
Gene Expression-Based Screening for Inhibitors of 

PDGFR Signaling

Citation
Antipova, Alena A., Brent R. Stockwell, and Todd R. Golub. 2008. Gene expression-based 
screening for inhibitors of PDGFR signaling. Genome Biology 9(3): R47.

Published Version
doi://10.1186/gb-2008-9-3-r47

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10024401

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10024401
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Gene%20Expression-Based%20Screening%20for%20Inhibitors%20of%20PDGFR%20Signaling&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=f1949deecf89b50fb44c1ee99bc303f7&department
https://dash.harvard.edu/pages/accessibility


Genome Biology 2008, 9:R47

Open Access2008Antipovaet al.Volume 9, Issue 3, Article R47Method

Gene expression-based screening for inhibitors of PDGFR signaling
Alena A Antipova*†‡¥, Brent R Stockwell§ and Todd R Golub*†¶

Addresses: *Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge Center, Cambridge, 
MA 02142, USA. †Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Binney Street, Boston, MA 
02115, USA. ‡Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA 02139, USA. 
§Departments of Biological Sciences and Chemistry, Columbia University, Fairchild Center MC2406, Amsterdam Avenue, New York, NY 10027, 
USA. ¶Howard Hughes Medical Institute, Jones Boulevard, Chevy Chase, MD 20815, USA. ¥Current address: Advanced Genetic Analysis, 
Applied Biosystems, Cummings Center, Beverly, MA 01915, USA. 

Correspondence: Todd R Golub. Email: golub@broad.harvard.edu

© 2008 Antipova et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PDGF pathway inhibitors<p>Inhibitors of the platelet derived growth factor receptor (PDGFR) signaling pathway are isolated using gene expression-based high-throughput screening (GE-HTS), a method that is applicable to other pathways.</p>

Abstract

Here we describe a proof-of-concept experiment designed to explore the possibility of using gene

expression-based high-throughput screening (GE-HTS) to find inhibitors of a signaling cascade,

using platelet derived growth factor receptor (PDGFR) signaling as the example. The previously

unrecognized ability of aurintricarboxylic acid to inhibit PDGFR signaling, discovered through a

screen of 1,739 compounds, demonstrates the feasibility and generalizability of GE-HTS for the

discovery of small molecule modulators of any signaling pathway of interest.

Background
High throughput screening of small-molecule libraries is a

well-established and highly productive tool for the identifica-

tion of chemical compounds targeting a specific protein func-

tion of interest. Traditionally, the high-throughput screening

for modulators of molecular pathways involves cell-free bio-

chemical assays, or in some cases, highly specialized cell-

based phenotypic assays [1]. However, in many cases the opti-

mal target for therapeutic intervention is not known, or the

development of a suitable phenotypic read-out is not techni-

cally feasible. For example, it is becoming increasingly of

interest to modulate the activity of particular signal transduc-

tion pathways, but the components of such pathways are in

many cases only partially known. It would therefore be of

interest to develop a screening approach that could identify

inhibitors of such pathways without first defining the bio-

chemical target of candidate small molecules. Here we dem-

onstrate that it is possible to use mRNA expression levels as a

read-out to infer activity of a signal transduction pathway,

thus establishing a general approach to screening for modu-

lators of signal transduction pathways.

Endogenous mRNA expression has been previously success-

fully used as a surrogate of cellular states in high-throughput

screening for compounds inducing differentiation of acute

myeloid leukemia cells, and for identifying inhibitors of

androgen receptor-mediated transcriptional activation in

prostate cancer [2-5]. It is not obvious, however, that gene

expression signatures could be used to identify inhibitors of

signal transduction pathways that are regulated at the level of

post-translational modification (phosphorylation), as

opposed to transcriptional regulation.

To test the feasibility of using gene expression-based high-

throughput screening (GE-HTS) to identify inhibitors of a

signaling pathway, we chose platelet derived growth factor

receptor (PDGFR) signaling for a proof-of-concept study,

with particular emphasis on downstream activation of the

extracellular regulated kinase (ERK) pathway (also known as
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the p42/p44 mitogen activated protein (MAP) kinase path-

way) as a target pathway for the screen. The ERK pathway

plays a major role in the control of cell growth, cell differenti-

ation and cell survival [6]. The protein kinase cascade

Raf>mitogen/extracellular signal-regulated kinase

(MEK)>ERK, also referred to as the MAP kinase module, is

activated in mammalian cells through receptor tyrosine

kinases, G-protein coupled receptors and integrins [6]. Acti-

vated ERKs translocate to the nucleus where they phosphor-

ylate transcription factors. The ERK pathway is often

upregulated in human tumors [6], and as such is an attractive

target for anticancer therapy. Furthermore, because the path-

way has been extensively studied, many experimental tools

are available with which to interrogate the pathway. We dem-

onstrate here that indeed small molecule inhibitors of the

PDGFR/ERK pathway can be discovered using the GE-HTS

approach.

