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Abstract Purpose:Thepoorprognosis of hepatocellular carcinoma (HCC) is, inpart, due to thehigh rate of
recurrence evenafter ‘‘curative resection’’of tumors.Therefore, it is axiomatic that the development
of an effective prognostic predictionmodel for HCC recurrence after surgery would, at minimum,
help to identify in advance thosewhowouldmost benefit from the treatment, andat best, provide
new therapeutic strategies for patientswith ahigh riskof early recurrence.
Experimental Design: For the prediction of the recurrence time in patients with HCC, gene
expression profiles were generated in 65 HCC patients with hepatitis B infections.
Result: Recurrence-associated gene expression signatures successfully discriminated between
patients at high-risk and low-risk of early recurrence (P = 1.9 � 10-6, log-rank test). To test the
consistency and robustness of the recurrence signature, we validated its prognostic power in
an independent HCC microarray data set. CD24 was identified as a putative biomarker for the
prediction of early recurrence. Genetic network analysis suggested that SP1and peroxisomepro-
liferator ^ activated receptor-amight have regulatory roles for the early recurrence of HCC.
Conclusion:We have identified a gene expression signature that effectively predicted early
recurrence of HCC independent of microarray platforms and cohorts, and provided novel biolog-
ical insights into the mechanisms of tumor recurrence.

Hepatocellular carcinoma (HCC) is one of the most common
cancers in the world, accounting for an estimated 600,000
deaths annually (1). The resistance of HCC to existing
treatments and the lack of biomarkers for early detection make
it one of most hard-to-treat cancers. Surgical tumor resection,

including liver transplantation, remains the only curative
modality for HCC. Although the progress of surgery and
preoperative or postoperative care have improved the survival
of patients with HCC, it is disappointing that the recurrence
rate remains high even after curative resection of tumors. HCC
recurrence is a serious complication following the resection of
the primary tumor and occurs in 75% to 100% of patients
within 5 years after surgery (2–4). In light of the dismal clinical
outcome of this neoplasm, the development of effective
systems that can predict the likelihood of recurrence is much
needed. This will help in deciding therapeutic strategies for
patients with HCC according to the predicted risk of recurrence.
Several attempts have been made to predict recurrence and

prognostic outcomes based on single or multiple clinicopath-
ologic features such as the severity of the liver function, age,
tumor grade, size, microvascular invasion, portal vein throm-
bosis, and the presence of microsatellite regions (2, 5–7).
Prognostic staging systems have also been proposed to stratify
patients according to expected survival (8–10). However, their
prognostic significances and clinical utilities needed to be
further validated with large-scale studies (11, 12).
Recent studies on gene expression profiles could successfully

predict recurrence, metastasis, or survival prognosis of HCCs
(13–17). Even though these studies successfully provide
prognostic markers for clinical application, the lack of
consistency and robustness of predictors generated from
different microarray platforms remain one of the major
obstacles for the clinical use of microarray-based predictors
(18, 19). As the lack of reproducibility mainly comes from the
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heterogeneity of the patient cohorts and the difference in
microarray platforms, it is important to identify a reliable and
consistent predictor that is robust enough to overcome the
variabilities introduced by different platforms or different
patient cohorts.
In the present study, we examined the gene expression

profiles of 65 patients with HCC associated with the same viral
background of hepatitis B virus (HBV) infection and identified
molecular markers that predict HCC prognostic subtypes of
high-risk and low-risk of early recurrence. The robustness and
consistency of predictability was validated when our gene
expression signature was applied to a completely independent
patient cohort (15). This suggests that the signature would be
more accurate and promising for clinical application. More-
over, as all of the 65 patients were HBV positive, these gene
expression profiles might chiefly help in the understanding of
HBV-related hepatocarcinogenesis. Detailed functional analyses
of the prognostic subtypes provide novel molecular insights
into HCC recurrence mechanisms.

