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ABSTRACT

The Gene Expression Atlas (http://www.ebi.ac

.uk/gxa) is an added-value database providing infor-

mation about gene expression in different cell types,

organism parts, developmental stages, disease

states, sample treatments and other biological/

experimental conditions. The content of this

database derives from curation, re-annotation and

statistical analysis of selected data from the

ArrayExpress Archive of Functional Genomics

Data. A simple interface allows the user to query

for differential gene expression either (i) by gene

names or attributes such as Gene Ontology terms,

or (ii) by biological conditions, e.g. diseases,

organism parts or cell types. The gene queries

return the conditions where expression has been

reported, while condition queries return which

genes are reported to be expressed in these

conditions. A combination of both query types is

possible. The query results are ranked using

various statistical measures and by how many inde-

pendent studies in the database show the particular

gene-condition association. Currently, the database

contains information about more than 200000 genes

from nine species and almost 4500 biological

conditions studied in over 30 000 assays from over

1000 independent studies.

INTRODUCTION

In the last decade, genome-wide gene expression assays,
mostly employing microarrays and more recently high-
throughput sequencing, have become common tools in
biomedical and biological research. Most assays are per-
formed to answer specific questions, for instance, to find
which genes are differentially expressed in a particular
disease state in comparison with healthy condition in a

tissue or cell type. Some experiments instead compare
a larger number of conditions, such as various tissue or
cell types, i.e. the well known and widely used Genomics
Institute of the Novartis Research Foundation gene
expression atlas dataset for human and mouse (1).

Expression datasets derived from high-throughput
experiments have utility beyond answering the specific
questions that have been posed in the original experiments
generating them. For instance, if a gene expression study
has revealed a set of genes differentially expressed in
a particular disease, making this information available
online may help others working on the same disease, it
can help in selecting candidate genes, or prioritizing the
existing ones.

In compliance with the MIAME initiative (2), most
scientific journals nowadays require publication-related
microarray gene expression data to be deposited in
public repositories like ArrayExpress (3) or the Gene
Expression Omnibus (GEO) (4). Data from over 10 000
independent studies are readily available from these
archives in several formats; however, using these deposited
data to answer biological questions is not straight-
forward. For instance, to find which genes are
differentially expressed in a particular disease effectively
one would need to download the datasets relevant to
this disease and re-analyse them. Secondary databases,
such as Oncomine (5) or Genevestigator (6), are doing
the work of importing specific datasets from the public
archives, re-analysing and making them available
through various interfaces. Most of these databases are
specific to particular biological domains and are, at least
in part, commercial. The GEO profiles service is providing
gene-based queries for expression profiles, however, it
does not allow searches for genes specific to a particular
condition (e.g. a particular disease or tissue), nor for
conditions specific to a particular gene.

The European Bioinformatics Institute (EBI) has
launched a new database called the Gene Expression
Atlas that allows users to query gene expression under
various biological conditions, including different cell
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types, developmental stages, physiological states, pheno-
types and disease states. The key questions this new
resource can answer can be summarized as:

(i) Under which conditions or where in the organism is
a gene of interest differentially expressed?

(ii) Which genes are differentially expressed in a condition
or site (for instance in a disease, or in an organ)?

Both the questions can also be combined to focus on par-
ticular genes and their role in a specific disease, such as
identifying members of the Wnt signalling pathway, which
are expressed in a specific type of cancer.

The Atlas takes data directly from the ArrayExpress
Archive of Functional Genomics Experiments, including
data imported from GEO (4). The selected datasets are
then systematically curated, genes are mapped to the
latest genome builds and the experimental conditions are
systematized and mapped to an application ontology, the
Experimental Factor Ontology (EFO) (7). Statistical
computations are performed, providing P-values linking
each gene to each experimental condition in every study. A
simple query interface is implemented, and the results are
ranked by their P-values and weighted by the number of
independent studies linking genes to biological conditions.
The advanced interface enables the user to ask more
sophisticated questions; tutorial materials are available
at http://www.ebi.ac.uk/microarray-srv/tutorials.

The EBI Gene Expression Atlas freely provides its
content for online queries and for programmatic access
without restriction and without requirement to register.
The complete content will be made available for
download following the publication of this article.

