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Abstract

Although prognostic gene expression signatures for survival in early stage lung cancer have been

proposed, for clinical application it is critical to establish their performance across different

subject populations and in different laboratories. Here we report a large, training-testing, multi-site

blinded validation study to characterize the performance of several prognostic models based on

gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether
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microarray measurements of gene expression either alone or combined with basic clinical

covariates (stage, age, sex) can be used to predict overall survival in lung cancer subjects. Several

models examined produced risk scores that substantially correlated with actual subject outcome.

Most methods performed better with clinical data, supporting the combined use of clinical and

molecular information when building prognostic models for early stage lung cancer. This study

also provides the largest available set of microarray data with extensive pathological and clinical

annotation for lung adenocarcinomas.

Introduction

In the United States and in many western countries lung cancer represents the leading cause

of cancer-related death1. The five-year, overall survival rate is 15% and has not improved

over many decades. This is mainly because approximately two-thirds of lung cancers are

discovered at advanced stages, for which cure by surgical resection is no longer an option.

Furthermore, even among early stage subjects who are treated primarily by surgery with

curative intent, 30–55% will develop and die of metastatic recurrence. Recent multi-national

clinical trials conducted in several continents have demonstrated that adjuvant chemotherapy

significantly improved the survival of early stage (IB-II) subjects (IALT, JBR10, ANITA,

UFT, LACE)2. Nevertheless, it is clear that a proportion of stage I subjects have poorer

prognosis and may benefit significantly from adjuvant chemotherapy, while some relatively

good prognosis stage II subjects may not benefit significantly from adjuvant

chemotherapies. It remains possible that the latter subjects could potentially derive

additional benefit from adjuvant targeted therapies2–4. Therefore, there is an urgent need to

establish new diagnostic paradigms for improving the selection of stage I–II subjects who

are most likely to benefit from receiving adjuvant chemotherapy, and for identifying such

subjects as candidates for clinical trials.

Global gene expression profiling using microarray technologies has helped to improve our

understanding of the histological heterogeneity of non-small cell lung cancer and has

identified novel potential biomarkers and gene signatures for classifying subjects with

significantly different survival outcomes5–11. However, the performance and general

applicability of published classifiers has not been easy to establish due to small numbers of

subjects examined and inclusion of heterogeneous tumor types. Furthermore, there have not

been uniform criteria for sample inclusion, annotation, sample processing, and data analyses.

To address these concerns and to generate a large microarray database of NSCLC samples

that have been collected and studied using a common protocol12, we conducted a large

retrospective, multi-site, blinded study. The study included a blinded validation step to

characterize the performance of several newly-developed prognostic models using a total of

442 lung adenocarcinomas, the specific type of lung cancer that is increasing in incidence13.

To ensure scientific validity of the results, subject samples along with all relevant clinical,

pathological and outcome data were collected by investigators at four institutions using data

from six lung cancer treatment sites with a priori defined inclusion criteria. Gene expression

data on subsets of lung adenocarcinomas were generated by each of four different

laboratories using a common platform and following a protocol previously demonstrated to

be robust and reproducible12. We considered four separate hypotheses: 1. gene expression

alone can predict outcomes for all samples; 2. gene expression and basic clinical covariates

(stage, age, sex) can predict outcomes for all samples; 3. gene expression alone can predict

outcomes for stage 1 samples; and 4. gene expression and basic clinical covariates can

predict outcomes for stage 1 samples. Note that prediction on stage 1 samples is more

difficult than on the full study set as these samples are relatively homogeneous. The

consideration of clinical covariates is highly relevant as the basic variables considered here
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will always be available in practice, and gene expression-based prediction is relevant in

practice only if it provides additional information to these measures. We followed a strict

protocol for the data collection, data analysis, and performance evaluation phases of our

study. Data generated at two sites was used as a training set and the results were validated

using the independent datasets from the other two participating sites following a blinded

protocol. The results from this study provide not only valid assessment of outcome

prediction in the multi-institutional setting but also a rich dataset for future analysis and

provide an example of how large datasets can be generated and tested by cooperation and

pooling of resources among many investigators.

