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Abstract

Background: Amur ide (Leuciscus waleckii) is an economically and ecologically important cyprinid species in Northern
Asia. The Dali Nor population living in the soda lake Dali Nor can adapt the extremely high alkalinity, providing us a
valuable material to understand the adaptation mechanism against extreme environmental stress in teleost.

Results: In this study, we generated high-throughput RNA-Seq data from three tissues gill, liver and kidney of L. waleckii
living in the soda lake Dali Nor and the fresh water lake Ganggeng Nor, then performed parallel comparisons of three
tissues. Our results showed that out of assembled 64,603 transcript contigs, 28,391 contigs had been assigned with a
known function, corresponding to 20,371 unique protein accessions. We found 477, 2,761 and 3,376 differentially
expressed genes (DEGs) in the gill, kidney, and liver, respectively, of Dali Nor population compared to Ganggeng Nor
population with FDR ≤ 0.01and fold-change ≥ 2. Further analysis revealed that well-known functional categories of
genes and signaling pathway, which are associated with stress response and extreme environment adaptation, have
been significantly enriched, including the functional categories of “response to stimulus”, “transferase activity”,
“transporter activity” and “oxidoreductase activity”, and signaling pathways of “mTOR signaling”, “EIF2 signaling”,
“superpathway of cholesterol biosynthesis”. We also identified significantly DEGs encoding important modulators on
stress adaptation and tolerance, including carbonic anhydrases, heat shock proteins, superoxide dismutase, glutathione
S-transferases, aminopeptidase N, and aminotransferases.

Conclusions: Overall, this study demonstrated that transcriptome changes in L. waleckii played a role in adaptation to
complicated environmental stress in the highly alkalized Dali Nor lake. The results set a foundation for further analyses
on alkaline-responsive candidate genes, which help us understand teleost adaptation under extreme environmental
stress and ultimately benefit future breeding for alkaline-tolerant fish strains.
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Background
Amur ide (Leuciscus waleckii) belongs to the family
of cyprinid, inhabiting the Heilongjiang (Amur) River
basin in Russia, Mongolia, China and Korea. Although
L. waleckii inhabits fresh water in rivers, streams and
lakes, it also has great tolerance on high salinity and
alkalinity (http://www.fishbase.org). As an extreme instance,
L. waleckii inhabiting Dali Nor lake, Inner Mongolia
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(E116o25′-116o45′,N43o13′-43o23′) can survive in
water of ultra-high alkalinity up to pH 9.6. Dali Nor lake
is a typical saline-alkaline lake with high concentrations of
carbonate salts. It locates in an endorheic basin on eastern
Inner Mongolia Plateau. The evaporation is greater than
precipitation and inflows, making the lake shrink consist-
ently from 1600 to less 200 km2 since early Holocene
(11,500–7,600 cal yr BP). The alkalinity and salinity are
increasing steadily [1]. Currently the pH value ranged
from 8.25 to 9.6, with the alkaline content (ALK) over
50 mg/L and the salinity around 6 ‰. Combining geo-
logical and biological evidence, it’s commonly believed
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that L. waleckii population in Dali Nor lake were used to
be fresh water fish that evolved fast in the past several
thousand years and developed great tolerance on high
alkalinity [2,3].
L. waleckii is economically important to local Mongolian

who live around the Dali Nor lake, and ecologically
important to wild birds on their migration journeys
from Siberia to the south which feed on L. waleckii
as major food source [4]. In spite of economic and
ecological importance, the mechanism of its high tolerance
on alkalinity is still a puzzle. Very limited physiological and
genetic studies had been performed, and rare genetic
resources had been developed. So far, only a few genetic
markers had been developed for population genetics
evaluation and phylogeny analysis [3,5]. Mitochondrial
genome had been completely sequenced and annotated,
providing basic molecular tools for ecological and
genetic study [6]. Scientists are paying more attention
to L. waleckii with gradually recognized importance.
Recently, high throughput transcriptome sequencing
was performed on Illumina platform and analyzed,
providing the genomic basis for further investigation
of the mechanism of its alkaline tolerance [7]. L. waleckii
has been recently developed as potential aquaculture
species in the widely distributed saline and alkaline water
in northern China. The breeding program also eagerly
desires better understanding of its physiological and
genetic basis of the tolerance adaptation and stress
resistant on alkaline environment. Besides, scientists
are also interested on the mechanism of microevolution on
L. waleckii which evolved fast to adapt paleoenvironmental
changes since early Holocene.
Comparative study between organisms inhabiting