Patients andMethods

Patients. Between February 2001 and May 2005, we prospectively
collected resected HCC specimens with a pathologically proven cirrhotic
background from 65 patients who were chronically infected with HBV
and had surgical treatment for HCC at Seoul National University
Hospital. All patients were preoperatively evaluated with routine blood
tests, a-fetoprotein, routine X-ray, abdominal ultrasonography, and
two-phase spiral liver computed tomography scan. Space-occupying
lesions in the liver remnant were examined by intraoperative ultraso-
nography; no distant metastases or space-occupying lesions were
identified in the nonresected part of the liver of any of the individuals
in this study. We excluded subjects who were positive in serologic tests
for anti-HCV or anti-HIV (HCV3.2; Dong-A Pharmaceutical Co.;
Greencross Life Science Corp.). Patients with other types of liver disease,
such as autoimmune hepatitis, toxic hepatitis, primary biliary cirrhosis,
or Budd-Chiari syndrome were also excluded. The study protocol was
approved by the institutional review board for the use of human subjects

at the Seoul National University School of Medicine, and all
participants provided written informed consent. We defined curative
resection as complete excision of the tumor with clear microscopic
margins and no residual tumors as indicated by computed tomogra-
phy scan at 1 month after surgery. To assess tumor size and undertake
pathologic examination, we sectioned the resected specimens using the
slice with the largest diameter, which we then cut at intervals of 5 mm.
Two experienced pathologists independently examined all samples for
evidence of residual tumors at the surgical margin, tumor differenti-
ation, stage, and presence of vascular invasion. Based on these
examinations, all 65 patients were determined to have received
‘‘curative resection.’’ Patients were followed up at least once every 3
months after surgery.

Microarray experiments and analysis. Total RNA was extracted from
frozen tissues using TRIzol (Invitrogen) and then cleaned using an
RNeasy Mini kit (Qiagen). Five micrograms of total RNA from the HCC
tissues was used for labeling, and microarray hybridization was carried
out on Human Genome U133A 2.0 chips (Affymetrix) according to the
manufacturer’s protocol. The fluorescent intensities were determined
with a GeneChip scanner 3000 (Affymetrix), controlled by GCOS
Affymetrix software.

Raw data were normalized using the Robust Multiarray Average
method (20) and global median centering. Hierarchical clustering
analyses of gene expression profiles were done based on centered
correlation metric and average linkage method.

Class prediction and the misclassification rates of the classifiers were
estimated by a leave-one-out cross-validation method using different
algorithms (compound covariate predictor, linear discriminant analy-
sis, nearest centroid, k-nearest neighbor, and support vector machine)
implemented in BRB-Array Tools.10 The probabilities of recurrence-free
and overall survival rates were estimated with Kaplan-Meier plots and
significance was determined by log-rank test. Statistical analyses were
done using R/Bioconductor package.

For data integration with the independent data set, each data set was
standardized independently by transforming the expression of each
gene to a mean of 0 and SD of 1, pooled the expression profiles
together, and then considered them as a single data set. Probes in each
data set were matched with Entrez Gene identifiers. For the multiple
tagged genes, the probe with the largest magnitude (i.e., sum of the

Fig. 1. Identification of genes responsible
for early recurrence of HCC. A, hierarchical
clustering was done on the expression
profile of recurrence genes that were
identified by Cox proportional hazards
analysis (P < 0.005, log-rank test). Before
clustering, the average expression levels of
each gene were set to 0. HCCs were labeled
according to recurrence time as early
recurrence (i.e., patients with tumor
recurrence within a year after surgery,
n = 15; red) and late recurrence
(i.e., patients free of recurrence for >1year,
n = 25; blue).The patients who had been
followed up for less than a year without
recurrence were assigned as unclassifiable
(n = 25, gray). B, Kaplan-Meier plot of
recurrence-free survival of HCCs stratified
by hierarchical clustering of expression
profile of recurrence genes.