Results
Identification of a signature of PDGFR/ERK activity

In GE-HTS, a gene expression signature is used as a surrogate

of a biological state. In the present context, we sought to

define a signature of ERK activation mediated by PDGFR

stimulation. Specifically, we treated SH-SY5Y neuroblastoma

cells with the BB homodimer of PDGF (PDGF-BB), which

resulted in PDGFRβ phosphorylation and subsequent ERK

activation. We selected PDGFRβ over PDGFRα for our stud-

ies because of previous observations that PDGFRα might

mediate functions of other PDGF isoforms in addition to

PDGF-A [7,8]. The activation state of the members of the

PDGFβ pathway can be traced by increase in their phosphor-

ylation levels shortly after introduction of the growth factor

[9]. In particular, ERK phosphorylation peaks at about 15-20

minutes after induction, and then decreases to background

levels some 20-30 minutes later [10]. Accordingly, we per-

formed gene expression profiling using Affymetrix U133A

arrays 30 minutes following PDGF stimulation, thereby iden-

tifying those genes whose expression is correlated with

PDGFR activity. In order to identify the component of the

gene expression signature that was attributable to ERK acti-

vation by PDGFR (as opposed to other pathways downstream

of PDGFR), we also pretreated the cells with the MEK inhibi-

tor U0126 and the ERK inhibitor apigenin, and repeated the

gene expression profiling studies (Figure 1a).

To define the signature of ERK activation, we developed and

applied a rank-pairwise comparison algorithm as described

in Materials and methods. We note that the genes identified

in this manner are chosen because of their ability to reflect the

PDGF-stimulated state - not because of their necessarily

being critical effectors of PDGFR signaling. The top three

genes identified in this fashion were those for c-fos, early

growth response 1 (EGR1), and activity-regulated cytoskele-

ton-associated protein (ARC). All three genes were previously

shown to be upregulated by activation of ERK, and we further

confirmed their regulation by reverse transcriptase (RT)-PCR

(Figure 1b) [11-13]. Two additional genes, ribosomal protein

RPL23A and ATP5B, were selected as internal controls,

because their expression was not significantly altered by

PDGFR activation.

High-throughput screening to find inhibitors of the 

PDGFR/ERK pathway

Having defined a gene expression signature of PDGFR/ERK

activation, we next sought to screen a library of small mole-

cules to find compounds that would reverse the signature (for

primary screen data, see Additional data file 1). We chose

TIP5 fibroblast cells for the high-throughput screen instead of

SH-SY5Y neuroblastoma cells used to define the gene expres-

sion signature. Both TIP5 and SH-SY5Y cells have wild-type

PDGFR/ERK signaling, which makes it unnecessary to

employ mutant and/or constitutively activated PDGFR cas-

cades. TIP5 cells, however, were more adherent to 384-well

plates, making them more amenable to the screening setting.

The screen was performed as follows. TIP5 cells were plated

in 384-well plates, serum-starved overnight and compounds

then added by pin transfer. The compound library, previously

described in [2], consisted of 1,739 chemicals with previously

established biological functions. Some of the compounds

have been approved for use in humans by the Food and Drug

Administration. After a 30 minute compound-incubation

period, PDGF-BB was added. 45 minutes later, the growth

medium was discarded, and cells were lysed. RNA was then

extracted, the signature genes amplified by RT-PCR, and the

PCR amplicons quantified by single-base extension mass

spectrometry, as we previously described [2] (Figure 1c). Cells

were treated in triplicate at two concentrations (approxi-

mately 10 μM and 50 μM). Compounds were defined as hits if

the expression of two marker genes, c-fos and EGR1, normal-

ized by expression of control genes was significantly (more

than one standard deviation) lower than average expression

in all positive control wells. Compounds that inhibited the

signature of the activated PDGFR/ERK pathway in four out of

six replicas were selected as hits for further characterization.

Validation of hit compounds

Three wells met the hit selection criteria: aurintricarboxylic

acid (ATA; free acid), aurintricarboxylic acid triammonium

salt (aluminon), and quinacrine dihydrochloride (mepacrine)

(Figure 2a,b); all three were therefore selected for further

studies. Western analysis of total lysates from cells treated

with these compounds demonstrated that both ATA and its

salt (which in solution is identical to ATA), but not quinacrine

dihydrochloride, abrogated PDGF-mediated phosphorylation

of ERK (Figure 3a), thereby identifying ATA as an inhibitor of

the ERK pathway. Quinacrine dihydrochloride did not inhibit

ERK phosphorylation, but it has been previously shown to be

a non-specific inhibitor of phospholipase A2 [14]. Activated

ERK phosphorylates phospholipase A2 [15], and as a result



http://genomebiology.com/2008/9/3/R47 Genome Biology 2008,     Volume 9, Issue 3, Article R47       Antipova et al. R47.3

Genome Biology 2008, 9:R47

stimulates transcription of the c-fos and EGR1 genes, two

components of our ERK signature [16].

We then relaxed hit selection criteria, and identified nine

more potential candidates. However, further study indicated

that none of these nine additional compounds affected activa-

tion of the PDGFR/ERK pathway.

Disruption of phosphorylation of ERK by ATA was an indica-

tion that ATA inhibited the PDGFR/ERK pathway upstream

of ERK. Subsequent analysis indicated that phosphorylation

of both MEK (Figure 3b) and PDGFR (Figure 3c) was abro-

gated by ATA, thus pointing to PDGFR as a possible ATA

target.

To address the possibility that ATA might in some fashion

deplete PDGF ligand from the growth medium, TIP5 cells

were first incubated with ATA for 30 minutes. Next, the cells

were washed thrice with serum-free medium and then stimu-

lated with PDGF. As shown in Figure 3d, PDGFR phosphor-

ylation remained inhibited, suggesting that PDGF ligand was

unlikely to be the target of ATA.