Results

Consortium and classifier development

A total of 442 lung adenocarcinomas have been collected with high quality gene expression

data, pathological data, and clinical information describing the severity of the disease at

surgery and the clinical course of the disease after sampling. These samples, collected from

6 contributing treatment institutions, were grouped into four sets of data based on the

laboratory where samples were processed for microarray analysis. The distribution of

several clinical variables for these 4 data sets is shown in Table 1. The first two data sets,

UM and HLM, were released to members of the consortium for the development of

classifiers appropriate for our four hypotheses. Details of our protocol for developing and

evaluating classifiers are provided in Supplementary Materials section 1.

Eight classifiers producing either categorical or continuous risk scores were developed by

investigators using the training data, and were tested for effectiveness on the two remaining

data sets (MSK and CAN/DF). Most of these classifiers incorporate techniques that have

repeatedly been applied in gene expression-based prognosis and found to work well in at

least some instances. As an overview, data reduction was carried out using gene clustering

(method A), univariate testing (methods B, C, D, E, F, G), or on a mechanistic basis (method

H). Final scoring/classification was done based on Cox regression modeling using ridging

penalties on gene cluster summaries (method A), on individual genes (method B), or on

principal components (methods F,G); on cluster membership (methods C,D), or on voting

(method H). A number of other factors such as subselection of the training samples, gene

filtering, and data transformation were handled in various ways as described in detail in

Supplementary Materials section 2. We note that all classifiers started with the same set of

DChip-processed expression summaries, so handling of the data at the CEL file level was

uniform across the methods.

Classifier performance without and with clinical covariates

The estimated hazard ratios for the risk scores produced by the eight prognosis methods,

with 95% confidence intervals, are shown for the two validation sets in Figure 1. Hazard

ratios substantially greater than 1.0 indicate that subjects in the validation set with high

predicted risk have poor outcomes. Confidence intervals in Figure 1 and the corresponding

p-values given in Supplementary Materials section 3a indicate which of the methods

perform significantly better than expected by chance. As another performance measure, we

calculated the concordance probability estimate (CPE), which measures how well the

subject outcomes agree with the predicted risk scores. CPE values close to 0.5 indicate no

concordance (poor predictivity) while CPE values approaching 1.0 indicate strong

concordance (good predictivity). Based on these measures, most of the classifiers performed

well in at least some situations. Finally, for 3-year survival we constructed ROC curves for

continuous predictors and tables of sensitivity/specificity estimates for categorical

predictors. These are shown in Supplementary Materials section 6.
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There are some notable observations about the classifiers as a group. Most methods

performed much better on sample sets containing all stages compared to just stage 1

subjects. This reflects an ability to stratify by stage even when stage is not explicitly

included in the model. Including clinical covariates improves the performance of most of the

models. In fact, without clinical covariates, no model achieved a hazard ratio significantly

greater than 1 in both validation sets for the stage 1 samples. An important criterion was that

a model should perform well in both validation sets as an indication of robust performance

in routine clinical testing. For prediction on all stages using gene expression data, only

methods A and H performed with consistent statistical significance. For prediction on all

stages using both gene expression and with clinical covariates, methods A and B produced

hazard ratios exceeding two for both validation sets. For prediction on subjects with stage 1

disease using gene expression data only, three of the methods (A, D and H) gave hazard

ratios exceeding one for both validation sets. Of these, only method A had a hazard ratio

significantly greater than one for one of the datasets. For prediction on subjects with stage 1

disease using gene expression data and clinical covariates method A gives hazard ratios that

exceed two and are statistically significant for both datasets. For many of the classifiers,

good performance in one setting was offset by poor performance in a different setting. Thus

method A seemed to have the best overall performance across the four hypotheses.