10 http://linus.nci.nih.gov/BRB-ArrayTools
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Fig. 2. Validation of recurrence genes by cross-platform comparison with an independent HCC data set. A, 150 out of the 628 SNU recurrence genes were found in the
LEC data set. Hierarchical clustering was done on these gene expressions in the LEC data set (n = 139, recurrence informationwas available in 67 samples). Before clustering,
the average expression levels of each gene were set to 0. B and C, Kaplan-Meier plot of recurrence-free survival (B) and overall survival (C) of HCCs (LEC) grouped by
hierarchical clustering of the recurrence gene expression profile. D and E, independent prediction algorithms of compound covariate predictor (D) and linear discriminant
analysis (E) were trained with SNU expression data and then applied to the LEC data set, respectively, and Kaplan-Meier plot analysis and log-rank test were done on the
predicted classes. F, hierarchical clustering was done on an integrated data set comprised of both SNU and LEC data sets. Before integration, each data set was standardized
independently by transforming the expression levels of each gene to a mean of 0 and SD of1 (see Patients and Methods) G-I, Kaplan-Meier plots and log-rank test of
recurrence-free survival of HCCs in SNU (G, n = 65), LEC (H, n = 139), and the overall integrated data (I, SNU + LEC, n = 204), respectively. HCCs were grouped based on
hierarchical clustering of the expression profiles of the integrated data sets. Abbreviations: CCP, compound covariate predictor; LDA, linear discriminant analysis; SNU, data
from Seoul National University; LEC, data from Laboratory of Experimental Carcinogenesis, National Cancer Institute, NIH.
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squares of expression values in each sample) was selected as a
representative probe.

Functional analysis of signatures. Once a gene set was identified as
useful in the stratification of a patient’s outcome, we attempted to gain
insight into molecular mechanisms that might be involved in
generating this hierarchy of patient outcome. For the functional

analysis of gene sets, enrichment of the gene set was estimated by the
cumulative hypergeometric P values of each biological process provided
by Gene Ontology Consortium.11 In order to obtain representative and
significantly enriched terms, those terms with a level higher than two in
the Gene Ontology hierarchy, including at least three genes, were
considered in our calculation. Statistical significance was determined
with a cutoff of P < 0.01.

In another approach, we employed PathwayAssist software (Ariadne
Genomics, version 3.0) as an independent pathway analysis tool to
identify connections between differentially expressed genes. After
constructing genetic networks, we sought to identify common
regulators or common targets of the differentially expressed gene sets.

Results

Identification of HCC recurrence signature. We examined
the gene expression profile of 65 HBV-associated HCCs using
Affymetrix U133A 2.0 chips. In order to access the association
of the expression variables of each gene feature with recurrence-
free survival, a univariate Cox proportional hazard model was
applied. A total of 628 gene features were selected as recurrence
signatures that were highly correlated with the length of
recurrence with strong statistical significance (P < 0.005, log-
rank test) and differentially expressed across samples at non-
trivial levels (SD > 0.3). Hierarchical clustering with these 628
recurrence signature genes subdivided HCC patients into two
subtypes that appropriately reflect the difference in recurrence
times between patients with HCC (Fig. 1A). Kaplan-Meier
plot analysis and log-rank test showed a significant difference
of recurrence-free survival between these two HCC subtypes
(Fig. 1B, P = 1.9 � 10-6, log-rank test).

The absence of early recurrence during the first year after
surgery is the golden standard to determine the success of
curative resection. In prior microarray experiments, we sub-
divided the patients with HCC into early recurrence (i.e., HCCs
recurred within a year from curative surgery) and late
recurrence (i.e., HCCs free of recurrence for >1 year) groups.
As shown in Fig. 1A, most of the early recurrence samples were
predicted to be in the high-risk group with 82.5% of accuracy
suggesting that our subtype classification might be helpful in
planning adequate strategies for patient treatment.

Validation of recurrence signature with independent gene
expression data. Having defined two distinct HCC subtypes
that reflect significantly different clinical outcomes, we decided
to test the robustness of the identified recurrence signature by
applying six different class prediction methods (compound
covariate predictor, linear discriminant analysis, k-nearest
neighbor, nearest centroid, and support vector machine).
Prediction of these two risk subtypes by six different class pre-
diction algorithms showed between 83% and 97% mean
prediction accuracy rates with significant leave-one-out mis-
classification rates (P < 0.01, based on 100 random permuta-
tions; Supplementary Table S1). These results strongly support
the robustness of our recurrence signature.