The experiments described so far indicated that ATA inhibits

PDGF-mediated ERK phosphorylation by inhibiting PDGFR

phosphorylation. To localize the portion of PDGFR targeted

by ATA, we utilized a series of chimeric receptor constructs

(Figure 4a). The first chimera, TEL/PDGFR, is a naturally

occurring, leukemia-associated fusion of the oligomerization

PDGFR/ERK activation signature for high-throughput screeningFigure 1

PDGFR/ERK activation signature for high-throughput screening. (a) Genes whose expression is correlated with ERK activation by PDGFR. Genes (in 
rows) sorted by their expression in samples (columns) with or without U0126, apigenin, and PDGF. Red indicates high relative expression, blue low 
expression. (b) RT-PCR of signature genes in four sample wells: two lanes (replicas) per condition. TIP5 cells were serum starved overnight and then 
treated with PDGF. (c) Screening schema overview. SBE, single-base extension.
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domain of the transcription factor TEL (ETV6) to the trans-

membrane and cytoplasmic domains of PDGFR, resulting in

constitutive activation of PDGFR [17]. As shown in Figure 4b,

ATA was unable to inhibit TEL/PDGFR phosphorylation at

concentrations as high as 100 μM, indicating that ATA does

not target the transmembrane or cytoplasmic portions of

PDGFR present in the TEL/PDGFR chimera.

The next chimera, termed PER, is composed of the extracel-

lular domain of PDGFR and the transmembrane and cyto-

plasmic domains of epidermal growth factor receptor (EGFR)

[18]. ATA inhibited PER phosphorylation in PER-PC12 cells

(Figure 4c), thus mapping the site of ATA action to the extra-

cellular domain of PDGFR. To exclude the possibility of ATA

inhibiting any receptor tyrosine kinase extracellular domain,

we tested ATA against a third chimera, EKR, consisting of the

extracellular domain of EGFR and the transmembrane and

cytoplasmic domains of c-KIT [19]. ATA failed to inhibit EKR

(Figure 5a), indicating that ATA exhibits some specificity for

the PDGFR extracellular domain. Similarly, ATA failed to

inhibit insulin-like growth factor (IGF)-induced phosphor-

ylation of IGF1 receptor (IGF1R; Figure 5b), or EGF-induced

phosphorylation of EGFR (Figure 5c) [20]. Interestingly, ATA

did inhibit stem cell factor (SCF)-mediated activation of cKIT

(Figure 5d). The cKIT and PDGFR extracellular domains have

41% sequence similarity (26% identity), whereas no signifi-

cant homology is seen between the extracellular domains of

PDGFR and EGFR or IGF1R.

We note that whereas phosphorylation of the PER chimera is

PDGF-dependent (and ATA inhibitable) in PER-PC12 cells,

PER is constitutively active in 501 MEL and MCF7 cells, and

in those contexts PER phosphorylation is not fully abrogated

by ATA (Figure 6a,b). These experiments further point to the

Hit compounds that passed hit selection criteria in the high-throughput screenFigure 2

Hit compounds that passed hit selection criteria in the high-throughput screen. (a) Hit compounds identified in the screen. (b) High-throughput screen 
expression levels of marker genes c-fos and EGR1, normalized by control gene ATP5B, in the presence of 50 μM hit compounds and PDGF.
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possibility of ATA inhibiting PDGF binding to the extracellu-

lar domain of PDGFR and disrupting ligand-mediated activa-

tion of the receptor.

Structure-activity relationships in the series of ATA 

analogues

In order to characterize the features of the ATA molecule

required for biological activity, we analyzed a diverse set of

ATA structural analogs (Figure S1 in Additional data file 2)

available from the Available Chemicals Directory [21]. We

split compounds into three groups to test three different

hypotheses on the structure-activity relationship in the series.

The activities of methylenedisalicylic acid, salicylic acid and

3-methylsalicylic acid (Figure S1a in Additional data file 2)

were analyzed to examine if the skeletal-triphenylmethane

structure of ATA was essential to its activity. Aurin, uranine

and phenolphthalein sodium salt (Figure S1b in Additional

data file 2) were tested to evaluate the roles the carboxyl and

hydroxyl groups on the triphenylmethane scaffold play in the

inhibitory potency of ATA. Compounds in the third group

(Figure S1c in Additional data file 2) were evaluated to test the

effect of various modifications of the phenyl rings on the

inhibitory properties of ATA. No compounds in the series

inhibited PDGFR at concentrations sufficient for ATA inhibi-

tion (less than 5 μM). In the first group, methylenedisalicylic

acid (Figure 7a), but not methylsalicylic or salicylic acids

inhibited PDGFR phosphorylation at 50 μM, suggesting that

increasing the number of substituted salicylic acid moieties

from one to three boosts the inhibitory potency of ATA. The

positions and number of carboxyl and hydroxyl groups were

essential for PDGFR inhibition, as indicated by the fact that

no compounds in the second group inhibited PDGFR at 100

μM concentration. These results corroborate earlier reports

that both the aurin triphenyl methane ring system and the

carboxylic acid groups are necessary for ATA inhibitory prop-

erties [22].

