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Gene expression-based biomarkers 
for discriminating early and late 
stage of clear cell renal cancer
Sherry Bhalla1,*, Kumardeep Chaudhary1,*, Ritesh Kumar2, Manika Sehgal1, Harpreet Kaur1, 

Suresh Sharma3 & Gajendra P. S. Raghava1

In this study, an attempt has been made to identify expression-based gene biomarkers that can 

discriminate early and late stage of clear cell renal cell carcinoma (ccRCC) patients. We have analyzed 

the gene expression of 523 samples to identify genes that are differentially expressed in the early and 
late stage of ccRCC. First, a threshold-based method has been developed, which attained a maximum 

accuracy of 71.12% with ROC 0.67 using single gene NR3C2. To improve the performance of threshold-

based method, we combined two or more genes and achieved maximum accuracy of 70.19% with ROC 
of 0.74 using eight genes on the validation dataset. These eight genes include four underexpressed 
(NR3C2, ENAM, DNASE1L3, FRMPD2) and four overexpressed (PLEKHA9, MAP6D1, SMPD4, C11orf73) 

genes in the late stage of ccRCC. Second, models were developed using state-of-art techniques and 

achieved maximum accuracy of 72.64% and 0.81 ROC using 64 genes on validation dataset. Similar 
accuracy was obtained on 38 genes selected from subset of genes, involved in cancer hallmark biological 
processes. Our analysis further implied a need to develop gender-specific models for stage classification. 
A web server, CancerCSP, has been developed to predict stage of ccRCC using gene expression data 

derived from RNAseq experiments.

Renal cell carcinoma (RCC) is the most prevalent kidney cancer accounting to high mortality rates globally. 
According to the US cancer statistics, there is an estimate of 63,990 new cases and 14,400 deaths in 2017, which 
makes it a life-threatening disease1. �is cancer results from uncontrolled growth of cells lining the proximal 
convoluted tubule, involved mainly in the transport of waste molecules to the urine. Primarily, renal cancer is 
categorized in four subcategories based on its appearance under a microscope, which includes chromophobe, 
clear cell, collecting duct and papillary. �e clear cell renal cell carcinoma (ccRCC) is the major contributor to 
renal cell carcinoma (80%) among the di�erent forms of kidney cancers. Fatality rates are greater when the cancer 
is discovered in the late stages whereas early detection coupled with e�ective treatment has been linked to higher 
survival rates2. �us, development of an economic and e�cient strategy to identify the stage of cancer is impor-
tant to understand the severity of a patient3. Currently, major techniques for screening and staging of cancer 
includes imaging techniques (CT, MRI and bone scan)4 and TNM staging system5. �ese techniques have their 
limitations; thus there is a need to develop alternate methods for classi�cation.

Fortunately, recent advancements in high-throughput DNA sequencing technology have made whole cancer 
genome sequencing conceivable in substantial time and at a reasonable expense. It has facilitated simple and 
e�ective recognition of commonly mutated, ampli�ed, inserted and deleted genes across diverse cancer types6. 
Recently, classi�cation models have been developed to distinguish early stage and late stage of ccRCC using the 
expression of 62 genes7. Authors developed di�erent models in the study and evaluated them based on 10-fold 
cross-validation and independent validation dataset. �ey achieved maximum accuracy of 76.84% and ROC of 
0.77 on the independent dataset.

�e current study endeavors to evaluate minimum number of potential markers, which can de�ne the stage 
progression from early to late stage of cancer using gene expression data derived from experiments in the form of 
RNA-Seq by Expectation Maximization (RSEM) values. In order to assess the robustness of biomarkers, we also 
carried out resampling of the entire dataset for 100 times for selecting stable features. We aimed to complement 
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previous in silico techniques for achieving better performance and rank individual genes based on their discrim-
inating power. Once, the potential biomarker genes were identi�ed, we extracted comprehensive information 
about these genes from literature to understand their role in various biological processes. �is study also high-
lights the importance of gender-speci�c models for discriminating early and late stage samples. Ultimately, we 
have developed a web resource, CancerCSP based on prioritization of essential genes; depending upon the gene 
expression that could successfully di�erentiate early/late stage of ccRCC.

Results
Expression-threshold based features. Single gene biomarkers. In order to prioritize genes, which 
express di�erently in the early and late stage of cancer, we developed threshold-based models using each gene. 
�ese models are called single gene-based threshold models as they use the expression of a single gene at a time. 
We computed the performance of all 19,166 genes to rank these genes based on their performance. �is way, we 
were able to rank the genes based on their performance to classify early and late stage of cancer. Out of the 19,166 
genes, analysis of 20 genes including 10 overexpressed and 10 under-expressed genes and their involvement in 
cancer hallmark biological processes is shown in Table 1 wherein Nuclear Receptor Subfamily 3 Group C Member 
2 (NR3C2) gene shows the highest performance in classi�cation (ROC 0.67 with an accuracy of 71.12%) for train-
ing data. NR3C2 is overexpressed in early stage of ccRCC. �is analysis propose that when the normalized RSEM 
score of NR3C2 is greater than the threshold of − 0.48, then there are chances that cancer is in early stage, and if it 
is less than − 0.48, the cancer is in late stage. �is type of analysis clearly exhibits the contribution of each gene as 
a putative marker to predict early stage of ccRCC.