Kaplan-Meier analyses indicate several subgroups based on subject survival

Using method A to stratify subjects into 3 groups, we generated Kaplan-Meier plots to

illustrate the survival differences among the groups determined by this classification scheme

for both the validation (Figure 2) and the training datasets (Figure 3). This illustrates that

lung adenocarcinomas can be divided into groups with different survival rates. Kaplan-

Meier plots showing the performance of the other classifiers on the validation datasets are

available Supplementary Figure S1. The plots developed from method A again illustrate that

risk predictors evaluated on all subjects performed better than those evaluated on subjects

with stage 1 disease. Furthermore, using clinical covariates together with the gene

expression data improved outcome prediction compared to using gene expression data alone.

Method A included the null value 1 in its 95% hazard ratio confidence interval in only 1 of 8

situations considered (Figure 2). The one hypothesis where method A did not give

significant prediction was stage 1 subjects scored using only gene expression measures. As

noted above, no method gave significant results for both validation sets in this setting. This

suggests that stage 1 tumors may be classified more efficiently using clinical parameters

along with gene expression data.

Analyses of additional classifiers

The additional classifiers shown in Supplementary Materials section 3 (J, K, L, M, and N)

were derived from the probesets listed in the Potti et al9, and the Chen et al10, articles.

While it was not possible to reconstruct the classifiers reported in the original papers, we

utilized the reported probesets to construct classifiers, and we tested them on our validation

data. The performances of these classifiers were generally comparable to, although slightly

poorer than those for methods A–H developed for this paper. As shown in Supplementary

Materials section 3, the hazard ratios are in most cases larger than one, but they did not give

statistically significant hazard ratios consistently for both validation datasets. For these

classifiers the addition of clinical covariates improved the predictive ability.

We considered two other ways to compare the classifiers developed for this study.

Supplementary Materials section 4 shows how each tumor sample was classified by each of

the methods. The graphs show that a number of subjects could be correctly classified by

many different methods. These may represent extreme cases that can be easily recognized.

There were a number of tumors where the classifiers disagree, which could reflect classifier
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quality or tumors that are more ambiguous in terms of the available data. This highlights the

greatest problem facing expression-based classification of tumors --are misclassifications

due to inaccurate clinical information, tissue sampling problems, bad classifiers, or do they

simply reflect the continuum of tumor types that can arise? The overlap in predictivity is not

explained by a high overlap in the probesets used for classification (Supplementary

Materials section 5). There was overlap between the genes used in method H and those in

one of the clusters observed to be important in method A. Many of these genes were

associated with proliferation which is consistent with more aggressive lung

adenocarcinomas demonstrating increased proliferative potential. For all the other newly

developed classifiers the overlap is reflective of similarities in the methods used to select

genes. The variety of probesets showing some predictive capacity suggests that information

about lung adenocarcinoma outcomes may not be concentrated in just a few exceptional

genes.

Discussion

Several studies of primary lung adenocarcinoma or NSCLC have reported the ability to

generate expression signatures capable of grouping subjects according to their survival

outcomes. However, most studies are small (approximately 100 subjects or fewer) and

typically drew data from a single treatment institution. Gene expression profiles with real

clinical applicability must be recognizable despite variability that might occur in the

processing of samples at different institutions. So far, little has been published on the ability

of prognostic methods for lung cancer to perform in larger data sets or with independent

validation samples. Often the published signatures show little overlap in the genes identified

as significant predictors of outcome. Thus there is a strong possibility that sample collection

methods, processing protocols, single-institution subject cohorts, small sample sizes, and

peculiarities of the different microarray platforms are contributing significantly to the

results. To address these issues, a multi-institutional collaborative study was conducted to

generate gene expression profiles from a large number of samples with a priori determined

clinical features that could be used to fully evaluate proposed prognostic models for

potential clinical implementation.

