of

disease progression in corals exhibiting white syndromes

have enhanced expression of genes involved in each of

these three immune response phases. C-type lectins act

as pattern recognition receptors to activate pathogen

elimination through phagocytosis in invertebrates [34].

Cnidarian genomes encode c-type lectin genes with

highly variable substrate regions, leading to hypotheses

that these proteins recognize a large variety of pathogens

[35]. In A. millepora, mannose-binding C-type lectins

have been shown to respond immediately following an

immune challenge (only 45 minutes after lipopolysac-

charide injection in [36]), but show no significant

response at later time points [37]. The up-regulation of

C-type lectins in tissues at the lesion may suggest that

these tissues have very recently become infected. The

second phase of an immune response prepares targets

for elimination via antimicrobial peptide synthesis and

immune cell activation. While this experiment did not

discover any differentially regulated antimicrobial pep-

tides, we do detect the activation of immune activating

proteins C4, alpha-macroglobulin and CD109 in dis-

eased tissues. The lectin pathway of immune activation

is triggered by lectins binding a pathogen-associated

molecule and results in the activation complement com-

ponent factor C4 and C3 [38]. These complement fac-

tors, along with alpha-macroglobulin and CD109, tag

pathogens and secreted proteases for elimination. In the

final phase of an innate immune response, foreign organ-

isms are engulfed and destroyed by phagocytic immune

Figure 4 Expression of DEGs significant for disease-healthy contrast
among health states. (A) Heatmap for top DEGs (FDR = 0.01). Rows
are genes, columns are samples ordered as in the bottom panel:
ahead-of-lesion (AL), healthy (H), and diseased (D). The color scale is
in log2 (fold change relative to the gene’s mean). The tree is a
hierarchical clustering of genes based on Pearson’s correlation of
their expression across samples. (B) Principal coordinate analysis of
all DEGs at 10% FDR for disease-healthy contrast.
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cells. Lysosomes within these phagocytic cells contain

proteins capable of degrading engulfed material via the

production of reactive oxygen species (ROS) or proteolytic

enzymes, such as cathepsins. The up-regulation of cathep-

sin L in diseased tissue may be a consequence of such

phagocytic activity. The up-regulation of immune-related

transcripts in diseased corals is consistent with previous

studies of both naturally occurring disease and experimen-

tal pathogen challenges [19,20,39]. Just like the rest of genes

exhibiting H-D difference, these responses are confined to

the symptomatic regions of the coral. One possible explan-

ation of this fact is that the immunity-related gene expres-

sion changes are elicited by direct contact with a pathogen

rather than a systemic signal throughout the colony.

Figure 5 Gene expression heatmaps of annotated DEGs with a module membership and gene significance score greater than 0.6. Rows are
genes, columns are samples ordered as in the bottom panel: ahead-of-lesion (AL), healthy (H), and diseased (D). The color scale is in log2 (fold
change relative to the gene’s mean). The trees are hierarchical clustering of genes based on Pearson’s correlation of their expression across
samples. The color block of the trees indicates the module to which these genes belong (dark green, turquoise, and green).
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Switch to lipid-based metabolism in diseased tissues

Transcripts involving lipid and carbohydrate metabolism

(triacylglycerol lipase, phosphoenolpyruvate carboxyki-

nase), including glyoxylate cycle metabolism (malate

synthase), were up-regulated in diseased tissues com-

pared to asymptomatic tissues. The differential regula-

tion of these metabolic genes suggests that diseased

corals may be utilizing stored energy reserves more than

healthy corals. Fatty acids derived from stored lipids are

oxidized by the beta-oxidation pathway and release

acetyl-CoA to enter the citric acid cycle. Both carbons in

one molecule of acetyl-CoA are consumed during the

decarboxylation steps of the citric acid cycle and energy

is released. The glyoxylate cycle is an alternative route

through the citric acid cycle that allows organisms to

thrive on two-carbon sources by catalyzing the conver-

sion of acetyl-CoA to malate and succinate via a glyoxy-

late intermediate, bypassing the decarboxylation steps in

the citric acid cycle [40]. These four carbon compounds

contribute to the energetic requirements of the cell and

serve as building blocks for cellular components, fulfill-

ing all the same necessities of the citric acid cycle with-

out the need to replenish oxaloacetate from the diet.