S. No. Gene �reshold

Performance

Molecular Function
Cancer hallmark GO 

terms
Accuracy 

(%) ROC

Overexpressed genes

1 NR3C2 − 0.48 71.12 0.67

ACE Inhibitor Pathway, Aldosterone-regulated 
sodium reabsorption, transcription factor activity, 
sequence-speci�c DNA binding, steroid hormone 

receptor activity

—

2 C1orf69 − 0.04 66.83 0.67 Transferase activity, poly(A) RNA-binding —

3 FAM160A1 0.06 65.39 0.66 — —

4 FRMPD2 0.09 63.72 0.65 1-phosphatidylinositol binding —

5 BMP5 − 0.01 63.01 0.65 Induces bone and cartilage development —

6 TSPYL4 0.18 63.48 0.65 Nucleosome assembly —

7 SLC30A9 − 0.22 66.59 0.65
Transcription factor activity, sequence-speci�c DNA 
binding, cationtransmembrane transporter activity, 

ligand-dependent nuclear receptor binding
DNA repair

8 FAM122A 0.23 62.77 0.64 — —

9 DNASE1L3 0.27 61.58 0.64
Cleaves chromatin DNA to nucleosomal units, 

endonuclease activity, calcium ion binding
—

10 FAM190A − 0.1 65.63 0.64 Involved in cell division Cell cycle

Underexpressed genes

11 PLEKHA9 0.48 69.93 0.65 Glycolipid binding, glycolipid transporter activity —

12 SMPD4 0.2 67.54 0.65 Sphingolipid metabolic and catabolic process —

13 AGTR1 − 0.19 66.35 0.65
G-protein coupled receptor activity, bradykinin 
receptor binding, angiotensin type I and type II 

receptor activity

Cell motility, Response 
to external stimulus

14 TMEM214 − 0.37 61.58 0.65
Mediates endoplasmic reticulum (ER) stress-

induced apoptosis by activating CASP4
—

15 CCM2 0.16 66.11 0.65
Crucial regulator of heart and vessel formation and 

integrity
Phosphorylation

16 MAP6D1 0.05 66.35 0.65 Calmodulin binding, microtubule binding —

17 SESTD1 − 0.37 68.02 0.65
Phosphatidylinositol-4,5-bisphosphate binding, 

phosphatidic acid binding
—

18 CASP4 0.2 65.39 0.65
Mediates endoplasmic reticulum (ER) stress-

induced apoptosis, cysteine-type peptidase and 
endopeptidase activity

Apoptosis, Immune 
response

19 IRF7 0.38 67.06 0.65
Transcription factor activity, RNA polymerase II 
core promoter proximal region sequence-speci�c 

binding

Immune response, 
Response to external 

stimulus

20 LPAR2 0.32 66.35 0.64
G-protein coupled receptor activity, PDZ domain 

binding, Stimulates phospholipase C
—

Table 1.  �e performance of single gene-based threshold models developed using top overexpressed 
and under-expressed genes in early stage of ccRCC patients along with the brief description of molecular 
function and cancer hallmark biological process (Cancer hallmark GO term) associated with each gene.
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Multiple genes biomarkers. Earlier, we described single gene-based threshold models, while this section focuses 
on multiple-gene based threshold models. In these models, expression of two or more genes is used as an input 
feature. Based on single gene threshold-based methods, we identi�ed top 50 genes from 19,166 genes with the 
highest ROC. �e correlation matrix for 50 genes was calculated and if any combination of gene had correlation 
greater than 0.6, then the gene with lower ROC was removed. A�er removing correlated genes, we obtained 28 
out of 50 genes and named the set as RCSP-set-�reshold. �e expressions of these 28 genes were used as input 
feature to develop machine-learning models to discriminate early and late stage of cancer. As shown in Table 2, 
SVM based model achieved maximum performance with ROC 0.78 and accuracy 73.27% on training dataset 
when evaluated using ten-fold cross-validation. We also evaluated performance of the above model on independ-
ent or external validation dataset and achieved maximum ROC of 0.77 with accuracy of 71.15%.

In order to understand the signi�cance of these selected genes in the biological processes, we performed 
interaction analysis of these 28 proteins. As shown in Fig. 1A, three proteins encoded by GNG7, LPAR2 and 
CHRM3 genes depicted direct interactions. �ese genes are major components of the phosphoinositide 3-kinase 
(PI3K)-Akt signaling pathway, which is known to be mutated in ccRCC patients as per the TCGA analysis8. A�er 
including the indirect interactions (no more than 10 interactors in �rst shell) among the 28-gene dataset, the 
interaction network revealed a hub node ubiquitin (UBC), pointing to the major role of ubiquitination in renal 
cancer. Usually, UBC is implicated in protein degradation, cell cycle regulation, DNA repair and is identi�ed to 
contribute towards cancer metastasis9. �e pathway analysis for renal carcinoma di�erentiating normal and can-
cer markers have also mentioned UBC as a vital player regulating numerous proteins10. In addition, a signi�cant 
network pattern comprising of GNB1, GNB2, GNB3, GNB4, GNB5 and GNG7 proteins was spotted. All these 
proteins are members of G protein family and govern major signaling cascades by transmitting signals from 
receptors to the e�ector proteins.

In the next analysis, we separated the above 28 genes into two groups; (i) Group-A containing 16 genes which 
are overexpressed in the early stage, and (ii) Group-B containing 12 genes, which are overexpressed in the late 
stage of cancer. Next, we developed threshold-based models using more than two genes and identi�ed the best set 
of genes from group A and B. For this purpose, we performed analysis on the genes of Group A, where the expres-
sion of top ranked gene is combined with the remaining 15 genes in an iterative manner and subsequently identi-
�ed the best pair of genes. As described in Methods, the threshold-based model utilizes mean expression of genes 
to classify the stage of ccRCC samples. �is best pair of genes is then combined with other genes one-by-one to 
identify the best three genes and so on. Finally, we obtained the best four genes i.e. NR3C2, ENAM, DNASE1L3 
and FRMPD2 (setA-1) from group A genes. �e same exercise was also repeated for the genes of group B pro-
viding the four best genes i.e. PLEKHA9, MAP6D1, SMPD4 and C11orf73 (setB-1) (Supplementary Table S1). 
We selected only up to four genes as the performance was not increasing further with the increase in number 
of genes. Moreover, we developed di�erent types of prediction models using setA-1 and achieved ROC 0.76 for 
SVM models on the training dataset. We also evaluated the performance on an independent dataset and achieved 
similar performance ROC 0.80. Similarly, for setB-1, we attained maximum ROC 0.74 on the training dataset and 
validation data. On combining setA-1 and setB-1 (i.e., Combo-1), ROC 0.77 and 0.80 was obtained on training 
dataset and external validation dataset respectively (Table 3).