For the validation of the prognostic reproducibility of this
recurrence signature, we next applied our recurrence signature
directly to an independent gene expression data set of patients
with HCC [data from Laboratory of Experimental Carcinogen-
esis (LEC), National Cancer Institute, NIH; ref. 15]. Hierarchical
clustering of gene expression profile of recurrence signature in

Fig. 3. Prediction of recurrence-free survival by combining the classification of
clinicopathologic features and molecular subtypes. A, Kaplan-Meier plot of
recurrence-free survival of patients with HCC grouped by combining patients’
age (age >55 or V55 y old) and molecular subtypes. B, Kaplan-Meier plot of
recurrence-free survival of patients with HCC grouped by combining tumor gross
type and molecular subtypes.Tumor gross type was classified into single nodular
(n = 43) and multiple nodular types (n = 25).The single nodular type includes
solitary nodular and solitary nodular with perinodal extension types.The multiple
nodular type includes confluent multinodular and multinodular discrete types.
C, Kaplan-Meier plot of recurrence-free survival of patients with HCC grouped by
combining variables of tumor size (diameter, >5 or V5 cm) and molecular subtypes.
P values represent the significances of log-rank tests across the subgroups divided
by combined variables.

11 www.geneontology.org
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the LEC data set could subdivide patients into two distinct
subgroups with homogeneous expression patterns (Fig. 2A).
Kaplan-Meier plot analysis and log-rank test of these HCC
subtypes showed a significant difference of overall survival
(P = 0.0001), as well as recurrence-free survival (P = 0.0018;
Fig. 2B and C). This suggests that our recurrence signature is well
conserved in the independent data set and is able to predict
recurrence-free survival regardless of microarray platforms.
In addition to the use of hierarchical clustering, we applied

two independent classification algorithms (compound cova-
riate predictor and linear discriminant analysis) to validate the
robustness of the gene expression signature that predicted
the likelihood of early recurrence. Gene expression data from
the Seoul National University (SNU) were used to train
classification algorithms and those from LEC were used as the
test set. During training, the number of genes used in the
prediction was optimized to minimize misclassification errors
during leave-one-out cross-validation. When applied to the LEC
data set, both algorithms successfully identified early recurrence
patients with statistical significance (Fig. 2D and E).
In another approach, we applied data integration by

pooling both data sets. Hierarchical clustering of recurrence
signatures in overall integrated HCCs (n = 204) showed two
main clusters with homogeneous expression patterns across
platforms (Fig. 3F), suggesting that the expression patterns
of the recurrence signatures were well conserved in both
data sets. Kaplan-Meier plot analysis of these HCC subtypes
showed a significant difference of recurrence between
the subgroups of each individual data set (SNU data set,
P = 0.007; LEC data set, P = 0.005, respectively, log-rank test;
Fig. 3G and H). Kaplan-Meier analysis on the overall
integrated data set also successfully dissected subgroups based
on the recurrence rate (P = 0.0003; Fig. 3I). These results
strongly support the consistency and robustness of this
recurrence signature at this independent cohort and experi-
mental platforms of individual studies.

Clinicopathologic features and recurrence signature. The
prognostic values of conventional clinicopathologic factors on
the risk of recurrence have been widely studied. In agreement
with previous reports, we identified patient’s age (21), tumor
gross type (22), and tumor size (23) to be associated with the
likelihood of HCC recurrence in univariate Cox proportional
hazards analysis (Table 1). However, other clinicopathologic
features such as serum a-fetoprotein, serum platelet count,
differentiation, tumor grade, venous invasion, and extranodal
invasion and adjuvant therapy (trans-arterial chemoemboliza-
tion) were not associated with recurrence-free survival. Even
though all the patients had a history of HBV infection, the
serotype status of HBeAg and anti-HBe were not associated with
recurrence-free survival (data not shown). The multivariate
analysis, including all the clinicopathologic variables and the
molecular subtype, showed that only the molecular subtype
was significantly associated with tumor recurrence (hazard rate,
12.54; 95% confidence interval, 3.59-43.76, P < 7.30 � 10-5;
Table 1).
In an attempt to improve the prognostic usefulness of clinical

features, we combined classifications of molecular subtypes
with clinical features, hoping to predict tumor recurrence much
more precisely. Of the clinical features that showed significant
association with recurrence in univariate Cox regression
analysis, the combined application of patient age or tumor
gross type with recurrence signature improved the predictability
of the patients’ outcomes better than the recurrence signature
alone (Fig. 3A and B). In addition, combining tumor size with
molecular subtype could predict patients’ outcome more
precisely by stratifying the patients assigned to the low-risk
group (Fig. 3C). These results suggest that a combined
application of certain clinical features with molecular subtypes
would be a practical approach to define stratified recurrence-
free survival groups.
Biological insights of HCC recurrence signature. In order to

get a biological insight on the mechanisms reflecting the

Table 1. Clinicopathologic features of patients with HCC

Clinical features Recurrence risk group Univariate analysis Multivariate analysis