One of the most significantly up-regulated transcripts in

diseased coral tissues was malate synthase, one of the

key enzymes of the glyoxylate cycle along with isocitrate

lyase. Glyoxylate cycle enzymes are rare throughout the

animal kingdom, but bioinformatic analyses suggest they

exist in cnidarians [41]. As additional support for a

potential role of glyoxylate cycle metabolism in coral

stress responses, glyoxylate cycle transcripts were up-

regulated in A. palmata larvae subjected to thermal

stress [42]. In higher plants, glyoxylate enzymes are ac-

tive when the cell is switching from photosynthetic pro-

duction of sugars to scavenging pathways from stored

and structural lipids, as in starvation and/or senescence

[43]. In corals, this metabolic shift might indicate a de-

cline in shared energy reserves with zooxanthellae, pre-

sumably due to stress-induced symbiont loss.

Oxidative stress response genes are up-regulated in

diseased tissues

Reactive oxygen species (ROS) are produced as a conse-

quence of fatty acid oxidation. The up-regulation of anti-

oxidants that protect the cell from these harmful

byproducts corals could be a consequence of increased

fatty acid metabolism. This explanation coincides well

with the observed up-regulation of lipid metabolism and

antioxidant (catalase, peroxidase) transcripts in diseased

corals. The production of ROS is also a fundamental

element of the innate immune response. While ROS are

capable of neutralizing phagocytized pathogens, the

harm they cause to the host must be countered if an or-

ganism is to withstand its own immune response.

Catalases and peroxidases capable of hydrolyzing harmful

peroxides provide a mechanism of such self-protection.

The up-regulation of oxidative stress response genes is

well characterized in corals experiencing thermal stress

[44], physical stress [45], and infectious disease [20].

Matrix metalloproteinases are up-regulated in diseased

tissues

Stony corals are subject to many potential sources of

physical injury such as predators [46], boring organisms

[47] and storms [48,49]. The tissue regeneration mecha-

nisms employed by corals that have sustained a physical

injury are common to wound-healing processes across

metazoans [50]. One of these steps involves restructur-

ing of the extracellular matrix to encourage tissue regen-

eration. Matrix metalloproteinases (MMPs) are a group

of enzymes capable of such activities and have been

shown to play a direct role in wound repair in Hydra

[51]. In addition, MMPs act on pro-inflammatory cyto-

kines to direct inflammation due to wounding and in-

nate immune responses to pathogens (reviewed in [52]).

The up-regulation of MMPs in response parasitic pro-

tists in a gorgonian coral suggests that these proteins are

active in the immune response of cnidarians [53]. Astacin

and gelatinase have matrix metalloproteinase activities

and were up-regulated specifically in affected coral tissues.

Additionally, a protease inhibitor alpha-macroglobulin

was up-regulated, which is a vital component of the innate

immune response that inactivates bacterial secreted prote-

ases, thus compromising their virulence [54].

Calcification genes are down-regulated in diseased

tissues

Calcification rates in reef-building corals are sensitive to

several environmental variables such as light, pH, and

temperature [1,55-57]. While this experiment did not

directly measure coral calcification, the identification of

DEGs with functions in biomineralization suggests that

disease negatively impacts coral skeletal deposition. Both

general extracellular matrix structural components and

coral-specific calcification functions were differentially

regulated in diseased tissues compared to asymptomatic

tissues. Coral biomineralization is directed by an extra-

cellular skeletal organic matrix comprised of secreted

glycosylated proteins [58]. These proteins include colla-

gens and negatively charged macromolecules (like chon-

droitin sulfate proteoglycans) that bind calcium ions to

aid in crystal formation [59]. Several collagens and a

protein with high similarity to nematogalectin, a collagen

family protein that forms a major structural component

in Hydra nematocyst tubules [60], were down-regulated

in diseased tissues. The down-regulation of these genes

in diseased tissues suggests a weakening of the coral

skeletal organic matrix and thus a diminished capacity
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for biomineral deposition. The potential impact of dis-

ease on coral skeletal growth is most clearly revealed by

the down-regulation of carbonic anhydrase, an enzyme

that plays a fundamental role in mediating bicarbonate

supplies for calcification in scleractinian corals [61-63].