ATA abrogates phosphorylation of activated ERK, MEK and PDGFRFigure 3

ATA abrogates phosphorylation of activated ERK, MEK and PDGFR. (a) ATA and aluminon, but not quinacrine dihydrochloride, abrogated PDGF-
mediated phosphorylation of ERK. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with ATA, aluminon, and 
quinacrine dihydrochloride in the presence of PDGF. pERK and ERK indicate antibodies against phospho-ERK and total ERK, respectively. DMSO, dimethyl 
sulfoxide. (b) ATA abrogates phosphorylation of MEK. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with 
ATA and PDGF. pMEK and MEK indicate antibodies against phospho-MEK and total MEK, respectively. (c) ATA abrogates phosphorylation of PDGFR. 
Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with ATA and PDGF. pPDGFRβ and PDGFRβ indicate 
antibodies against phospho-PDGFRβ and total PDGFRβ, respectively. (d) Wash-out experiment: PDGFR phosphorylation remains inhibited upon removal 
of ATA. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and then incubated with ATA. After ATA was removed by 
washing, cells were induced with PDGF. pPDGFRβ and PDGFRβ indicate antibodies against phospho-PDGFRβ and total PDGFRβ, respectively.

_
0

pMEK

MEK

PDGF

ATA, µM

+
2

+
10

+
0

(b)

(d)
PDGF

ATA, µM
+
5

_

0
+
10

+
0

pPDGFRβ

PDGFRβ

(a)
QuinacrineAluminonATADMSO

ERK

pERK

PDGF

Compound, µM
+
2

+
10

+
2

_

0
+
10

+
0

+
2

+
10

PDGF

ATA, µM

+
2

_

0

+
0

+
1

+
5

+
0.5

pPDGFRβ

PDGFRβ

(c)



Genome Biology 2008, 9:R47

http://genomebiology.com/2008/9/3/R47 Genome Biology 2008,     Volume 9, Issue 3, Article R47       Antipova et al. R47.6

In the third group, Basic Violet 3, Ethyl Violet and Victoria

Pure Blue BO inhibited PDGFR in the 5-10 μM range (Figure

7b-d). Interestingly, these three compounds exhibited less

specific patterns of receptor inhibition than ATA, inhibiting

not only cKIT, but also EGFR and IGF1R at 10-100 μM (Fig-

ure 8). Moreover, different from ATA, Ethyl Violet and Victo-

ria Pure Blue BO readily translocated across the cell

membrane, as indicated by their inhibition of cytoplasmic

TEL/PDGFR in Ba/F3 cells at 10 μM (Figure 9). Taken

together, these results suggest that the inhibitory mechanism

of Basic Violet 3, Ethyl Violet and Victoria Pure Blue BO is dif-

ferent from the extracellular receptor inhibition mechanism

of ATA.

Discussion
In this report, we describe the proof-of-concept efforts to

approach the discovery of inhibitors of signal transduction

using a novel chemical genomic approach. We discovered a

previously unknown property of the triphenylmethane deriv-

ative ATA, using GE-HTS. Having defined a signature of

PDGFR activation, we screened a library of bioactive small

molecules for compounds capable of turning off the

signature. Importantly, the screen required neither a highly

specialized signal transduction assay, nor prior knowledge of

the protein to be targeted. In principle, small molecules act-

ing upstream, downstream or at the level of PDGFR itself

would be captured by the screen.

Two compounds in the library met pre-established criteria for

hits abrogating the PDGFR/ERK activation signature. The hit

compounds reproducibly inhibited the signature in follow-up

studies, indicating that the false positive rate of the screen

was quite low. One of the hits, quinacrine dihydrochloride, is

a known inhibitor of phospholipase A2, a known regulator of

ERK signaling [14-16]. The other compound, ATA, was a

ATA targets the extracellular domain of PDGFR, not the transmembrane or cytoplasmic portions of the receptorFigure 4

ATA targets the extracellular domain of PDGFR, not the transmembrane or cytoplasmic portions of the receptor. (a) Schematic representation of TEL/
PDGFRβ, PER, and EKR. RTK, receptor tyrosine kinase; TK, tyrosine kinase. (b) ATA does not target the transmembrane or cytoplasmic portions of 
PDGFR. Western analysis of total lysates of Ba/F3 cells expressing TEL/PDGFRβ fusion protein. Cells were treated with ATA. pPDGFRβ, PDGFRβ, and 
tubulin indicate antibodies against phospho-PDGFRβ, total PDGFRβ, and total tubulin, respectively. (c) ATA targets the extracellular domain of PDGFR. 
Western analysis of total PER-PC12 cell lysates. Cells were serum-starved overnight and treated with ATA and PDGF. pEGFR, EGFR, and tubulin indicate 
antibodies against phospho-EGFR, total EGFR, and total tubulin, respectively.
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novel discovery, and was therefore followed up in greater

detail.

ATA is a polymeric carboxylated triphenylmethane derivate

with a molecular weight range of 422-6,500 [23], that has

displayed a wide range of biological activity in in vitro bio-

chemical assays. For example, ATA has been reported to

inhibit enzymes involved in protein-nucleic acid interactions,

including DNA and RNA polymerases, reverse transcriptase,

nucleases, primases, topoisomerases, ribonucleotide reduct-

ases, aminoacyl-tRNA synthetase, nuclear factor-kappaB and

HIV-1 integration protein [23]. In addition, ATA has also

been shown to inhibit other classes of proteins in vitro,

including phosphatases [24], NAD(H)/NADP(H)-requiring

enzymes [25], aminopropyltransferases [26], mu- and m-cal-

pain [27], delta aminolevulinic acid dehydratase [28], glu-

cose-6-phosphate dehydrogenase [29], phenylalanine:tRNA

ligase [30] and kinases, such as phosphofructokinase [31],

ERK, p38 MAP kinase, IkappaB kinase [32], inositol-1,4,5-

trisphosphate 3-kinase and inositol polypohosphate multiki-

nase [33]. In vitro inhibition of protein synthesis has also

been described [34].