Machine Learning based Features. In this section, we explain the selected features based on the perfor-
mance of models developed using machine-learning techniques. Instead of combining two genes by taking simple 
average (as done in previous section of multiple genes biomarkers), here we combined the two genes using SVM. 
In the previous section, we combined the expression of genes for developing the threshold-based method for 
more than one gene. Here, we developed SVM based models using best two genes, three genes, four genes and so 
on, to further identify the minimum number of features for obtaining the best model. First, genes of Group-A (16 
genes) were used for developing the two genes based SVM model, and we then discovered the best pair of genes 
for developing SVM model. Similarly, we searched the third gene with the best pair of genes, which gave best 

Technique Dataset

Performance Measures

Sensitivity Speci�city Accuracy (%) MCC ROC

RF
Training 73.62 72.12 73.03 0.45 0.77

Validation 73.02 60.98 68.27 0.34 0.74

Naive Bayes
Training 75.98 67.27 72.55 0.43 0.76

Validation 77.78 60.98 71.15 0.39 0.76

SMO
Training 83.86 55.76 72.79 0.42 0.70

Validation 80.95 53.66 70.19 0.36 0.67

J48
Training 64.17 66.06 64.92 0.3 0.67

Validation 68.25 58.54 64.42 0.26 0.67

SVM
Training 75.98 69.09 73.27 0.45 0.78

Validation 74.6 65.85 71.15 0.4 0.77

Table 2.  �e performance of classi�cation models based on RCSP-set-�reshold (28 genes) developed 
using di�erent machine learning techniques on training and independent or external validation dataset. 
�ese RCSP-set-�reshold features are selected by the threshold-based approach followed by the removal of 
correlated features.
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Figure 1. �e protein–protein interaction network among the potential ccRCC biomarkers generated using 
STRING database (with direct and indirect interactions) ((a) for RCSP-set-�reshold, (b) for RCSP-set-Weka, 
and (c) for RCSP-set-Weka-Hall).

Features Dataset Technique

Performance Measures

Sensitivity Speci�city Accuracy (%) MCC ROC

setA-1  
(4 genes)

Training
SVM

71.65 70.3 71.12 0.41 0.76

Validation 68.25 78.05 72.12 0.45 0.80

Training
RF

70.87 65.45 68.74 0.36 0.69

Validation 73.02 58.54 67.31 0.32 0.74

setB-1  
(4 genes)

Training
SVM

71.26 70.3 70.88 0.41 0.74

Validation 74.6 68.29 72.12 0.42 0.74

Training
RF

80.31 49.7 68.26 0.32 0.65

Validation 82.54 51.22 70.19 0.36 0.68

Combo-1 
(8 genes)

Training
SVM

75.20 70.30 73.27 0.45 0.77

Validation 77.78 68.29 74.04 0.46 0.80

Training
RF

81.1 55.15 70.88 0.38 0.73

Validation 82.54 51.22 70.19 0.36 0.74

Table 3.  �e performance of Support vector machine (SVM) and Random Forest (RF) based models 
developed using di�erent sets of selected features on training and independent or external validation 
dataset. �ese gene sets include setA-1 (4 overexpressed genes), setB-1 (4 under-expressed genes) and 
Combo-1 (combination of both gene sets i.e. setA-1 and setB-1).
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SVM model. �is process was repeated till the performance was saturated, and we obtained the best SVM model 
using �ve genes (setA-2). Similar procedure was repeated for Group-B genes to �nd the �ve best genes (setB-2) 
(Supplementary Table S2). �e SVM model using best setA-2 achieved maximum ROC of 0.75 with an accuracy 
of 70.88% on training dataset and accuracy of 67.31% and ROC of 0.75 on validation dataset (Table 4). As shown 
in Table 4, SVM model based on setB-2 gave a maximum accuracy of 69.69% and ROC of 0.76 on training data-
set and accuracy of 64.42% and ROC of 0.72 on the validation dataset. In order to increase the performance, we 
further combined the best genes from Group A and B and pooled the best ten genes (Combo-2). �e SVM model 
based on these ten genes got a maximum accuracy of 72.62 and ROC of 0.78 on training data and accuracy of 
70.19 with ROC of 0.77 on the validation dataset (Table 4).

In total, the threshold-based and SVM-based features provided 15 genes. �eir normalized log2 RSEM expres-
sion distribution in the early and late stage is shown in Fig. 2 in the form of boxplots. �e p-value is calculated 
using Wilcoxon rank-sum test. �e computed p-value is less than 0.01 in all the cases that show a signi�cant 
di�erence in normalized expression values of these genes in early and the late stage ccRCC.

Weka Based Features. In this section, the feature selection was performed by Weka and the number 
of features was reduced from 19,166 to 64 features (RCSP-set-Weka). We used features from RCSP-set-Weka 
(Supplementary Figure S1) for developing models based on different machine-learning algorithms where 
SVM-based model achieved maximum ROC of 0.83 with accuracy 78.18% on training dataset (Table 5) and ROC 
of 0.81 with accuracy 72.64% on the validation dataset (Table 5).