Class (I/II) Low-risk
(n = 34)

High-risk
(n = 31)

Hazard rate
(95% CI)

P Hazard rate
(95% CI)

P

I II I II

Gender (woman/man) 5 29 8 23 0.948 (0.38-2.35) 0.909 1.319 (0.40-4.28) 0.640
Age (V55/>55 y) 21 13 18 13 0.421 (0.17-0.99) 0.042 0.495 (0.75-5.39) 0.160
a-Fetoprotein (V400/>400 ng/mL) 24 10 23 8 0.608 (0.20-1.76) 0.357 0.273 (0.06-1.04) 0.067
Platelet (V100/>100 � 1,000/AL) 14 20 8 23 0.992 (0.44-2.21) 0.985 0.420 (0.15-1.15) 0.092
Differentiation (well/moderate, poor) 6 28 2 29 1.144 (0.23-5.02) 0.791 0.254 (0.06-1.04) 0.058
Tumor size (5/z5 cm) 21 13 15 16 3.149 (1.27-7.76) 0.009 2.180 (0.74-6.36) 0.150
Gross type (single/multiple)* 27 7 16 15 2.361 (1.00-5.52) 0.042 1.087 (0.30-3.90) 0.900
T stage (T0, T1/T2, T3) 17 17 14 17 0.804 (0.37-1.71) 0.573 0.483 (0.10-2.26) 0.360
Venous invasion (no/yes) 20 14 16 15 1.349 (0.62-2.89) 0.440 3.145 (0.66-14.99) 0.150
Extranodal invasion (no/yes) 20 14 10 21 1.864 (0.85-4.05) 0.111 3.995 (0.90-17.65) 0.068
Adjuvant TACE (no/yes) 28 6 24 7 0.708 (0.26-1.88) 0.486 0.832 (0.23-2.96) 0.780
Molecular subtype (low-risk/high-risk) 8.896 (3.14-25.13) 1.90 � 10-6 12.539 (3.59-43.76) 7.30 � 10-6

NOTE: For univariate and multivariate analyses, hazard ratio and log-rank P values were calculated by Cox proportional hazards analysis.
Abbreviations: TACE, trans-arterial chemoembolization; 95% CI, 95% confidence interval.
*Tumor gross type was classified into two groups as single nodular type (n = 43) and multiple nodular types (n = 25). Single nodular type
includes solitary nodular and solitary nodular with perinodal extension type. Multiple nodular type includes confluent multinodular and
multinodular discrete type.
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differences of prognostic outcomes of these two molecular
subtypes, the genes showing significant differences in expres-
sion between these two subtypes were selected with a two-
sample t test. A total of 937 genes showing significant
differences in 10,000 permuted two-sample t tests (P < 0.001,
false discovery rate < 1.46%) with fold difference between
subtypes greater than 1.4-fold were selected for the analysis of
Gene Ontology composition.
Functional enrichment analysis with Gene Ontology catego-

ries (Supplementary Table S2) showed a significant enrichment
of metastasis-related functions including actin filament organi-
zation, regulation of cell migration, and cell motility. As
expected, proliferation-related functions (cell proliferation,
regulation of progression through cell cycle) and differentia-
tion/development-related functions (cytoskeleton organization
and biogenesis, cell fate determination, skeletal development)
showed significant enrichment in the high-risk group. Of
interest, notch signaling genes (JAG1, JAG2 , and NOTCH2)
were significantly up-regulated in the high-risk group, implying
their functional roles in HCC recurrence. Inflammation-related
functions (i.e., chemotaxis, humoral immune response) were
also highly enriched in the high-risk group. Inflammation/
immune response–related genes were reported to have an
association with noncancerous hepatic tissues from patients
with metastatic HCC (17), suggesting that its enrichment in the
recurrence signature might be derived from noncancerous
stromal cells promoting surveillance for HCC recurrence.
Notably, CD24 showed the highest fold difference of

geometric mean (6.84-fold) and all six probes for CD24 (i.e.,
208650_s_at, 208651_x_at, 216379_x_at, 209771_x_at,
209772_s_at, and 266_s_at) were significantly overexpressed
in the high-risk group (P < 0.001; Supplementary Table S3). As
shown in Fig. 4, CD24 expression levels between high-risk and
low-risk groups were significantly different in the LEC as well as

in the SNU data set (P < 0.001, two-tailed Student’s t test for
each data set). This concordant observation in both data sets
identifies CD24 as a putative biomarker for the prediction of
early recurrence.