The design and execution of the present study was performed recognizing the specific issues

discussed above. Significant emphasis was placed on reducing technical variability by using

similar protocols, reagents and platforms12, so that the major uncontrolled variables

represent the biology of the lung cancers and associated clinical data. The sample sizes used

for training and validation were determined to be of sufficient size, and two blinded external

validation sets were used to provide a realistic assessment of the performance of each

prognostic method. This is in contrast to the more common approach of obtaining all the

data from a single source and randomly assigning samples to training and validation sets for

the development and assessment of classifiers. Furthermore, great care was taken to

standardize the pathological assessment of each tumor sample and the collection of clinical

information across all institutions involved in this study. The lessons learned from this

coordinated effort will likely influence the research practice for future profiling efforts in

lung cancer.

Several classifiers were developed from the training data and tested on the independent data

sets. These classifiers represent many of the established techniques for classifier

development, with novel approaches also represented. The classifiers had various levels of

success in stratifying subjects according to risk. Two of the methods (C and E) showed little

predictive capacity. The poor performance of method E was expected as one individual gene

parameter is too sensitive to noise to perform well in gene expression data collected from

multiple institutions. More complex classifiers showed better success, with a few classifiers
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demonstrating the ability to classify across different institutional data sets, and within the

stage 1 tumors. The most successful classifiers at stratifying stage 1 samples were trained on

samples from all stages. This suggests that heterogeneity of aggressiveness exist in stage 1

tumors, and the pattern of gene expression in higher stage tumors is informative for

predicting the risk of stage 1 tumors. We note that the power for comparing classifiers tends

to be lower than the power for identifying differentially expressed genes. This study was not

adequately powered to draw sharp lines between the performances of different classifiers.

Method A, which worked with all tumor samples or with Stage I samples alone, both with

and without clinical covariates, showed the best overall predictive ability. Method H also

had good performance without clinical covariates. The genes in these classifiers may

provide insight into the biology of aggressive tumors. Method A relied on the correlated

expression of multiple gene clusters to predict subject outcome. Relatively higher expression

of genes in cluster 6 of method A (545 genes) was associated with poor subject outcome.

This cluster included cell proliferation-related genes including cyclin A (CCNA2) and other

cyclins, BUB1B, topoisomerases, check point genes (CHEK1), chromosomal and spindle

protein genes. Method H also relied heavily on these genes for classification. This is

consistent with elevated cell proliferation and loss of cell cycle control being associated with

poor outcomes7. Greater expression of genes in cluster 4 of method A (262 genes), cluster 5

(82 genes), and cluster 12 (427 genes) were associated with better survival. Cluster 4

includes several differentiation related genes such as thyroid transcription factor 1 (TITF1),

pulmonary-associated surfactant protein B (SFTPB), as well as G protein-coupled receptor

116 (GPR116) and MAP3K12 binding inhibitory protein 1 (MBIP) while cluster 12 contains

many immunological-related genes. This is consistent with tumors showing some aspects of

recognition by the subject’s immune system having better outcomes14. The variety of genes

found useful for classification suggests that multiple mechanisms contribute to the clinical

progression of lung adenocarcinomas and that multiple classifiers may be equally effective.

This study provides a realistic assessment of the challenges in developing prognostic models

for early stage lung cancer. A significant degree of outcome prediction accuracy was

observed using gene expression data alone, yet the hazard ratios for most of our models

increase with the inclusion of clinical data (Figure 1). Conversely, gene expression data

improves the predictive performance of clinical parameters alone (method I), compared to

method A which uses gene expression and clinical variables. We note that even this

uniquely large study was not adequately powered to make comparisons between

classification methods with high statistical confidence. Nevertheless, some interesting trends

emerge. For the all-stage analysis, method I (clinical variables only) was competitive with

most of the procedures using gene expression data without clinical variables, consistent with

gene expression largely recapitulating stage. However it is notable that method A with

covariates performs substantially better on the CAN/DF samples than either method A

without covariates, or method I. In the stage 1 analysis, the clinical variables reduce to age

and sex. In the MSK test set, these variables are uninformative about disease risk, so the fact

that gene expression appears to risk stratify subjects in method A is important. The

predictive performance of method I in the stage 1 CAN/DF test set is driven by a strong

association with age. However it is unclear how far this relationship will generalize.