Features Dataset Technique

Performance Measures

Sensitivity Speci�city Accuracy (%) MCC ROC

setA-2  
(5 genes)

Training
SVM

68.9 73.94 70.88 0.42 0.75

Validation 65.08 70.73 67.31 0.35 0.75

Training
RF

81.5 56.97 71.84 0.4 0.73

Validation 77.78 46.34 65.38 0.25 0.68

setB-2  
(5 genes)

Training
SVM

68.9 70.91 69.69 0.39 0.76

Validation 60.32 70.73 64.42 0.3 0.72

Training
RF

71.65 64.85 68.97 0.36 0.71

Validation 69.84 56.1 64.42 0.26 0.70

Combo-2 
(10 genes)

Training
SVM

72.44 72.89 72.62 0.45 0.78

Validation 71.43 68.29 70.19 0.39 0.77

Training
RF

76.19 65.85 72.12 0.42 0.76

Validation 70.47 70.3 70.41 0.4 0.76

Table 4.  �e performance of Support vector machine (SVM) and Random Forest (RF) models developed 
using di�erent sets of features selected via SVM technique on training and independent or external 
validation dataset.

Figure 2. A box plot diagram representing median log expression distribution of 15 genes di�erentially 
expressed in early and late stage of ccRCC with a p-value < 0.01 calculated using Wilcoxon rank-sum test. 
�ese genes are the union of Combo-1 and Combo-2 sets.
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We performed the interaction analysis of RCSP-set-Weka using STRING database and found the signi�cance 
of various markers such as CASP9, FGFR3, FGF5, CHRM3 and GPR68 depicting direct interactions and ATG3, 
ULK1, CNOT7, TOB1, HBG1 and TFAP4 portraying indirect interactions (no more than 10 interactors in �rst 
shell) through various levels of regulations (Fig. 1B). ULK1 and ATG3 are autophagy associated genes wherein 
the components of the process are well deciphered in chronic kidney disease by a�ecting the mTOR pathway11. A 
conserved pattern comprising of FGF3, FGF4, FGF5, FGF7 and FGFR4 proteins belonging to a family of �broblast 
growth factors is also found in the network. �ese proteins are key players in cell proliferation, di�erentiation, and 
signaling pathways and have critical involvement in developmental processes. In addition, these proteins are also 
considered as potential targets for designing therapies against RCC12,13.

Cancer Hallmark GO-term based models. In order to encompass a comprehensive list of cancer mark-
ers, we also selected a subset of genes, which are components of cancer hallmark processes like apoptosis, DNA 
repair, cell cycle, cell adhesion, cell growth, phosphorylation, response to external stimulus, cell motility and 
immune response. We got 38 (RCSP-set-Weka-Hall) features from 4,843 genes using Weka and achieved an accu-
racy of 77.7% with ROC 0.83 on training data and accuracy of 72.64% with ROC of 0.78 on the validation data 
(Table 6). �e accuracy obtained on validation dataset from the cancer RCSP-set-Weka-Hall was the same as 
obtained from the RCSP-set-Weka. Hence, this feature selection is more reliable as the search space has been 
re�ned to lesser number of features. �is method used only those genes (Supplementary Table S3) which are 
covered in cancer hallmark GO processes.

Figure 1C evidently represents the interactions (direct and no more than 5 interactors in �rst shell) from the 
cancer hallmark GO term related proteins. A number of key players in ccRCC are spotted in the network with 
PCNA and SOX9 as hub proteins controlling the operations of many neighboring proteins like POLD3, HUS1B 
and MNX1. PCNA is a well known molecular marker for proliferation14 and SOX9 is known to be upregulated 
in metastatic renal cell carcinoma and causes drug resistance in cancer by activating Raf/MEK/ERK pathway15. 
Most of the proteins are well established markers for renal cancer progression16 as they are directly extracted from 
cancer hallmark processes. A conserved sub-network of ribosomal proteins is also observed in the interaction 
map demonstrating the elevated need of proteins required for tumor proliferation.

Technique Dataset

Performance Measures

Sensitivity Speci�city Accuracy (%) MCC ROC

RF
Training 80.63 81.10 80.82 0.61 0.87

Validation 78.12 64.29 72.64 0.43 0.75

Naive Bayes
Training 79.05 70.12 75.54 0.49 0.81

Validation 75.00 64.29 70.75 0.39 0.76

SMO
Training 84.19 70.12 78.66 0.55 0.77

Validation 79.69 66.67 74.53 0.47 0.73

J48
Training 67.19 74.39 70.02 0.41 0.73

Validation 64.06 88.10 73.58 0.51 0.79

SVM
Training 79.84 75.61 78.18 0.55 0.83

Validation 73.44 71.43 72.64 0.44 0.81

Table 5.  �e performance of models based on di�erent machine techniques using RCSP-set-Weka (64 
genes) selected by Weka. �ese models were evaluated using 10-fold cross validation on training dataset as well 
as on independent or external validation dataset.

Technique Dataset

Performance Measures

Sensitivity Speci�city Accuracy (%) MCC ROC

RF
Training 75.10 78.66 76.50 0.53 0.84

Validation 67.19 78.57 71.70 0.45 0.75

Naive Bayes
Training 79.84 71.34 76.50 0.51 0.83

Validation 75.00 66.67 71.70 0.41 0.79

SMO
Training 85.77 66.46 78.18 0.54 0.76

Validation 82.81 59.52 73.58 0.44 0.71

J48
Training 71.54 61.59 67.63 0.33 0.69

Validation 68.75 71.43 69.81 0.39 0.68

SVM
Training 80.24 73.78 77.70 0.54 0.83

Validation 73.44 71.43 72.64 0.44 0.78

Table 6.  �e performance of models developed using di�erent machine techniques based on RCSP-set-
Weka-Hall (38 genes) selected from Weka. �ese genes are speci�cally involved in cancer hallmark biological 
processes (Cancer hallmark GO terms). �e model was evaluated using 10-fold cross validation on training 
dataset as well as on independent external validation dataset.
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We also built models combining clinical features (Age and Gender) with RCSP-set-Weka and 
RCSP-set-Weka-Hall selected features but no substantial enhancement in the performance was observed 
(Supplementary Figures S2 and S3). In addition, we combined the three types of features i.e. RCSP-set-�reshold 
features, RCSP-set-Weka features and RCSP-set-Weka-Hall selected features into various combinations but there 
was just a marginal rise in the performance (Supplementary Table S4).