As of August 2009, the EBI’s Gene Expression Atlas
contains data for over 200 000 genes from over 1000 dif-
ferent independent studies, including more than 30 000
samples representing nearly 4500 different biological
conditions. Nine different species, including human and
model organisms, are included. The database is updated
monthly, and is growing constantly. With streamlining of
the curation process, we expect its content to double in the
next 12 months.

MATERIALS AND METHODS

Atlas web interface

The Gene Expression Atlas interface (Figure 1) allows the
user to query for condition-specific gene expression across

multiple datasets. There are three basic types of queries:
(i) for a gene, or a set of genes, by name or various gene
attributes, including synonyms, Ensembl identifiers and
Gene Ontology terms; (ii) for a ‘biological condition’,
such as, disease name, developmental stage, as well as
tissue or cell type; and (iii) for a combination of genes
and biological conditions. Biological conditions, also
referred to as EFs, are organized using an application
ontology called EFO, which is described in more detail
in the next section.
If a query matches one gene uniquely, the ‘Gene page’

for that gene is displayed (Figure 2). This page
summarizes the behaviour of the selected gene across all
Atlas datasets, providing easy access to both statistical
analysis results and expression data. All gene pages can
be linked directly, using links of the form http://www.ebi
.ac.uk/gxa/gene/IDENTIFIER, where IDENTIFIER is
any one of annotated gene attributes (e.g. Ensembl,
UniProt and other accessions). Direct links can also be
made to Atlas experiments, e.g. http://www.ebi.ac
.uk/gxa/experiment/E-AFMX-5. Full details for linking
and other Atlas use are available in online Atlas
documentation.
The thumbnail plots provide a direct link to individual

experiment pages where the gene expression profile for the
selected gene can be viewed in detail (Figure 3). In the
experimental page, multiple ‘search’ options allow the
user to retrieve genes of interest and add their expression
profiles to the main plot (Figure 3, right). The search
options available are: (i) search for any gene by name or
attribute; (ii) search up to 10 most similar genes, based
on Pearson correlation, to any of the genes currently
plotted; and (iii) choose any gene from a list of top
10 differentially expressed genes for the selected study.
For each gene, a P-value of significance of differential
expression is provided.
It is also possible to query for such a condition as a

particular disease, either over all genes or for those
matching specified attributes, such as belonging to a
pathway. Figure 4 is an example of a summary view of
transcriptional activity among members of the ‘Wnt sig-
nalling pathway’ in ‘carcinoma’. Both ‘Genes’ and
‘Conditions’ boxes provide auto complete functionality
to help the user formulate queries. Condition queries
(Figure 4, top) are expanded using our application
ontology (EFO, see next section) to include all child
terms available for the original query, so that, for

Figure 1. Gene Expression Atlas home page. Querying for gene(s) will identify all genes whose annotation matches your query. The ‘Conditions’
parameter will identify all experiments in which the conditions that match your query appear. Searches can be restricted only to genes belonging to a
given organism and also by direction of differential expression.
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instance, brain queries are expanded to all brain parts. The
query results are displayed as a heat map (Figure 4,
middle); genes matching the query are listed in the first
column and the conditions go across the remaining
columns grouped under ‘Ontology’ (when the query
matches an ontology term) and ‘Keywords’ (when the
query matches a keyword). All conditions mapping to
Ontology terms are shown as nodes in the EFO tree
(Figure 4, bottom; see next section). As in the ‘gene
page’, the red colour corresponds to up-regulation of the
selected gene in the selected condition, and the blue
corresponds to down-regulation. The numbers in the cell
correspond to the number of independent studies where
differential expression has been observed, and the colour
intensity represents the best P-value of this observation
(i.e. the brighter the colour, the more significant the
P-value). Results can be downloaded in tab-delimited
format. Clicking on a cell in the heat map opens a
window, showing information about the expression of
the selected gene in the associated experiments including
thumbnail plots of the gene expression profile(s) and links
to the experimental details in the ArrayExpress Archive of
Functional Genomics Data, as shown in Figure 2.