Once the molecular subtype of HCC was validated for
robustness of prognostic capacity, we examined the genetic
network of differentially expressed genes between the subtypes.
To identify the most prominent common regulatory genes, we
carried out pathway analysis using PathwayAssist (Ariadne
Genomics, version 3.0). We found that SP1 was the most
prominent common regulator for the genes overexpressed in
the high-risk group compared with the low-risk group (Fig. 5).
Of these SP1 targets, many genes, e.g., PLAUR (14, 16, 24, 25),
FGFR1 (26), VIM (27), PDGFA (28), and HK2 (29) had
previously been reported to be associated with HCC prognosis
or metastasis, and it strongly implicates SP1 as a critical factor
in HCC recurrence. Contrary to SP1, peroxisome proliferator–
activated receptor a (PPARa) was identified as a prominent
common regulator for many of the down-regulated genes in the
high-risk group. From these results, we suggest that SP1 and
PPARa play critical roles in HCC recurrence.

Discussion

Many previous studies have shown successful analyses of
gene expression profiles for the prognostic prediction of
patients with cancer, but their clinical applications have been
overoptimistic and still premature. The lack of consistency and
the robustness of expression profiles is thought to be one of
major obstacles for its clinical application. In this regard,
external validation by comparing totally independent cross-
platform and cross-site studies will help to identify robust
predictors reducing data set–derived systematic biases. The
application of cross-platform comparison of independent
studies has its own limitations due to the heterogeneity and
unavailability of the data sets to be combined. However, this
approach is now at the stage of one of reliable solutions to
overcome with the overfitting problem of microarray data.

In the present study, we examined the gene expression
profiles of 65 patients with HCC to generate a genetic classifier
that could identify the patients with a high-risk of early
recurrence following curative resection. The 628 gene features
selected as genetic classifiers by a univariate Cox proportional
hazard model could classify HCC patients into high-risk
(n = 31) and low-risk (n = 34) subtypes of early recurrence of
HCCs using hierarchical clustering analysis. Cross-platform
analysis of this recurrence signature with independent data sets
showed consistent stratification of HCC patients which
appropriately reflects the risk of early recurrence, suggesting
that it might be less prone to false findings and is independent
of individual studies. Moreover, the HCC samples in our data
set were collected from a homogenous patient population with
the same viral exposure (i.e., HBV), ethnicity, hospital care, and
postoperative follow-up; therefore, it would be less confounded
and more informative for the understanding of recurrence
mechanisms.

CD24 was identified as a putative biomarker for classifying
low-risk and high-risk groups of early recurrence in both SNU
and LEC data sets (Fig. 4). Congruent with this finding,
previous studies showed that the CD24 expression level is
prognostic in many cancers (30–36), including HCC (37),

Fig. 4. Expression levels of CD24 in high-risk and low-risk groups of early
recurrence. High-risk and low-risk groups of early recurrence were assigned by
hierarchical clustering recurrence signature in SNU (Fig.1) and LEC data sets
(Fig. 2A).The average expression levels of CD24 between high-risk and low-risk
groups were compared in both data sets, respectively. Expression levels in the
SNU data set represent relative values to the overall median of normalized
log-transformed expression profile, whereas the expression levels of the LEC data
set represent the fold changes of log-transformed expression levels between tumor
samples and normal liver tissues. Statistical significance was estimated by
two-tailed Student’s t test (P < 0.001). Columns, mean; bars, SE.
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Fig. 5. Common regulatory genes of differentially expressed genes betweenmolecular subtypes of HCCs. Gene regulatory network of differentially expressed genes
(P < 0.001, two-tailed Student’s t test) between high-risk and low-risk groups were constructed using PathwayAssist software. Up-regulated (red) and down-regulated
(green) differentially expressed genes in the high-risk group comparedwithnondifferentially expressed genes in the low-riskgroup (gray). Enlarged pictures of SP1and PPARa
indicated their common regulations of recurrence genes. Common regulators ofTP53 and EGF (blue circle ; details in Supplementary Fig. S1). References for genetic
interactions for SP1and PPARa are listed in the Supplementary Notes.
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although its prognostic role for recurrence has not been noted.
CD24 is known to participate in the regulation of cell-to-cell
and cell-to-matrix interactions, and its ligand, P-selectin is
associated with tumor metastasis by increasing cell spreading,
adhesion, and proliferation (30). Therefore, we suggest that
CD24 might be a good putative biomarker for the prediction of
early recurrence of HCC.
Genetic network analysis of this recurrence signature revealed