AL-specific gene expression: a systemic response to

disease or factors contributing to disease susceptibility?

Genes that are specifically regulated in apparently healthy

tissues of diseased colonies could represent systemic (i.e.,

colony-wide) response to disease. However, there is an-

other possible interpretation: since expression of these

genes is correlated with natural appearance of disease, it

might signify disease susceptibility rather than disease ef-

fects. A recent study employing similar a sampling scheme

to investigate transcriptomic effects of yellow band disease

(YBD) in Orcibella faveolata [39] found that expression in

asymptomatic regions of diseased colonies was intermedi-

ate between completely healthy corals and diseased tissue,

which fits well with the systemic response interpretation.

In our study the AL expression was most similar to the

healthy state (Figure 2 and 4A), although genes differen-

tially regulated between diseased and healthy states dem-

onstrated a non-significant trend towards intermediate

expression in AL samples (Figure 4B). The difference be-

tween the two studies could potentially be explained by

unequal levels of colony integration between Orbicella

and Acropora ([64] and references therein), which could

affect the extent of the systemic signaling and/or spread of

the pathogen throughout the colony. The co-expression

network analysis revealed a sizeable (661 genes) module

that was up-regulated in the AL state compared to D and

H states (Additional file 10). Among the genes most

strongly associated with this module were the genes cod-

ing for the immunity-related Tolloid-like protein and the

hypoxia inducible factor prolyl 4-hydroylase (HIF-P4H,

Figure 5). Up-regulation of HIF-P4H suggests that healthy

tissues of diseased colonies might be experiencing hypoxic

conditions [65,66]. Notably, HIF-P4H has also been shown

to modulate immune responses by modifying the kinase

responsible for releasing NF-κB from its inhibitor [67].

Up-regulation of these genes in healthy parts of diseased

colonies might therefore be a sign of altered immunity

state potentially explaining higher disease susceptibility of

the affected colonies in nature.

Conclusions

Our gene expression analysis identified several immune,

repair, and metabolic molecular pathways expressed in

coral regions affected with white syndromes. In contrast

to Orbicella faveolata, A. hyacinthus does not show pro-

nounced propagation of these responses to regions of

the colony not visibly affected by disease, suggesting that

the effect of chronic white syndromes on colony-wide A.

hyacinthus physiology is small. Instead, asymptomatic

regions of diseased colonies show gene expression signa-

tures potentially related to higher disease susceptibility

of the affected coral individuals. Further studies of nat-

ural disease-associated gene expression will contribute

towards the development of diagnostic tools to predict

and manage coral disease outbreaks.

Methods
Sampling

Coral fragments from 16 colonies of A. hyacinthus were

sampled in the spring of 2011 along the eastern coast of

Palau (7° 18.738′ N, 134° 30.423′ E) and immediately

stored in RNAlater (Ambion). Eight of these colonies

were visibly affected with white syndromes (Figure 1).

Colonies exhibiting diffuse tissue loss along a lesion of

apparently healthy tissue directly adjacent to exposed

white skeleton in accordance with [68] were sampled.

Colonies displayed no obvious signs of predation. The

remaining eight colonies were completely symptom-free

(designated healthy, H). From the eight affected colonies,

coral fragments were sampled from both the lesion inter-

face between diseased and healthy tissues (diseased, D)

and areas well ahead of the lesion (AL, Figure 1B). AL

coral fragments were sampled from approximately mid-

way between the lesion boundary and the edge of the

colony. AL tissues are unlikely to be in direct contact

with pathogen since previous studies have demon-

strated declines in pathogens only ~1 cm in advance of

a white syndromes lesion [69].