A query can be refined by using terms enriched in the
results (‘refine your query’ link; Figure 4, middle), by
adding conditions to the original query (using the
‘advanced search’ link), as well as by adding various
filters through the advanced interface, which allows user
to formulate complex queries by combining several
conditions, gene property and organism filters in one
query.

Biological conditions—the concepts of EFs and
their values

High-throughput gene expression experiments are typi-
cally used to compare gene expression in different biolog-
ical conditions. Our approach to describe biological
conditions is based on the concept of EF and EF value
(EFV). An EF is defined as the experimental variable that
is tested for gene expression variation, and EFVs are the
values of this variable. For instance, in an experiment that
compares gene expression in leukemic to normal blood,
EF is a disease state, which has two values, leukemia and
normal.

Figure 2. ‘Gene page’ for Mus musculus Saa4. The following information is displayed: (A) summary of terms and external databases cross-references,
as well as orthologue genes, which allows comparison of orthologues across the Atlas; (B) expression heat map listing all the conditions in which the
gene was observed differentially expressed. The heatmap cell colour ranges from red, i.e. up-regulated, to blue, i.e. down-regulated. For each
condition, the number of independent studies in which the gene was observed significantly up- or down-regulated is provided. Saa4 is over-expressed
in ‘liver’, in 16 independent studies, which is consistent with the notion that liver is the primary site of Saa4 mRNA transcription (8) and (C)
thumbnail plots of gene expression profiles for the studies in which the gene was found to be differentially expressed. Saa4 shows the highest
significance of differential expression in the experiment E-MEXP-1190, comparing kidney, liver and spleen, each assayed in several replicates. A link
to the experimental details in the ArrayExpress Archive of Functional Genomics Data is provided for each experiment.
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For a study to be included in the Atlas, it must have
at least one defined EF with at least two different EFVs,
and each EFV should be tested in at least two replicates.
Experiments can have multiple EFs, for instance normal
and leukemic gene expression can be profiled in peripheral
blood or bone marrow. Such an experiment has two EFs,
disease state and organism part.

Using free text keywords to describe EFs and their
values limits their utility. For instance, to identify genes
differentially expressed in ‘cancer’, we would also like to
find genes that are studied in an experiment profiling
‘leukemia’. One way to achieve this is to use a disease
ontology linking ‘leukemia’ to ‘cancer’ as a type of
cancer, and then expand the query to all cancer types.
Since in Gene Expression Atlas we are dealing with EFs
mapping to a wide range of biological concepts such
as organism parts, diseases or treatments, we require
multiple source ontologies to describe these conditions.
Initial mapping to existing ontologies identified the NCI
Thesaurus (9) as providing best coverage due to the large
amount of gene expression data performed on cancer
samples. However, as no external ontology covered all
our EFs and EFVs, we developed our own application
ontology called EFO (7).

Mappings from EFO to external ontologies are main-
tained as identifiers from the external resource into
a ‘denition citation’ annotation property in EFO.
Equivalent classes are thus mapped from EFO into
multiple other ontologies, for example a ‘neoplasia’
in EFO maps to ‘neoplasia’ in the NCI Thesaurus (9).
This appears in the EFO ‘denition citation’ property,

which has the value ‘NCI Thesaurus:C3262’. Typically,
there are multiple maps to external ontologies as many
biomedical ontologies and controlled vocabularies are
non-orthogonal. EFO is released synchronously with
the Atlas, new terms being added to each release where
needed to describe Atlas data. EFO is mapped to 14
external ontologies including the NCI Thesaurus, the
Foundational Model of Anatomy (10) and Chemical
Entities of Biological Interest (ChEBI) (11) (for full list
see http://www.ebi.ac.uk/efo/overview). As illustrated in
the previous section, EFO is used in the Atlas to expand
queries as outlined above, as well as a means to browse the
Atlas content.
Where datasets are submitted directly to ArrayExpress,

the submission tools guide the users through annotation
of their EF and EFV, which later are checked and curated
by the ArrayExpress staff. For data imported into
ArrayExpress from GEO, we use text mining tools using
EFO as the dictionary to identify the potential EFs and
EFVs, and then introduce them via curation.