Therefore, an integrated approach using gene expression together with associated clinical,

pathological, and other information may be more promising for future work, as has

previously been pointed out in studies examining prostate and breast cancer15,16. While it is

not possible to attribute the slightly better results across the hypotheses and test sets with

method A compared to the other methods to specific classifier properties, we do note that

method A did utilize substantially more genes than the other approaches and incorporated an

initial gene clustering procedure. These properties may have contributed to its more

consistent performance. We have provided a detailed discussion of the challenges in using
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gene expression profiling for lung cancer prognosis in practice in Supplementary Materials

section 2. Our findings suggest that clinical covariates should be collected with the same

care as utilized for obtaining gene expression signatures.

The present study was designed to address three key issues in the field of gene expression

based outcome prediction. First, this study provides the largest gene expression data set with

pathological and clinical annotation for lung adenocarcinomas to date. Because of the large

sample size, additional analyses of prognostic genes associated with specific histological

subtypes, such as bronchioalvelolar carcinomas, can now be undertaken. Extensive

pathological and mutational annotation of each specimen is ongoing and this careful

assessment will provide an extremely valuable resource for hypothesis generation. Secondly,

this data was used to test in a rigorous manner the current methodologies used to predict

tumor biology and, by inference, subject prognosis from gene expression signatures. Finally,

this study was used to identify issues relevant to the use of gene expression profiles that

should be taken into consideration in designing future studies. We had observed

previously12 that the biological variation between tumors exceeds the technical variation

introduced by microarray analysis. We have observed in this study that clinical covariates

improve upon gene expression alone as a mechanism for stratifying tumor samples. We have

also learned that coordinating the collection of clinical and pathological data across several

institutions is an important task for prospective studies designed to further refine prognostic

signatures. There are also limitations in using subject survival as an end-point that may be

overcome by using time to tumor recurrence as the primary endpoint in place of overall

survival. Although there still remain significant challenges to the use of gene expression-

based classifiers in the clinical setting, the potential that these tools can improve subject care

and increase survival provides a strong impetus to continue to refine these approaches for

eventual clinical utilization.

Methods

Investigator consortium: Four institutions (University of Michigan Cancer Center (UM),

Moffitt Cancer Center (HLM), Memorial Sloan-Kettering Cancer Center (MSK) and the

Dana-Farber Cancer Institute (DFCI)) formed a consortium with support and collaboration

of NCI investigators to develop and validate gene expression signatures of lung

adenocarcinomas. Details of the specimens, criteria for inclusion, clinical covariates

collected, mRNA processing and hybridization are described in Supplementary Materials

section 1. Consent was obtained for all patients and the protocols approved by the respective

Institutional Review Board of each institution. The cel files for the study are available at the

following URL:

https://caarraydb.nci.nih.gov/caarray/publicExperimentDetailAction.do?ex

pId=1015945236141280

Links to the pathology and clinical data are also available at this site.