Transcriptome Assembly and Annotation

The A. hyacinthus transcriptome has been generated

from 5-day aposymbiotic larvae as described previously

[70]. It was annotated based on two resources: the prote-

ome of the starlet sea anemone Nematostella vectensis

[71] and in-depth annotations of the Acropora digitifera

proteome [72]. Based on manual verifications of a subset

of A. digitifera annotations, they were pre-filtered to in-

clude only protein sequences longer than 60 amino acids

with the annotation assigned based on the listed e-value =

1e-20 or better. The GO, KEGG (“Kyoto Encyclopedia of

Genes and Genomes”), KOG (“euKaryotic orthologous

groups”), and gene name annotations were transferred to

an A. hyacinthus contig if the contig matched one or both

of these two resources with e-value = 1e-4 or better in

blastx [73]. The GO and KOG annotations assigned to

genes that were denoted FOG (“fuzzy orthologous

group”, [74]) in the N. vectensis data were removed,

since such genes encode proteins with common do-

mains and cannot be functionally annotated based on

homology alone. The annotated A. hyacinthus tran-

scriptome has been released for unrestricted use prior
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to this publication, http://www.bio.utexas.edu/research/

matz_lab/matzlab/Data.html.

Tag-based RNA-Seq

Libraries were prepared following [27] and sequenced

using Applied Biosystems SOLiD v.3 platform. Read

trimming, quality filtering, mapping, and conversion

to per-gene counts was performed as described previ-

ously [27] with one modification: reads mapping to

the same starting coordinate in the reference and

aligning with 100% identity along the full length of the

shorter read were discarded as potential PCR dupli-

cates. The current step-by-step library preparation

protocol as well as bioinformatic pipeline are available

at https://github.com/z0on/tag-based_RNAseq; note

however that the current version of the tag-based RNA-

seq method utilizes advanced procedure for PCR dupli-

cates removal based on degenerate tags incorporated dur-

ing cDNA synthesis, and assumes sequencing on the

Illumina HiSeq instrument. R scripts and input files can

be accessed on Dryad: doi:NN.NNNN/dryad.NNNN. Raw

sequence data can be found on NCBI-SRA, Accession:

PRJNANNNNNN.

Identification of Differentially Expressed Genes (DEGs)

All statistical analyses were performed using R3.1.1 [75].

DEGs were identified using a generalized linear model

implemented by the R package DESeq2 [76]. No outlying

samples were detected by the arrayQualityMetrics pack-

age [77]. DESeq2 performed automatic independent fil-

tering to remove lowly abundant transcripts and

maximize the rate of DEG discovery post multiple test-

ing correction at an alpha of 0.1. P-values for signifi-

cance of contrasts between all three health states were

generated based on Wald statistics and were adjusted for

multiple testing using the false discovery rate method

[78]. The contrasts resulted in tables including adjusted

and unadjusted p-values and log2 fold changes that were

used in downstream analyses.

Gene coexpression network analysis

A weighted gene correlation network analysis (WGCNA,

[28]) was used to identify groups of co-regulated genes

in an unsupervised way. Genes with an unadjusted p-

value < 0.1 for any of the three contrasts as determined

by the generalized linear model testing for the effect of

health state were input into WGCNA. A sample network

was constructed to identify outlying samples with a stan-

dardized connectivity score of less than −2.5 [79]. A

signed gene co-expression network was constructed with

a soft threshold power of 24. Groups of co-regulated

genes (modules) correlated with each other with the

Pearson correlation coefficient 0.42 or better were

merged. The eigengenes of the resulting modules (the

first principal component of the expression matrix cor-

responding to the genes included in the module) were

correlated with health states (H, AL, or D).