Gender-based Classification Models. It has been widely studied that there are gender-speci�c di�er-
ences in the development and survival of various tumors17,18. We analyzed if there is a requirement of di�erent 
stage-speci�c putative markers for ccRCC in the case of males and females. We computed average expression 
of each gene in 200 early and 138 late stage male samples. Supplementary Table S5 depicts the top 10 genes 
that have a maximum difference in average expression in the early and late stage of male ccRCC samples. 
Similarly, top ten genes having a maximum di�erence between early and late stage of female samples is shown in 
Supplementary Table S6. As shown in Supplementary Tables S5 and S6, only two genes were shared between top 
10 genes in male and female samples. �e di�erence in these genes indicates that genomic expression is regulated 
di�erentially in males and females.

�us, we developed gender-speci�c models for classi�cation of ccRCC. First, the male-speci�c models were 
developed using 80% male samples (159 early and 109 late stage). �e Weka-based feature selection method (as 
discussed in Methods) was used for selecting 64 features. �ese features were used for developing models and got 
maximum ROC 0.87 with an accuracy of 80.22% (Table 7) on training dataset and 77.14% accuracy with ROC 
of 0.80 on validation dataset (41 early stage and 29 late stage samples) using SVM. Second, classi�cation models 
were trained on female samples (93 early and 54 late stage) where ROC 0.90 with accuracy 85.71% was achieved 
(Table 7) using SVM. 78.95% accuracy and 0.82 ROC was obtained on validation dataset of females (24 early 
stage samples and 14 late stage samples). �ese results indicate that gender-speci�c models can be more speci�c. 
However, to make this conclusion concrete, we require a signi�cant number of samples separately for male and 
female categories. Only one gene, CTSG is common between male and female speci�c biomarkers that points to 
the di�erent regulation of tumor microenvironment in di�erent genders.

�e male and female protein-protein interaction network (Supplementary Figure S4) reveals the signi�cance 
of markers involved in di�erent cellular processes. In the female dataset, GAPDH is acting as a hub node connect-
ing many proteins like CTSG, STAT2, GCLC and WWOX, thus regulating numerous proteins and is considered 
a critical component of apoptosis19. �e proteins in this network are primarily regulating multiple signaling cas-
cades such as MAP kinase, RAS signaling, and PI3K/AKT signaling. When expanding the network connectivity 
(no more than 5 interactors in �rst shell), it depicts association with a complex network of proteins from the 
ribosomal protein family (RPL24, RPL30, RPL31, RPL38 and RPL39). �ese ribosomal proteins play a vital role in 
cancer progression by directing elevated protein synthesis in cancer proliferation20,21. Whereas the male dataset 
provides lesser direct interactions and constitutes mainly of indirect interactions (no more than 5 interactors in 
�rst shell) involving a family of proteins COPB1, COPB2, COPA and COPG1 which are involved in intracellular 
transport. �ese biomarkers are also vital components of cell signaling and cell proliferation processes.

Functional enrichment of deduced markers. A comprehensive search was perceived for all the cate-
gories comprising of 64 (RCSP-set-Weka), 38 (RCSP-set-Weka-Hall), 28 (RCSP-set-�reshold), 8 (Combo-1), 
10 (Combo-2). Figure 3 represents the comparative gene ontology information on all the characterized markers 
where a majority of genes were implicated in metabolic processes, biological regulation, protein binding, ion 
binding and were localized mainly in the membrane and nucleus. �e inferred potential markers are involved 
in essential cellular processes and signaling pathways like VEGFR, PDGFR-beta, PAR1-mediated thrombin, 
IL5-mediated and mTOR signaling; thus, governing vital cancer-related processes such as cell growth, prolifera-
tion, motility, and survival. �e dataset subjected to enrichment analysis also revealed the involvement of CTSG 
and NR3C2 in ACE inhibitor pathway, which is already extensively studied for RCC.

In addition, the exploration of regulatory elements such as transcription factors (TFs) assisted in comprehend-
ing the regulatory pattern observed by these markers; revealing multiple binding associations of a few TFs with 
key candidates reported in the study. STAT5A, HFH3, NFAT, FOXO4, and IRF1 are some of the TFs that bind to 

Gender Technique Dataset

Performance Measures

Sensitivity Speci�city Accuracy (%) MCC ROC

Female

RF
Training 87.1 88.89 87.76 0.75 0.93

Validation 75 71.43 73.68 0.45 0.76

SVM
Training 89.25 79.63 85.71 0.69 0.90

Validation 75 85.71 78.95 0.59 0.82

Male

RF
Training 83.02 73.39 79.10 0.57 0.83

Validation 75.61 58.62 68.57 0.35 0.72

SVM
Training 83.02 76.15 80.22 0.59 0.87

Validation 78.05 75.86 77.14 0.53 0.80

Table 7.  �e performance of gender-speci�c Support vector machine (SVM) and Random Forest (RF) 
models developed using Weka selected genes/features on training and independent or external validation 
dataset.
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multiple targets derived from the acquired ccRCC markers. IRF1 alone is believed to regulate the expression of 
NR3C2, PITX1, DNASE1L3 and BMP5 genes by binding to interferon stimulated regulatory element (ISRE) in 
the promoter of these genes.