Biological activity of ATA has also been observed in vivo,

although in most cases only at rather high concentrations. For

example, ATA is reported to obviate binding of interferon-

alpha to its receptor in the 12-50 μM range [35], to prevent

von Willebrand factor binding to platelet receptor glycopro-

tein Ib [36], and to block binding of gp120, the HIV coat pro-

tein, to its receptor, CD4 [23]. Similarly, ATA has been shown

to be a N-methyl-D-aspartate (NMDA) receptor antagonist

with an IC50 of 26.9 μM and was reported to antagonize

ATA failed to inhibit activated EKR, IGF1R, or EGFR, but inhibited SCF-mediated activation of cKITFigure 5

ATA failed to inhibit activated EKR, IGF1R, or EGFR, but inhibited SCF-mediated activation of cKIT. (a) ATA does not inhibit activated EKR. Western 
analysis of total TIP5 cell lysates. Cells were transfected with EKR plasmid, serum-starved overnight and treated with ATA, EGF and PDGF. p-cKIT, 
pPDGFRβ, PDGFRβ, and tubulin indicate antibodies against phospho-cKIT, phospho-PDGFRβ, total PDGFRβ, and total tubulin, respectively. (b) ATA 
does not inhibit activated IGF1R. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with ATA and IGF. pIGFR and 
IGFR indicate antibodies against phospho-IGFR and total IGFR, respectively. (c) ATA does not inhibit activated EGFR. Western analysis of total TIP5 cell 
lysates. Cells were serum starved overnight and treated with ATA and EGF. pEGFR and EGFR indicate antibodies against phospho-EGFR and EGFR, 
respectively. (d) ATA inhibits SCF-activated cKIT. Western analysis of total MEL501 cell lysates. Cells were serum starved overnight and treated with 
ATA and SCF. p-cKIT and cKIT indicate antibodies against phospho-cKIT and total cKIT, respectively.
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excitotoxicity at both NMDA and non-NMDA glutamate

receptors in the 50-100 μM range [37]. ATA inhibited proges-

terone receptor at 100-500 μM [38], estradiol receptor at

100-200 μM [39], and glucocorticoid receptor complex at 50-

200 μM [23]. ATA also was reported to activate IGF1R (25-

100 μM) [22] and erbB4 (10 μM) [40]. These studies suggest

that ATA has a range of biological activities, most of which,

however, are observable only at quite high concentrations, in

many cases as high as 100 μM.

More limited activity has been reported at lower concentra-

tions of ATA. For example, at 1-5 μM, ATA was reported to

reverse the transformed phenotype of cells transfected with

basic fibroblast growth factor fused to a signal peptide

sequence (spbFGF cells) [41]. It was suggested, on the basis of

ATA fluorescence studies, that ATA binds to acidic fibroblast

growth factor, altering its physicochemical properties and

decreasing its mitogenic activity [42], although these results

were not confirmed by more direct biochemical methods. The

observed ATA interactions in this setting take place at the cell

surface, consistent with the finding that ATA does not readily

penetrate cellular membranes. ATA is not taken up by HeLa

cells, VERO cells, rabbit reticulocytes, or a variety of bacterial

cells [43]. Accordingly, ATA did not inhibit intracellular pro-

teins, even at concentrations hundreds of times higher than

those required for inhibition in vitro [37]. Only at high con-

centrations (500 μM) was intracellular ATA fluorescence

detectable [24]. It seems most likely, therefore, that our

observed effects of ATA on PDGFR activity occur at the cell

surface.

Consistent with this notion, our analysis indicated that all sig-

naling downstream of PDGFR was inhibited by ATA, and ATA

wash-out experiments suggested that ATA did not abrogate

the signaling by binding and inactivating PDGF. Further-

more, analysis of chimeric PDGFR constructs localized the

ATA effect to the PDGFR extracellular domain. Interestingly,

modest concentrations of ATA (2-5 μM) also inhibited activity

of the related receptor tyrosine kinase cKIT, which shares

sequence homology with PDGFR in the extracellular domain,

whereas kinases lacking such homology (for example, IGFR

and EGFR) were inhibited only at concentrations of 100 μM.

It is possible that the previously described inhibition of JAK/

STAT signaling by ATA [32,44] is attributable to its inhibition

of PDGFR family receptor tyrosine kinases, known to be

upstream activators of the JAK/STAT pathway [45,46].

Conclusion
The polymeric nature of ATA may make it unattractive as a

therapeutic agent and, moreover, multiple highly potent

PDGFR kinase inhibitors have been previously reported [47].

Our work establishes proof of concept, however, for the

notion that mRNA expression signatures can be effectively

used as a read-out for the identification of inhibitors of signal

transduction, often thought approachable only through the

direct examination of protein phosphorylation states. We

note that indeed antibody-based high-throughput screens

have been reported [48], but such assays obviously require

the availability of a sufficiently sensitive and specific antibody

for this purpose. For many, if not most, proteins of interest,

such high quality antibodies are not available. The ability to

convert any biological process or cell state into a completely

generic gene expression signature that can be monitored in

high throughput and at low cost is therefore attractive.