Assessing the robustness of the analysis

Low quality of the SOLiD sequencing resulted in low

number of reads mapped, raising concerns about the re-

liability of the data. In tag-based RNA-seq, unlike stand-

ard RNA-seq, every count represents an observation of

an independent transcript. Thus low counts could still

provide sufficient quantitative information about tran-

script abundances. In addition, high level of biological

replication (n = 8 per group) in our experiment should

have compensated for the low counts within each repli-

cate to a certain degree. To confirm that low counts did

not result in inflated false discovery rate, we have simu-

lated a series of count datasets based on the empirical

per-gene total counts and coefficients of variation across

samples as well as empirical sample size factors, which

included no effect of experimental conditions. Analysis

of these simulated datasets recovered nearly identical

sample size factors and highly similar dispersion esti-

mates as in real data (Additional file 12). When these

simulated datasets were analyzed with DESeq2 using the

same models as real data, at most four genes passed the

10% Benjamini-Hochberg false discovery rate (FDR) cut-

off for each contrast. Compared to 646 genes passing

the FDR 10% cutoff for the disease-healthy comparison

and 333 genes passing the same cutoff for the disease-

AL comparison in the real dataset this is much less than

10%, indicating that the real data analysis was conserva-

tive. The simulation-based p-value cutoff achieving the

empirical 10% FDR (Additional file 13A-C) would have

yielded 1.05-1.5X more DEGs for these comparisons

than the Benjamini-Hochberg procedure. Notably, the

Benjamini-Hochberg correction did not yield any DEGs

for the healthy-AL comparison, and accordingly, the

DEG discovery rate in this comparison was even slightly

lower than the simulation-based false discovery rate

(Additional file 13C), indicating that for this comparison

DESeq2 analysis did not provide sufficient power. To

keep the analysis conservative, we chose to report DESeq2-

based DEGs discovered using the Benjamini-Hochberg

procedure. The procedure for inferring empirical FDR

based on simulations described above has been imple-

mented in the R package empiricalFDR.DESeq2, hosted

within the Comprehensive R Archive Network (CRAN).

WGCNA analysis provides one additional confirm-

ation that the observed gene expression differences are

driven by biological factors rather than stochasticity.

WGCNA constructs gene co-expression modules from

their correlation pattern across samples without using

the information about how the samples are distributed

among experimental conditions. The fact that post hoc
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the module eigengenes correlate strongly with coral con-

dition (Additional file 10) indicates that the gene expres-

sion patterns in the data truly reflect the biological

processes related to disease. To verify this, we shuffled

the condition designations among samples and indeed

observed that the correlations with co-expression mod-

ules disappeared (Additional file 14).

Principal coordinate analysis

Principal coordinate analysis to visualize clustering of

gene expression between health states was performed

using the “adegenet” package [80] using variance stabilized

data for all genes and subsequently with only candidate

differentially expressed genes (unadjusted p-value < 0.05),

based on Manhattan distances which correspond to the

sum of absolute log-fold changes across all genes. Effects

of the three health states (“D”, “H”, and “AL”) were calcu-

lated using the multivariate analysis of variance function

“adonis” of the R package “vegan” [81]. Tukey’s tests be-

tween specific health states based on the values of the first

principal coordinate were performed using function

TukeyHSD in R.

Functional Summaries

Gene ontology enrichment analysis was performed using

adaptive clustering of GO categories and Mann–Whitney

U tests [82] based on ranking of signed log p-values (GO-

MWU, https://github.com/z0on/GO_MWU). Gene ex-

pression heatmaps with hierarchical clustering of expres-

sion profiles were created with the pheatmap package in R

[83].

Additional files

Additional file 1: Tab-delimited table of unique transcript counts.

Rows are genes, columns are samples. The letters in the column names
identify disease state (AL, D, and H) and the number identifies individual
colony.

Additional file 2: Venn diagram of DEGs passing the FDR threshold

of 10% for each of the contrasts. The largest number of DEGs resulted
from the contrast of diseased (D) tissue to healthy (H) tissues, followed
by the contrast of diseased to tissues ahead of the lesion (AL). No
isogroups passed the FDR cutoff for the AL-healthy contrast.

Additional file 3: Gene ontology categories enriched by genes

up-regulated (red) or down-regulated (blue) in diseased compared

to AL samples, summarized by molecular function (MF), biological

process (BP), and cellular component (CC). The size of the font
indicates the significance of the term as indicated by the inset key. The
fraction preceding the GO term indicates the number of genes annotated
with the term that pass an unadjusted p-value threshold of 0.05. The trees
indicate sharing of genes among GO categories (the categories with no
branch length between them are subsets of each other).