Statistical computations to rank query results

The meta-analysis approach taken in the construction
of the Atlas can be outlined as follows. For each
experiment:

(i) identify differentially expressed genes for each EF;
(ii) for each gene found, identify EFVs where the gene’s

mean expression level is significantly different from
its overall mean across all factor values; and

Figure 3. Gene expression profile page for experiment E-MEXP-1190 showing the table of genes with similar expression profile to Saa4, identified
through similarity search. In the main graph, the horizontal axis shows all samples in this experiment, grouped by EF. The vertical axis shows the
expression levels for Saa4 in each sample. The EF ‘organism part’ is selected and, under this condition, Saa4 has notably higher expression values in
liver, as expected. Sample attributes can be selected from the ‘Sample attributes’ table and highlighted on the graph.
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(iii) perform multiple comparisons correction and
aggregate the identified Gene-EFV associations for
storage and retrieval.

If an experiment has several factors, i.e. a multi-
factorial experiment design, we treat each factor
independently from all others, and identify Gene–EFV
associations separately for each EF in an experiment.
This represents a simplification, and assumes that there
are no interactions between EFs (see ‘Discussion’
section). We observed that in most cases (data not
shown) of multi-factorial experiment designs, even if the
factors are treated independently, once one statistically
significant factor is identified for a gene, secondary
factors’ effects become readily visible to the investigator
when visualizing the data. For this reason, to construct a

basic platform for further data analysis, we initially
limited statistical analysis to the factor independence
scenario.

The detailed description of the data analysis procedure
outline is below:

(i) If ygj are expression values for genes g ¼ 1, . . . ,G
and arrays j ¼ 1, . . . , J, pre-processed, background-
corrected and normalized, we describe systematic
expression effects for each gene by a linear model
E yg
� �

¼ X�g, where yg ¼ ðyg1, . . . ,ygJÞ
T is the

vector of expression values for gene g, X is a
known design matrix with full column rank K
and �g ¼ �g1, . . . ,�gK

� �T
is a gene-specific vector of

regression coefficients. The design matrix depends
on the experimental design and choice of

Figure 4. Query results for human genes matching GO term ‘Wnt signaling pathway’ expressed in condition ‘carcinoma’. The ‘conditions’ auto
complete function uses the EFO controlled vocabulary to expand queries, to query synonyms and to suggest query terms (top). In this example,
SOX4 gene is over-expressed in adenocarcinoma in three different independent studies. Results are split over several pages and can be downloaded
using the link provided (middle). Advanced query functionality is accessed using the ‘advanced search’ link below the ‘Search Atlas’ button.
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parameterization, and the regression coefficients
represent comparisons of interest between RNA
sources in the experiment. These coefficients are
estimated with a least squares linear model fitting
procedure in the Bioconductor package limma (12)
and tested for differential expression (i.e. testing any
particular �gk equal to 0) with moderated Student’s
t-statistic via the empirical Bayesian statistics
developed by Smyth (12). For each EF in the exper-
iment, we set up a complete pairwise-comparisons
contrast matrix (equivalent to one-way Analysis of
Variance) as an omnibus test of differential expres-
sion across all factor values in the selected factor.
We then can accept or reject the ‘equal means for all
groups’ null hypothesis on the basis of P-values
computed for the omnibus F-statistic via limma as
described above, at a specified significance level.
These P-values, with appropriate multiple testing
adjustment to control the False Discovery Rate
(FDR) at 5% (13), allow us to identify differentially
expressed genes.

(ii) Given a set of expression values for a gene under
k different conditions, hence k group means
�g1, . . . ,�gk and a significant F-statistic, we look at
k differences ��� �i, of each group mean to the
global mean, and seek to identify which ones are
significant, and in what direction. The problem
of multiple comparisons with the overall mean
is known in statistical literature as an Multiple
Comparisons with the Mean procedure. We
follow Hsu (14) to make direct inference on
multiple comparisons of the means. For each gene
we compute k simultaneous confidence intervals
governed by a multivariate t-distribution and
computed from quantiles of the Studentized
maximum modulus statistic and look at their
directionality.