The implementation of the GE-HTS concept described here

involves the detection of multiplexed RT-PCR signature

genes by a single-base-extension reaction followed by

MALDI-TOF (matrix assisted laser desorption ionization-

time of flight) mass spectrometry [2]. While this method was

effective in the study described here, it has several

limitations. For example, conventional RT-PCR amplification

is not easily multiplexed, and the ability to simultaneously

detect multiple amplicons by the mass spectrometric method

is limited. Lastly, the approach can become expensive if

ATA does not fully abrogate phosphorylation of constitutively active PERFigure 6

ATA does not fully abrogate phosphorylation of constitutively active PER. 
(a) Western analysis of total MEL501 cell lysates. Cells were transfected 
with PER plasmid, serum-starved overnight and treated with ATA, PDGF, 
and SCF. pEGFR, p-cKIT, cKIT, and tubulin indicate antibodies against 
phospho-EGFR, phospho-cKIT, total cKIT, and total tubulin, respectively. 
(b) Western analysis of total MCF7 cell lysates. Cells were transfected 
with PER plasmid, serum-starved overnight and treated with ATA and 
PDGF. pEGFR, EGFR, and tubulin indicate antibodies against phospho-
EGFR, total EGFR, and total tubulin, respectively.
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extended to the ultra-high-throughput setting. We have

therefore modified the approach to allow for the efficient

amplification of up to 100 transcripts using a ligation-medi-

ated amplification method, followed by detection on polysty-

rene beads via flow cytometry, as we recently described

[3,5,49]. The present study, however, establishes that the GE-

HTS concept can be applied to screening for modulators of

signal transduction, representing a general approach to the

discovery of compounds that affect any signaling pathway of

interest.

Materials and methods
Reagents

The EKR construct [19] was kindly provided by Dr. Ullrich,

Department of Molecular Biology, Max-Planck-Institut fur

Biochemie. PER chimera [18] was a gift of Dr. Tyson and Dr.

Bradshaw, Department of Physiology and Biophysics, Uni-

versity of California, Irvine.

Chemical compounds apigenin, U0126, quinacrine dihydro-

chloride and ATA were obtained from Calbiochem [50];

Methyl Violet B base, Rhodamine 6 G tetrafluoroborate, sul-

forhodamine, Ethyl Violet, Victoria Pure Blue BO, Rhodam-

ine B, Lissamine Green B, Methyl Violet 2B, Rhodamine 6G,

(L-Asp)2Rhodamine 110 TFA, Rhodamine 110 chloride,

Eosin B, Rhodamine 123 hydrate, Rhodamine 19 perchlorate,

Acid Fuchsin calcium salt, p-Rosolic acid, Basic Violet2, Gen-

tian Violet, pararosaniline hydrochloride, and salicylic acid

were purchased from Sigma [51]; and 3-methylsalicylic acid,

5,5'-methylenedisalicylic acid, phenolphthalein sodium salt,

and Uranine K were obtained from ABCR [52].

Growth factors PDGF, EGF, and SCF were obtained from Cell

Signaling [53], R3IGF from Sigma, and interleukin (IL)3 from

R@D Systems [54].

Cell culture reagents RPMI 1640, Dulbecco's modified Eagle's

medium (DMEM), and HAM's F-10 were purchased from

ATA analogues inhibiting PDGFRFigure 7

ATA analogues inhibiting PDGFR. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with (a) 5,5'-
methylenedisalicylic acid (MDA), (b) Basic Violet 3 (BV3), (c) Ethyl Violet (EV), or (d) Victoria Pure Blue BO (VPB) and PDGF. pPDGFRβ and PDGFRβ 
indicate antibodies against phospho-PDGFRβ and total PDGFRβ, respectively.
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Mediatech [55], penicillin and streptomycin from Invitrogen

[56], and fetal bovine serum from Sigma. p44/42 MAP

kinase, phospho-p44/42 MAP kinase (Thr202/Tyr204),

MEK1/2, phospho-MEK1/2 (Ser217/221), PDGF-BB, phos-

pho-PDGFRβ (Tyr751), phospho-EGFR (Tyr1068), cKIT,

Phospho-cKIT (Tyr719), IGF-IαR, and Phospho-IGF-IR

(Tyr1131)/insulin receptor (Tyr1146) antibodies were

obtained from Cell Signaling. EGFR and mouse cKIT antibod-

ies were purchased from Santa Cruz Biotechnology [57]. Alfa-

tubulin antibody was obtained from Sigma.

Cells

SH-SY5Y neuroblastoma cells were purchased from Ameri-

can Type Culture Collection [58]. The IL3-dependent pro-B

lymphoid cell line Ba/F3 and Ba/F3 cells expressing TEL/

PDGFRβ [17,59] were obtained from Dr. Gary Gilliland. TIP5

primary fibroblasts [60] were a gift from Dr. Stephen Less-

nick. We thank Dr. Ruth Halaban for 501 MEL human

melanoma cells. PER-expressing PC12 cells were generously

provided by Dr. Darren Tyson. SH-SY5Y, PC12, TIP5 and

MCF7 cells were cultured in DMEM, BaF3 cells and BaF3

cells expressing TEL/PDGFRβ were maintained in RPMI

1640 medium, and 501 MEL cells were grown in Ham's 10

medium. Medium for IL3-dependent Baf3 cells was supple-

mented with 0.05 ng/ml IL3. Media for all cell lines except

PC12 contained 10% fetal bovine serum, 10 U/ml penicillin,

and 10 μg/ml streptomycin. PC12 cells were grown in DMEM

with 15% horse serum, 5% fetal bovine serum, 10 U/ml peni-

cillin, and 10 μg/ml streptomycin. All cells were grown at

37°C in 5% CO2.