Additional file 4: Gene expression heatmaps for annotated DEGs

(adjusted p-value < 0.01) for the disease-healthy contrast. Rows are
genes, columns are samples ordered as in the bottom panel: ahead-
of-lesion (AL), healthy (H), and diseased (D). The color scale is in log2
(fold change relative to the gene’s mean). The trees are a hierarchical

clustering of genes based on Pearson’s correlation of their expression
across samples.

Additional file 5: Gene expression heatmaps for annotated DEGs

(unadjusted p-value < 0.01) for the disease-AL contrast. Rows are
genes, columns are samples ordered as in the bottom panel: ahead-
of-lesion (AL), healthy (H), and diseased (D). The color scale is in log2
(fold change relative to the gene’s mean). The trees are hierarchical
clustering of genes based on Pearson’s correlation of their expression
across samples.

Additional file 6: Excel spreadsheet containing genes, annotations,

and log fold changes for the disease-healthy contrast.

Additional file 7: Excel spreadsheet containing genes, annotations,

and log fold changes for the disease-AL contrast.

Additional file 8: Excel spreadsheet containing genes, annotations,

and log fold changes for the AL-healthy contrast.

Additional file 9: Sample dendrogram and outlier heatmap for

WGCNA. Sample clustering allows the visualization of how traits (health
states and individual genotypes in this case) relate to samples. The
dendrogram does not present any obvious outliers, but individual “D4” is
called as an outlier based on a standardized connectivity test.

Additional file 10: Heatmap of module-trait correlations. The
strength of the correlations between traits (health states or individual corals)
and gene coexpression modules are indicated by the intensity of color. The
numbers in the cells give Pearson’s correlation between the module
eigengene and the trait and the p-value according to the correlation test.
Red boxes mark the three modules that are highly and specifically correlated
to each of the health states.

Additional file 11: Dependency between individual genes’ module

membership (correlation with module’s eigengene) and significance

for the disease state (correlation of the gene with the disease

state). The grey region encompasses genes with both module
membership and gene significance scores higher than 0.6. Pearson
correlation values and the p-value of the correlation test are indicated in
the lower-right hand of each scatterplot.

Additional file 12: Simulation quality plots compare real and

simulated DESeq2 datasets. (A) Size factors are nearly identical
between real (dds) and simulated (sims) data sets. (B-C) Dispersion
estimates of the real data set strongly agree with simulated dispersion
estimates. (D) Dispersions are nearly identical between real (dds) and
simulated (sims) data sets. (E-F) MA plots of log-fold change by mean
expression value of real and simulated datasets are nearly identical.

Additional file 13: Calculating empirical false discovery rates using

simulated data. The x-axis is the Wald test p-value and the y-axis is the
number of differentially expressed genes (DEGs) passing this p-value
cutoff. The black line corresponds to DEGs discovered in the real dataset
and red line corresponds to DEGs discovered in the simulated dataset
(false positives). The vertical dashed line indicates the empirical 10% false
discovery rate (FDR) cutoff. (A) Healthy-AL comparison. (B) Healthy-
Disease. (C) AL-Disease comparison.

Additional file 14: Shuffling sample-condition assignments dissolves

module-trait relationships in WGCNA. On both panels, rows are module
eigengenes (MEs) and the columns are traits (AL – ahead of lesion, H –

healthy, and D –diseased). The color scale reflects the correlation of the
module’s eigengene with the trait. The numbers in the cells are the Pearson
r and the p-value of the correlation test (in parentheses). Strong correlations
between modules of gene co-expression and health states were identified
when the samples were assigned to correct conditions (left). These
correlations disappeared when condition designations were shuffled
among samples (right), providing evidence of a true biological relationship
between the identified gene coexpression modules and health states.

Abbreviations

ALk: Ahead-of-the-lesion; DEG: Differentially expressed genes; FDR: False
discovery rate; FOG: Fuzzy orthologous groups; GO: Gene ontology; HIF-
P4H: Hypoxia-inducible factor prolyl 4-hydroxylase; KEGG: Kyoto encyclopedia
of genes and genomes; KOG: EuKaryotic orthologous groups; MMP: Matrix
metalloproteinase; NF-κB: Nuclear factor kappa-light-chain-enhancer of
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disease; WGCNA: Weighted gene correlation network analysis; YBD: Yellow
band disease.
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