Figure 3. �e gene ontology analysis depicting percentage distribution of di�erent biomarkers in major 
biological processes, molecular functions and cellular components from the �ve gene sets. In the process of 
gene enrichment, 56 out of 64 genes, 32 out of 38 genes, 26 out of 28 genes, 8 out of 10 genes and 7 out of 8 genes 
were annotated respectively.
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�e gene enrichment analysis was also performed for gender-speci�c di�erentiation of markers where the 
majority of proteins in males were involved in developmental processes, cell communication, multicellular organ-
ismal processes and proliferation processes as compared to females. Subsequently, these results portray increased 
susceptibility of males for developing ccRCC which is in harmony with the global statistics for ccRCC. A par-
allel analyses on its cellular component shows that male related proteins are mainly localized in nucleus, endo-
membrane system and envelopes whereas female related proteins are mainly components of a macromolecular 
complex (Supplementary Figure S5). �e process of cell proliferation dominates in males while female dataset 
marginally highlighted the signi�cance of cell death process.

Web Server Implementation. In order to assist the scienti�c community, we developed a web server, 
CancerCSP (clear cell renal cancer stage prediction), that implements models developed in the current study for 
analysis and prediction of cancer stage from the gene expression data. �is server has two major modules; one for 
predicting the cancer stage, and another for the analysis of gene expression data.

Prediction Module. �is module allows the users to predict the cancer stage of their sample using RSEM gene 
expression quanti�cation values. �e user needs to provide gene expression (RSEM values) of biomarker genes 
for every patient. �e number of patients corresponds to the number of columns in a �le. �e output includes a 
list for patient and corresponding predicting stage of cancer (early or late stage). �e user can choose among the 
models developed from RCSP-set-Weka, RCSP-set-Weka-Hall, Combo-1 and Combo-2 sets, which have been 
deduced as putative biomarkers sets for stage progression of ccRCC.

Data Analysis Module. �e gene statistics module is helpful in evaluating the role of each gene in discrimination 
of early stage from the late stage. �is module gives p-value (calculated using Wilcoxon rank test) for each gene 
that signi�es whether the gene expression in early and late stage varies signi�cantly. It also gives threshold-based 
ROC of each gene along with average expression of that gene in the early and late stage of cancer. �is module 
also provides normalized threshold score of each gene and converts the RSEM value to a z-score so that user can 
compare whether the z-score is above or below the threshold. �is web server is available from URL http://crdd.
osdd.net/raghava/cancercsp/ for public use.

Discussion
�e main aim of this study was to �nd a signature panel with a minimum number of genes that can reasona-
bly discriminate early and late stage of ccRCC patients using gene expression data. We ranked each gene based 
on performance (ROC value) of their classi�cation models to distinguish the early and late stage of cancer. 
Interestingly, NR3C2 gene has shown highest classi�cation ROC of 0.67 using threshold-based model individ-
ually. NR3C2 has previously been described as tumor suppressor gene, and its role has already been demon-
strated in renal and pancreatic cancer22,23. Reduced level of this gene has shown poor survival in pancreatic cancer 
patients24. It has also been found to be downregulated in �ve types of cancer in TCGA25. Further, a list of top 
28 genes (RCSP-set-�reshold) is proposed which classify early and late patients with ROC of 0.77. �e genes 
in this panel have been implicated in the PI3K-Akt signaling pathway as per the enrichment analysis, which is 
analogous to the TGCA mutation analysis for ccRCC. �e network analysis using STRING database pointed out 
that the genes in our RCSP-set-�reshold panel indirectly interact with UBC stating concordance with a previous 
network study on renal cancer10. We further extracted RCSP-Combo-1 (8 genes) and Combo-2 (10-genes) from 
RCSP-set-�reshold. According to our analysis, DNASE1L3 gene, present in Combo-1 panel is overexpressed 
in early stage and is a DNase I-family endonuclease that has previously been associated in inducing apoptosis in 
cancer cell lines26–28. Another marker BMP5, present in Combo-1 panel has also been implicated in pancreatic 
and other cancers and has shown lower expression in cancer cells as compared to normal cells, indicating that 
expression of BMP5 decreases in the later stages29. FRMPD2, present in Combo-2 panel has shown potential role 
in tight junction formation and also known to be downregulated in various epithelial cancer cell lines30. Likewise, 
in our study, this gene is found to be downregulated in the late stage as compared to early stages of ccRCC. �e 
Combo-1 and Combo-2 panels provide a few genes that already have their implication as putative biomarkers 
in other cancers and also suggest some novel genes like ENAM, whose role in cancer has not been investigated.

A�er analyzing the data using simple threshold based methods, we used well-known feature selection meth-
ods to get a list of putative biomarkers. �e �nal set of 64 genes (RCSP-set-Weka) is selected by resampling 100 
times and has maximum overlap among all the 100 sets. It evidently discriminated with fair ROC of 0.81 on the 
external validation dataset. Next, the biomarker panel is selected only from cancer Hallmark GO terms. With 38 
gene subset (RCSP-set-Weka-Hall), ROC of 0.78 was obtained on the validation dataset. �e integration of cancer 
hallmark GO-term feature selection module in the server is an advancement in the study by reducing the number 
of features substantially without loosing the performance. Resampling of the dataset also facilitated the robust-
ness of proposed ccRCC marker genes. Many of the biomarkers found in our study have already been implicated 
in renal and other cancers (Supplementary Table S7).