(iii) Steps (i) and (ii) for each factor in a given experi-
ment produce a matrix of up/down calls (�1, 0 or 1)
according to the directionality of the confidence
interval and respective P-values: one call/P-value
for each Gene–EFV combination. Multiple testing
adjustment is performed on these P-values to
control the global (across genes and contrasts, i.e.
EFVs) FDR at 5%, following recommendations
by Smyth in limma (12). Taking advantage of
the robustness of the tests performed, we use the
P-values significance-based calls to aggregate differ-
ential expression results into ‘votes’: each time a
gene has been observed as differentially expressed
in a particular EFV, we use that as a vote for
up/down activity for that Gene–EFV combination.
These are the numbers displayed in the heatmap
view of the Gene Expression Atlas. All the
P-values and computed statistics as well as the
aggregated votes are stored in a database and
indexed for fast retrieval in the interface.

Currently, all data included in the Atlas are based on
microarray assays. The statistical method and the data
integration framework developed are generic and can be

extended to many other technologies, such as RNA-seq
and in situ hybridizations. The R-code for this procedure
is available as Supplementary Data and will be released as
a separate Bioconductor package (in preparation).

Gene expression data

Data for the Atlas are selected from ArrayExpress Archive
and selection is based on various criteria outlined earlier.
As currently we are using only microarray data, our first
consideration is whether sufficient array annotation is
given to enable us to map the array design elements to
existing gene identifiers. We use two routes for this
mapping: we preferentially map array probe sequences
to Ensembl genomes (15) or we attempt to map the
design element annotation identifiers to gene annotation
in UniProt database (16). Where re-annotation fails,
experiments that are performed on such arrays cannot
be included in the Atlas. The array re-annotation
pipeline will be released as a software package, described
and published separately (Sarkans et al., in preparation).
Experiments in ArrayExpress Archive that are per-

formed on well-annotated arrays, which have high
MIAME scores (2,17), where the EF/EFV annotation
and sufficient replication criteria (as well as some
other technical criteria not described here), and where
normalized data are present, are annotated as ‘suitable
for Atlas’. When all basic criteria are satisfied, experiment
selection for the Atlas is motivated by the quality of anno-
tation, use of standard platforms and large sample sizes,
without any preference for any biological conditions.
Recently, we started to produce themed Atlas data
releases, e.g. species oriented or addressing a specific
research domain, or by curating user-requested studies.
Experiments selected for Atlas are then exported
from the Archive. The submitter’s normalized data are
used, hence we do not perform any renormalization.
Prior to loading into the Atlas, annotations are
harmonized, experimental descriptions checked for con-
sistency and non-standard terms are standardized. Maps
to EFO are added where the term required is present in
the ontology. If terms are not in EFO, we examine
source ontologies and provide a term name, definition
and maps to external ontologies. The term is then placed
in the EFO hierarchy that is optimized for the Atlas
visualization.
Once data are loaded, statistical computations, as

described in the previous section, are performed and for
each new experiment, for each EF and EFV, for each gene
the P-value is computed.
Currently, the Atlas contains data from nine species.

Table 1 shows the number of assays and the number of
studies (experiments) included from each. The experiments
included in the Atlas together have more than 40 different
EFs, covering over 4500 different EFVs. The distribution
of the number of assays for the most frequently studied
(at least 50 experiments for each factor) EFs and EFVs are
given in Table 2.
The method used in Gene Expression Atlas analytics

allows us to examine trends in differential gene expression
across all Atlas data. Figure 5A shows the distribution of
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proportions of differentially expressed genes across all
experiments. There are approximately 400 experiments
(from over 1000) with fewer than 10% of all genes
showing differential expression; the mean proportion of
genes differentially expressed in an experiment, according
to our FDR criteria, is 25%. Further, when we examine
the number of differentially expressed genes per factor
(Figure 5B), we observe that the numbers are highest in
the factors ‘observation’, ‘histology’, ‘cell line’, ‘genera-
tion’ and ‘organism part’. It appears that, broadly,
across species, transcriptional activity is strongly driven
by its context: by tissue (‘histology’, ‘organism part’ and,

by extension, ‘cell line’), followed by developmental stage
and then cell type, while the main extrinsic drivers of
transcriptional activity such as xenobiotic responses
(‘compound treatment’) and disease states contribute to
differential expression to a smaller extent. We can also
observe that the number of differentially expressed genes
is largely independent of the number of EFVs (the median
factor value count is around 3 EFVs).