SP1 and PPARa as prominent common regulators of genes that
differed in expression between high-risk and low-risk groups.
Many genes that regulate the cell cycle frequently contain
proximal GC-rich promoter sequences, and their interactions
with SP proteins and other transcription factors are critical for
their expression (38). SP1 is associated with the prognosis of
cancers, including pancreatic cancer (39), breast cancer (40),
and gastric cancer (41), although the potential roles of SP1 in
HCC prognosis remains unclear. In line with these studies, it is
likely that SP1 would be a good candidate for further studies to
elucidate its regulatory role in the recurrence mechanism of
HCC.
PPARa agonists have been known to cause hepatocarcino-

genesis in rats and mice, whereas humans seem to be resistant
(42, 43). Human PPARa mRNA and functional receptor is
expressed at a level <10% of that found in rats and mice, which
may contribute to a difference in susceptibility to agonists
between rodents and humans (44). Lower expression of human
PPARa might be due to variant human PPARa mRNA species,
in which exon 6 was deleted by alternative splicing, and in
which the amounts of variants were reported to be up to 20%
to 50% of the total PPARa mRNA in human tissues (44). These
studies imply that the variants of PPARa might lead to different
expressions of PPARa and its target genes between high-risk
and low-risk groups. In tumor progression, the PPARa agonist,
fenofibrate, was revealed to have antimetastatic potential in
both human and mouse melanoma cells (45), suggesting that
PPARa has a tumor suppressor role, at least in humans, besides
its tumorigenic potential in rodents. From these findings,
we could hypothesize that lower expression of PPARa (possibly
related to variant PPARa)may affect the differences of recurrence
potential between HCC subtypes. However, we cannot rule

out the possibility that the deleterious loss of hepatic functions
and subsequent depletion of lipid metabolism in the high-risk
group could be related to the lower expression of PPARa (see
Supplementary Table S2).

In addition to SP1 and PPARa, close examination of genetic
networks revealed several prominent common regulators such
as EGF and PTGS2, which have previously been well studied in
association with HCC progression (refs. 46, 47; Fig. 5;
Supplementary Fig. S1A and B). When we constructed a genetic
network with the target genes of the differentially expressed
genes between the two groups, FOS and JUN were revealed as
common downstream targets of the overexpressed genes in the
high-risk group (Supplementary Fig. S1C), which is consistent
with a previous study that shows its regulatory role in HCCs
with poor prognosis (15). When all the regulators and targets of
the differentially expressed genes were pooled in the network,
TP53 and TGFB1 were identified as commonly regulated and
targeted genes, which have previously been shown to play
critical roles in cancer progression (refs. 47, 48; Supplementary
Fig. S1D and E). Taken together, these results suggest that
concomitant disruption of multiple gene expression networks is
required for HCCs to adopt an aggressive phenotype.

In conclusion, we generated a consistent and robust
recurrence predictor independent of platforms and cohorts,
which could successfully predict molecular subtypes of HCC
that reflect the likelihood of early recurrence after curative
resection. We also showed that the combined analysis of the
molecular subtypes with clinicopathologic features could
improve their prognostic utilities. In addition, our study
provides substantial biological insights that prioritize the
functional significance of SP1 and PPARa in HCC recurrence
mechanisms and CD24 as a putative biomarker. We believe
that our predictor profile can be helpful to clinicians in
choosing a treatment modality for HCC patients who have a
high risk of early recurrence.
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