Characterization of the activation signature for ERK/

PDGFR pathway

SH-SY5Y cells were grown to confluence and starved over-

night in serum-free medium in order to silence any sustained

effects from growth factor signaling. Prior to induction with

50 ng/ml PDGF, cells were treated with pathway inhibitors 74

μM apigenin or 50 μM U0126, or with dimethyl sulfoxide

Basic Violet 3, Ethyl Violet, and Victoria Pure Blue BO exhibit less specific patterns of receptor inhibition than ATAFigure 8

Basic Violet 3, Ethyl Violet, and Victoria Pure Blue BO exhibit less specific patterns of receptor inhibition than ATA. (a-c) Basic Violet 3 (BV3), Ethyl Violet 
(EV), and Victoria Pure Blue BO (VPB) inhibit SCF-activated cKIT. Western analysis of total MEL501 cell lysates. Cells were serum starved overnight and 
treated with BV3 (a), EV (b), or VPB (c) and SCF. p-cKIT and cKIT indicate antibodies against phospho-cKIT and cKIT, respectively. (d-f) BV3, EV, and VPB 
inhibit activated EGFR. Western analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with BV3 (d), EV (e), or VPB (f) and 
EGF. pEGFR and EGFR indicate antibodies against phospho-EGFR and total EGFR, respectively. (g-i) BV3, EV, and VPB inhibit activated IGF1R. Western 
analysis of total TIP5 cell lysates. Cells were serum starved overnight and treated with BV3 (g), EV (h), or VPB (i) and IGF. pIGFR and IGFR indicate 
antibodies against phospho-IGFR and total IGFR, respectively.
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(DMSO) as carrier for 60 minutes. Total RNA was isolated 30

minutes after PDGF addition. Experiments were performed

in duplicate. The RNA was processed and hybridized with

Affymetrix U133A GeneChips as described in [61].

To define the ERK/PDGFR activation signature, a pair-rank-

ing algorithm was used. Genes were ranked according to their

raw expression values on each chip. Ten genes with maximum

change in ranking were selected for each one of three pairs of

conditions: cells with PDGF versus cells without PDGF, cells

with PDGF versus cells with PDGF and apigenin, and cells

with PDGF versus cells with PDGF and U0126. Three genes

common to all three conditions were selected as a signature of

the activated ERK/PDGFR pathway. The signature was then

trimmed from three to two genes based on their relative

strength of expression in TIP5 cells.

Screening methods

TIP5 cells were grown to confluence and starved overnight

with 20 μl serum-free medium per well of 384-well plates. We

added 20 μl of compounds diluted in media so that the final

concentration of compounds would be approximately 10 μM

in three out of six replicas, and 50 μM in three remaining rep-

licas. Media containing carrier (DMSO) was added to control

wells instead of compounds. The compound library was

composed of 1,739 chemicals either approved for use in

humans by the Food and Drug Administration or extensively

biologically characterized [2,62] (the full list of tested com-

pounds is available in these publications). After 30 minutes of

compound treatment, cells were induced with 40 μl of PDGF

diluted in media (final PDGF concentration 40 ng/ml). PDGF

was added to half of control wells to measure PDGF response;

only media was added to the remaining control wells. After 40

minutes of PDGF induction, media was discarded, cells were

lysed and RNA was extracted and quantified as described in

[2].

Briefly, 15 μl of lysis solution containing a hypotonic deter-

gent, dithiothreitol and RNAse inhibitor were added to

medium-free cells for 15 minutes. The lysates were trans-

ferred to a 384-well oligo-dT-coated plate and incubated with

6 μl of 2.5× binding buffer. After 30 minutes of incubation

lysates were discarded and reverse transcription was carried

out in a 5 μl Moloney murine leukemia virus (M-MuLV) RT

reaction at 37°C for 2 h.

After incubation, the RT mixture was discarded and multiplex

PCR was carried in a 5 μl volume. The resulting mixture was

treated with shrimp alkaline phosphatase and the single-base

extension reactions were carried out in 9 μl reaction volumes

with 1× Thermosequenase buffer, 2.7 μM of each primer, 0.2

mM of each ddNTP and 0.58 units per reaction of Thermose-

quenase as described in [2].

The lysis buffers, 384-well custom-coated oligo-dT plates,

and M-MuLV were purchased from Pierce [63] and were used

according to a modified version of the Express Direct mRNA

Capture and RT-PCR system. The shrimp alkaline

phosphatase, Thermosequenase buffer, ddNTP and Ther-

mosequenase were obtained from Sequenom [64].

The primers used for multiplex PCR reactions were: EGR1, 5'-

AGC GGA TAA CAC CTC ATA CCC ATC CCC TGT-3' and 5'-

AGC GGA TAA CTG TCC TGG GAG AAA AGG TTG-3'; c-fos,

5'-AGC GGA TAA CGC TTC CCT TGA TCT GAC TGG-3' and

5'-AGC GGA TAA CAT GAT GCT GGG AAC AGG AAG-3';

ATP5B, 5'-AGC GGA TAA CCA AAG CCC ATG GTG GTT ACT-

3' and 5'-AGC GGA TAA CGC CCA ATA ATG CAG ACA CCT-

3'; RPL23A, 5'-AGC GGA TAA CAA GAA GAA GAT CCG CAC

GTC-3' and 5'-AGC GGA TAA CCG AAT CAG GGT GTT GAC

CTT-3'.