In this study, we have also attempted to develop gender-speci�c models for male and female datasets. �e 
di�erent genes selected as putative biomarkers throw insights on the di�erential regulation and development of 
tumor-related genes in males and females. �e main lead in this study is that we have been able to achieve rea-
sonable performance on very less number of genes that could be used for predicting the stage of renal cancer. We 
have also developed a web-based platform CancerCSP, which can analyze the gene expression data of a sample 
and predict whether it is an early stage patient or late stage patient with a score using RSEM values.

http://crdd.osdd.net/raghava/cancercsp/
http://crdd.osdd.net/raghava/cancercsp/
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Conclusion
In brief, this study categorizes early and late stage patients of ccRCC, using gene expression data with simple 
threshold-based classi�cation methods and general machine learning techniques. �e feature space has been 
e�ectively condensed from nearly 20,000 genes to minimum eight genes using simple threshold-based mod-
els. �e Combo-1 set based threshold models achieved ROC 0.77 with accuracy 70.19%. �e features selected 
through Weka using correlation-based algorithm provided 64 features, (RCSP-set-Weka) which gave 72.64% 
accuracy and ROC of 0.81 on the validation dataset. We also developed RCSP-set-Weka-Hall subset consisting 
of 38 genes, selecting only from subset of genes associated with cancer hallmark processes. �is set gave similar 
performance to RCSP-set-Weka with lesser number of genes and thus gives major putative markers which can 
help in asserting progression of cancer to late stage. We have also tried to develop gender-speci�c models that 
could increase the performance of prediction in a particular gender.

Ultimately, a web platform CancerCSP is developed where the user can provide gene expression (RSEM val-
ues) and can predict whether the cancer is in the early or late stage. �is type of machine learning application 
where minimum numbers of genes are used to delineate the early and late stage of cancer using high-throughput 
data can provide better insights to understand the mechanisms responsible for metastasis in various cancers. 
�e study possesses clinical as well as prognostic potential by predicting the stage of ccRCC patients. Hence, the 
resource will be of utmost use for biological researchers and even medical practitioners for making preliminary 
postulations regarding cancer staging.

Methods
Datasets. �e Level 3 RNAseq expression data for 523 ccRCC patients with KIRC (Kidney Renal Clear Cell 
Carcinoma) was obtained from the TCGA data portal with their clinical information in the form of Biospecimen 
Core Resource (BCR) IDs for patients from the Biotab utility. �e dataset provides gene expression values in 
the form of RSEM for 20,531 genes in tumor samples of the patients. �e obtained data consists of raw counts 
and RSEM values. In our work, RSEM values were used as quanti�cation values, and only tumor samples with 
matched normal or unmatched normal were taken into consideration. We de�ned stage I and stage II patients 
as early stage patients and stage III and stage IV patients as late stage patients. In this study, 80% samples (419 
patients) were used for training and testing called training dataset. Remaining 20% samples (104 patients) were 
used for external validation called as independent or external validation dataset (Supplementary Table S8). �e 
other general clinical characteristics like age and gender are shown in Supplementary Figure S6.

Processing of Data. It was observed that gene expression values have a wide range of variation; therefore 
we transformed the RSEM values using log2 a�er adding 1.0 as a constant number to each RSEM value. Before 
normalizing the data, we removed the features with low variance of 0.25 using caret package in R31. A�er remov-
ing low variance features, the features were reduced to 19,166 from 20,531. Subsequently, we normalized the log2 
transformed RSEM values for each gene and converted it to z-score using the caret R package. Following equa-
tions were used for computing the transformation and normalization:

= +x log RSEM( 1) (1)2

=

−

Z
x x

s
_

(2)score

Where Z_score is the normalized score, x is the log-transformed gene expression, x is the mean expression of a gene 
in the training dataset, and s is the standard deviation of a gene in the training dataset. �e mean and standard 
deviation of training features were used to normalize the validation dataset.

Development of prediction models. �reshold-based model. In this study, a simple approach has been 
used to discriminate early and late stage of cancer using the expression of a gene. �is method is based on the 
fact that few genes are di�erentially expressed in di�erent stages of cancer. In this approach, for every gene, we 
selected a threshold, which determines whether a sample is in an early or late stage according to the expression of 
that gene. If a gene is overexpressed in the early stage i.e. its average normalized expression is more in early stage 
as compared to the late stage in training data and for a given sample its normalized expression is more than the 
threshold, then we classify that sample as early stage otherwise as late stage. Whereas, if the gene is overexpressed 
in late stage i.e. its average normalized expression is less in the early stage as compared to the late stage in training 
data and for a given sample its normalized expression is more than the threshold, then we classify that sample as 
late stage otherwise as early stage. Further, to optimize the threshold to achieve the best performance, iteration 
technique was used; where the threshold was increased or decreased systematically for a range of normalized 
expression values across all the samples for a particular gene. For every gene, that threshold was selected, which 
gave maximum classi�cation performance in terms of area under receiver operating characteristic curve (ROC). 
In this study, we called this approach as threshold approach and these models as threshold-based models.

Implementation of machine learning techniques. In order to develop machine learning based models, we used 
two so�ware packages SVMlight 32 and Weka33. Here we used RBF kernel of SVM at di�erent parameters; g ∈  [10−4–
10], c ∈  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], j ∈  [1, 2, 3, 4, 5] for optimizing the SVM performance. Random forests, SMO, 
Naïve Bayes, J48 were implemented using Weka so�ware.

Feature Selection. Feature selection is a major step for selecting the relevant features across a large number of 
features for developing better classi�cation models. �is selection also rules out the possibility of over�tting in 
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prediction models. In this study, expression of genes is used as features for classi�cation of samples. �ese features 
or genes were further ranked or selected using following techniques.