Training and validation sets: Initial evaluation of the gene expression data suggested that the

data from the UM, HLM and MSK was broadly similar although distinguishable, but the

data from CAN/DF showed some systematic differences from the other three sites mainly

due to reduced signal intensity. The CAN/DF set was also distinguished in that it lacked

stage 3 samples. To give a realistic evaluation of how a prognostic method might be used in

practice, it was decided that the combined data from UM and HLM would be used as the

training set, with MSK held out as a similar but external validation set. The CAN/DF data

was held out as a second and more challenging external validation set.
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Analysis protocol

A strict protocol for analysis was followed, with data for the two validation sets held by a

third party “honest broker” during analysis of the training data. Risk scoring procedures

were developed on the training data for four distinct hypotheses described above. The

available clinical variables were AJCC stage, age, and gender. Prognostic models were

developed on the training data by each of the four groups, with each group submitting one or

more candidate models for some or all of the four hypotheses defined above. After the

models were defined and documented, the honest broker released the validation set gene

expression and clinical data (but not the outcome data) for the two validation data sets to the

four groups and each candidate prognostic model was used to predict outcomes for each

subject. It was permitted for methods to standardize gene expression levels within each test

set or refer to percentile points of summary features in a test set, but otherwise predictions

were made for each test sample in isolation. Some models produced a continuous risk score

for each subject while others grouped the subjects into a finite number of ordered risk

categories. These predictions were then passed back to the honest broker, allowing

evaluation of the performance of the prognostic models. Results for all methods we

considered are presented in this paper.

For performance evaluation, we used each predicted risk score as the covariate in a

univariate Cox proportional hazards model, with overall survival (censored at 60 months) as

the outcome variable. The continuous risk scores were standardized to have unit interquartile

range to make the hazard ratios from the proportional hazards model comparable to each

other, and approximately comparable to those from binary predictors. The estimated hazard

ratio and its 95% confidence interval and p-value (shown in Supplementary Materials

section 3) provided a means to directly compare the performances of different procedures on

a unidimensional scale. For graphical representation, continuous risk scores were binned

into tertiles, and Kaplan-Meier estimates of the survivor function were plotted for each

subgroup. This allows for assessment of any “dose-response” relationship and also

facilitates graphical comparison between different predictors.

An alternative measure of performance is provided by the concordance probability estimate

(CPE)17. The CPE estimates the concordance probability, which is the probability that for a

given pair of subjects selected at random from the study population, the subject with better

prognosis has a better outcome. CPE values close to 0.5 indicate poor predictive accuracy

and values approaching 1.0 indicate increasingly good predictive accuracy.

Finally, we constructed ROC curves for the continuous predictors and tables of sensitivity

and specificity values for the categorical predictors. Sensitivity and specificity were

calculated using Bayes’ theorem and Kaplan-Meier estimates of the survivor function to

appropriately handle censoring. Details are provided in Supplementary Materials section 6

and Supplementary Figure S2.

Risk scoring procedures

A variety of strategies were employed to construct prognostic models. All of the methods

used an initial step to reduce the amount of data for final modeling of the outcomes. Detailed

descriptions of each method are provided in Supplementary Materials section 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Classifier Performance: Hazard Ratios of methods A–I on validation datasets for four

hypotheses, along with 95% confidence intervals.
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Figure 2.

Kaplan-Meier estimates of the survivor function for method A on each validation dataset for

the 4 hypotheses. a: MSK test set all stages, b: MSK test set with covariates all stages, c:

MSK test set stage 1 only, d: MSK test set stage 1 only with covariates, e: CAN/DF test set

all stages, f: CAN/DF test set with covariates all stages, g: CAN/DF test set stage 1 only, h:

CAN/DF test set stage 1 only with covariates.
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Figure 3.

Kaplan-Meier estimates of the survivor function for method A (cross-validated) on training

sets UM and MSK. a: all stage, b: all stages with covariates, c: stage 1 only, d: stage 1 only

with covariates.
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Table 1

Summary statistics of data

UM HLM CAN/DF MSK

Sample size 177 79 82 104

Age (mean, sd) 64 (10) 67 (10) 61 (10) 65 (10)

Gender (% male) 56% 51% 56% 36%

Stage I 66% 54% 68% 61%

Stage II 16% 26% 32% 19%

Stage III 18% 19% 0% 20%

Median follow-up (months) 54 39 40 43

Number of deaths 75 50 28 34
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