Programmatic access

REST (Representational State Transfer) is a simple tech-
nology that allows users to retrieve data in an easy-to-
parse format by going directly to a web address
Universal Resource Identifier (URI). For instance,
all information available on gene matching ‘aspm’
anywhere in gene property fields can be obtained by
entering a URI: http://www.ebi.ac.uk/gxa/api?geneIs=
aspm.

This will produce a simple output either in JSON or
XML format (the latter will be used if ‘&format=xml’
is appended to the URI). Example programmatic queries
are provided in Table 3 below.

These APIs allow advanced users to search and retrieve
complete information on any gene or experiment from the
Atlas, including all gene and sample attributes, details of
experimental design, meta-analysis statistics and gene
expression values. Additionally, the Atlas provides a
gene view-based Distributed Annotation System (18)
track at http://www.ebi.ac.uk/gxa/das that can be viewed
with any Distributed Annotation System client such as the
Ensembl genome browser.

Examples of output for these queries are available
from the Atlas documentation at http://www.ebi.ac
.uk/gxa/help/AtlasApis.

DISCUSSION

More than 60% of the experiments in the Atlas have two
or three EFs; our current assumption that they are

Figure 5. Distributions of differentially expressed genes over (A) experiments and (B) EFs. Error bars in (B) mark the 25% and 75% quantiles in the
differentially expressed gene count for each EF.

Table 1. Number of studies and assays for each species in the Atlas

Species Assays Studies

Homo sapiens 13 703 410
Mus musculus 7539 373
Rattus norvegicus 4858 133
Arabidopsis thaliana 1607 88
Saccharomyces cerevisiae 813 43
Drosophila melanogaster 790 40
Schizosaccharomyces pombe 458 19
Danio rerio 214 13
Caenorhabditis elegans 166 5

Total 30 148 1124

Table 2. Most frequently used EFs and the number of EFVs and

studies for each factor

EFs EFVs Studies

Genotype 389 211
Compound treatment 425 196
Disease state 214 137
Organism part 267 98
Cell type 164 61
Growth condition 122 61
Strain or line 227 51

D696 Nucleic Acids Research, 2010, Vol. 38, Database issue
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independent may not be valid. One approach to deal with
potential EF interactions is to introduce a single ‘meta-
factor’, with values made of all occurring combinations
of the individual factor values in the comprising factors.
We are currently investigating this and related methods.

In the presented implementation, the experiments are
ranked by a simple ‘vote-counting’ method, first described
by Light and Smith (19). It has several known deficiencies,
for instance, it does not incorporate the sample size into
the vote, is imprecise, and occasionally has low statistical
power. We are working on employing a more statistically
robust procedure for meta-analysis of P-values derived
from individual differential expression tests. Using
earlier work by Hedges and Olkin (20) and making use
of the semantic enrichment provided by EFO curation, we
have developed a new effect-size estimation-based method
for data integration, which will be incorporated in the
future Atlas releases.

Currently the Atlas provides information on expression
of only protein-coding genes. In the near future we will
also plan to include data on known micro-RNA expres-
sion. It is possible to deal with the expression of alterna-
tive splice variants, or with expression at the exonic level
using the same methodology. At the moment, all
data included in the Atlas are derived from microarray-
based assays. In the future, as ultra high-throughput
sequencing becomes widespread and we plan to include
RNA-seq and related data types. Presently, the number
of RNA-seq experiments that focus on assaying expres-
sion of known genes and for which the processed data are
available is still relatively small.

Among the new features under development are
graphical gene expression query and display based on
anatomograms. Another improvement will be a possibility
to query and visualize the results by ontology terms of the
user’s choice, not just EFO. We are also building an Atlas
of ‘normal gene expression’, i.e. the gene expression in
different organism parts under ‘normal’, non-diseased
conditions.

The code will be released as open source with installa-
tion and data-loading procedures, allowing the users to
run the Atlas locally and use it with their own data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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