Features selection using threshold-based models. In order to rank the genes, we developed a threshold-based 
model for each gene and computed the discriminatory power of the model in terms of ROC. It means the dis-
criminatory power of a gene is proportional to the performance (ROC) of the threshold-based model of a gene. 
We ranked all the genes based on ROC value of their model and selected top 50 genes having maximum dis-
criminatory power. For eliminating the redundancy among genes or features, we removed all those genes having 
correlation 0.60 or more. A�er removing the redundant genes, we got a set of 28 genes where no two genes had 
correlation more than 0.60. In addition to individual gene-based models, we also developed threshold-based 
models using two or more genes. In this case, we computed mean expression of a number of genes and developed 
a threshold-based model using the mean expression of these genes. Following equation is used for computing the 
mean expression of genes.

=
+ …..

CE
g g g

N (3)
n1 2

where CE is the mean expression, N is number of genes, g1 is normalized gene expression of gene G1; gn is normal-
ized gene expression of gene Gn.

It is important to note that this technique works only when we combine genes of one type (e.g., overexpressed 
or underexpressed in the early stage of cancer). We cannot combine genes where some genes are overexpressed in 
the early stage of cancer and remaining are overexpressed in late stage of cancer.

Feature selection for machine learning techniques. Ranking genes based on SVM models: In this technique, �rst 
we selected the best gene called G1, showing highest discriminatory power in threshold-based models. In next 
step, we combine gene G1 iteratively with other genes and further identify the best gene, which provides the 
best performance with gene G1. �e gene that gives the best performance with G1 is called gene G2. �is means 
two-genes based SVM model gives the best performance using gene G1 and G2. Similarly, we developed three 
genes based SVM model where we identi�ed the third gene G3 that gives the best performance with G1 and G2. 
�is process is repeated to rank the genes.

Weka-Based: In addition, we selected features using software package Weka34 and used attribute evalu-
ator named, ‘SymmetricalUncertAttributeSetEval’ with search method of ‘FCBFSearch’. �e algorithm Fast 
Correlation-Based Feature (FCBF) selection utilizes predominant correlation to identify relevant features in 
high-dimensional datasets in reduced feature space35. In order to select the robust features, the data was split into 
the ratio of 80:20 for 100 times followed by features selection using Weka every time on the training dataset. From 
this resampling process, we obtained 100 sub-sets of features. �e feature sub-set depicting maximum overlap in 
terms of number of features with other sub-sets was selected for model development.

Weka-hallmark based: In order to identify key genes involved in ccRCC, we selected all the genes from can-
cer hallmark processes given by Hanahan and Weinberg36. �ey de�ned the multistep development of human 
tumors with acquisition of six biological capabilities which include sustaining proliferative signaling, escaping 
growth suppressors, defying cell death, supporting replicative immortality, inducing angiogenesis and metastasis, 
reprogramming of energy metabolism and evading immune destruction. Many earlier studies have used cancer 
hallmark genes to de�ne the genes responsible for prognosis of cancer37,38. Out of the total 20,000 genes 4,843 
genes mapped to the cancer hallmark GO terms. To further select genes from already known cancer related genes, 
we did feature selection only using these genes and for 9 hallmark processes.

Gender-Specific Features. We have also developed gender-speci�c models by separating 338 males and 
185 females (ccRCC patients) from the TCGA samples. Here, training and validation data have been used to 
develop 10-fold cross-validated models for males and females. Features were selected on the basis of above 
described Weka algorithm and threshold-based ROC calculation.

Cross-validation technique. �e 10-fold cross-validation technique was used to evaluate the performance 
of various SVM models. In this technique, patients were indiscriminately separated into ten sets, of which nine 
sets were used for training and the remaining set was used for testing. �e process is recapped ten times in such 
a way that each set is used just once for validation. �e �nal performance was obtained by taking the mean per-
formance of all the ten sets.

Performance measures. �e performance of various models developed in this study was computed using 
threshold-dependent as well as threshold-independent parameters. In threshold-dependent parameters, we used 
sensitivity (Sn), speci�city (Sp), overall accuracy (Ac) and Matthews correlation coe�cient (MCC) using the 
following equations:

=
+

∗Sensitivity Sn
TP

TP FN
( ) 100

(4)

=
+

∗Specificity Sp
TN

TN FP
( ) 100

(5)
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=
+

+ + +
∗Accuracy Ac

TP TN

TP FP TN FN
( ) 100

(6)

=
∗ − ∗

+ + + +

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN

( ) ( )

( )( )( )( ) (7)

where TP and TN are the true positive and true negative predictions. FP and FN are false positive and false neg-
ative predictions respectively.

The above parameters are threshold dependent parameters for measuring the performance of a model. 
It means performance measures described above will vary with the threshold. �us, it is di�cult to measure 
the performance of a model using single parameter. In order to overcome this problem, we also calculated a 
threshold-independent parameter called ROC, which is computed from receiver operating characteristic (ROC) 
plot in this study. �e ROC curve is created by plotting sensitivity or true positive rate against the false positive 
rate (1-speci�city) at di�erent thresholds. Finally, we calculated the area under ROC curve to compute a single 
parameter from this curve called ROC in this study. We used this ROC value for optimizing and measuring the 
performance of our models.

Gene annotation and enrichment analysis. In order to estimate the e�ciency and biological implica-
tions of these predicted markers in ccRCC, the genes were subjected to functional enrichment analyses. Various 
biological parameters including their molecular functions, biological processes, regulatory elements and cel-
lular components were identi�ed through intensive manual curation and a web-based gene set analysis toolkit 
(WebGestalt)39. �e enrichment was characterized via p-values using hypergeometric test, further adjusted by 
Benjamini and Hochberg’s multiple testing approach. �e markers obtained from all the datasets were then ana-
lyzed for interaction studies where the association among these markers and other regulatory elements were 
elucidated using KEGG40 and STRING databases41 providing clues for their putative roles in ccRCC.
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