The following primers were used for single-base extension

reactions: EGR1, 5'-TTC CCC CTG CTT TCC CG-3'; c-fos, 5'-

TGC CTC TCC TCA ATG ACC CT-3'; ATP5B, 5'-GAC TGT GGC

TGA ATA CTT CA-3'; RPL23A, 5'-GTC TGC CAT GAA GAA

GAT AGA A-3'.

To select compounds that inhibited expression of the pathway

signature, the following procedure was performed. For each

compound on each plate four ratios were determined: expres-

sion of EGR1 versus expression of ATP5B(VEGR1/ATP5B), EGR1

versus RPL23A (VEGR1/RPL23A), c-fos versus ATP5B (Vc-fos/

ATP5B), and c-fos versus RPL23A (Vc-fos/RPL23A). For each plate

a median (μ) and standard deviation (σ) were determined for

Ethyl Violet and Victoria Pure Blue BO inhibit cytoplasmic TEL/PDGFRFigure 9

Ethyl Violet and Victoria Pure Blue BO inhibit cytoplasmic TEL/PDGFR. 
Western analysis of total lysates of Ba/F3 cells expressing TEL/PDGFRβ 
fusion protein. Cells were treated with either (a) Ethyl Violet (EV) or (b) 

Victoria Pure Blue BO (VPB). pPDGFRβ and PDGFRβ indicate antibodies 
against phospho-PDGFRβ and total PDGFRβ, respectively.
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each of four ratios. A compound was considered a plate hit if

each of the four ratios for this compound were at least one

standard deviation smaller than the median (V < (μ - σ):

VEGR1/ATP5B < μEGR1/ATP5B - σEGR1/ATP5B; VEGR1/RPL23A < μEGR>1/

RPL23A - σEGR1/RPL23A; Vc-fos/ATP5B < μc-fos/ATP5B - σc-fos/ATP5B; and

Vc-fos/RPL23A < μc-fos/RPL23A - σc-fos/RPL23A). Compounds that

were plate hits in four out of six replicas were selected for fur-

ther consideration.

Western blotting and transfection

For transfection experiments, 501 MEL cells or TIP5 cells

were grown overnight to 50% confluence and transfected

using Fugene 6 transfection reagent (Roche [65]) as recom-

mended by the manufacturer. Then 24 h after transfection,

medium was exchanged for a serum free one, and cells were

serum starved overnight.

Otherwise, adherent cells (TIP5, MEL 501) were grown to

confluence, serum starved overnight, and treated with com-

pounds and growth factors as indicated. Cells growing in sus-

pension (BaF3 cells and BaF3 cells expressing TEL/PDGFR

protein) were grown to 106 cells/ml and treated with com-

pounds as indicated. After treatment media was removed,

adherent cells were scraped with Sample Buffer from Cell Sig-

naling, and suspension cells were pelleted and resuspended

in Sample Buffer. The resulting lysates of approximately 1 ×

105 cells were boiled, chilled, run on 4-15% gradient gels from

BioRad [66], transferred to a polyvinylidene difluoride mem-

brane from Millipore [67], blocked, probed and visualized as

recommended by the antibody manufacturers.

Sequence alignment

Comparative sequence analysis between PDGF (UniProtKB/

Swiss-Prot entry P09619), cKIT (UniProtKB/Swiss-Prot

entry P10721), EGFR (UniProtKB/Swiss-Prot entry P00533),

and IGFR (UniProtKB/Swiss-Prot entry P08069) was per-

formed with BLAST 2 SEQUENCES [68].

Averaging and normalization of high-throughput 

screen expression levels of marker genes c-fos and 

EGR1 for Figure 2b

Each primary screen replica plate contained 16 wells with

PDGFβ and carrier DMSO as a positive control for PDGF acti-

vation (called PDGF in Figure 2b), and 16 wells with carrier

only as a negative control for PDGF activation (called No

PDGF in Figure 2b). The expression levels of marker genes

normalized by expression of control gene (ratios c-fos/ATP5B

and EGR1/ATP5B) were averaged for 16 PDGF wells to have

a single value for the positive PDGF control per plate, and for

16 No PDGF wells to have a single value for the negative No

PDGF control per replica plate. Only one well was allocated

for each hit compound on a single replica plate.

To compare data between replica plates in Figure 2b, the

ratios c-fos/ATP5B and EGR1/ATP5B were adjusted to be

equal to 1 for positive PDGF control. This means that on each

replica plate the marker/control ratios in all wells were

divided by the corresponding value for the positive PDGF

control for this plate. The procedure was performed inde-

pendently for both c-fos/ATP5B and EGR1/ATP5B ratios. As

a result of this procedure, the c-fos/ATP5B and EGR1/ATP5B

ratios for the hit compounds and for the No PDGF control on

each plate were divided by PDGF control c-fos/ATP5B and

EGR1/ATP5B ratios for this plate. The resulting adjusted val-

ues were then averaged between three replica plates.

Data

The data have been deposited in the Gene Expression Omni-

bus [69] with accession number GSE7403.
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