distinct environments could provide insight into the
mechanism that responding to the environmental differ-
ence. In some cases, scientists apply artificial treatments
to create the difference in the experiments, and facilitate
the comparison [8,9]. To better understand the physio-
logical and genetic changes and mechanism of alkaline
tolerance and adaptation in L. waleckii, comparative ana-
lysis between the fish living in alkaline water and fresh
water is the efficient method. Fortunately, there is a sister
lake of Dali Nor called Ganggeng Nor, which is fresh water
lake and connected to Dali Nor through the short Shali
river. L. waleckii also inhabits the fresh water of Ganggeng
Nor lake. There is frequent genetic communication
between the population in Dali Nor lake (alkaline water
type, AW) and those in Ganggeng Nor lake (fresh water
type, FW) through anadromous spawning migration
annually. Both types of L. waleckii are derived from
same ancestors and have consistent genetic back-
ground, which provide us unique natural samples to
explore gene expression changes in response to high
alkaline environment.
Transcriptome profiling and differential gene expression
analyses traditionally use microarray technology, which
requires cDNA library, Expressed Sequence Tags (EST)
dataset and array hybridization. With the emerging of the
next generation sequencing, RNA sequencing (RNA-Seq) is
relatively new technology for transcriptomic study across
the whole genome. Comparing to traditional cDNA micro-
array, RNA-Seq provides deep sequencing data for direct
quantification of transcripts, which is more sensitive to
detect all expressed genes without the hassles of ESTcollec-
tion, probe synthesis, microarray design and hybridization
[10,11]. In the past several years, RNA-Seq has been widely
used in many teleost for differential gene expression ana-
lysis in various organisms. For instance, RNA-Seq were
used to unveil gene expression differences in response to
various pathogenic challenge in Lateolabrax japonicas [12],
catfish (Ictalurus punctatus) [13,14], Grouper (Epinephelus
spp.) [15], European sea bass (Dicentrarchus labrax) [16]
and Asian sea bass (Lates calcarifer) [8]. It was even used
to quantify the gene expression changes in Fundulus
grandis in the Gulf of Mexico to evaluate the impact of oil
contamination after the disaster of Deepwater Horizon
drilling platform [17]. Gene expression changes responding
to abiotic stress are generally very significant comparing to
those control counterparts. Thus, RNA-Seq was also used
to profile DEGs and pathways under certain environmental
stress. For instance, drought-responsive genes were identi-
fied and analyzed using RNA-Seq to compare drought-
treated and well-watered fertilized ovary and basal leaf
meristem tissue [18]. Gene expression changes in response
to extreme dehydration on Belgica Antarctica were charac-
terized using RNA-Seq, unveiling the tolerance mecha-
nisms on dehydration in Antarctic insect [19]. RNA-Seq
results also revealed gene expression changes in various
metabolic pathways in response to osmotic stress and
exogenous abscisic acid challenge, providing global gene
expression overview of drought stress sorghum [20].
In this study, we use RNA-Seq to investigate the genome-

wide gene expression differences in L. waleckii population
inhabiting soda water of Dali Nor lake and their sister
population inhabiting fresh water of Ganggeng Nor lake.
Gene expression changes are identified from whole
transcriptome background. Our study highlights those
reactive pathways in response to high alkaline stress
by using gene ontology and pathway analysis. This study
provides us useful information to explain mechanism of
alkaline stress tolerance in teleost.

Results and discussion
RNA-Seq data processing, reference assembly and
alignment
To provide comprehensive understanding of the expres-
sion difference between L. waleckii inhabiting AW and
FW, we collected and deeply sequenced the RNA samples
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from liver, kidney and gill. A total of 187,430,252
paired-end reads were generated from six samples
with 101-bp read length. The number of sequences
from each sample ranged from 28.7 to 35.7 million.
After removal of ambiguous nucleotides, low-quality
sequences (Phred quality scores < 20), contaminated
microbial sequences, ribosomal RNA sequences, a total of
154,265,700 cleaned reads (82.3%) were harvested for
further analysis. The cleaned sequences of each sample
ranged from 23.7 to 29.1 million reads, showing the
stability and consistence on sampling, library preparation
and sequencing. Cleaned RNA-Seq reads of six samples
were mapped to assembled transcriptome reference by
using the ultrafast short read aligner Bowtie (version 0.12.3)
[21]. The mapping ratio ranged from 80.8% to 88.1%
with an average of 84.1%. All RNA-Seq data in this
study have been deposited in the NCBI SRA database
(Accession number SRR949612) (Table 1).
The cleaned reads of six samples were pooled and assem-

bled by using Trinity assembler [22] to generate the tran-
scriptome reference. As shown in Table 2, the trancriptome
were assembled into 64,603 contigs, ranging from 201 to
16,177 bp in length. The average length is 879 bp, N50
length is 1,776 bp and median length is 404 bp. The contig
length distribution was shown in Figure 1. We then anno-
tated assembled contigs to provide expression background
and facilitate the functional analysis of DEGs. We compared
our assembly with three protein databases, including NCBI
non-redundant (nr) protein database, uniprot database, and
zebrafish reference protein database, by using BLASTx with
e-value cutoff of 1e-10. A total of 28,391 contigs have signifi-
cant hit at least in one database, corresponding to 20,371
unique protein accessions (Table 2). Gene ontology (GO)
analysis was conducted to assign GO term to each of those
20,371 unique proteins. A total of 14,326 unique proteins
were assigned at least one GO term for describing biological
processes, molecular functions and cellular components,
corresponding to 22,460 assembled contigs (Table 3).

Identification of differentially expressed genes
We found 477, 2,761 and 3,376 DEGs in the gill, kidney,
and liver, respectively, of AW population compared to
Table 1 Summary of samples and RNA-Seq data

Group Tissue Reads Clean

FW Liver 35,709,347 29,1

Kidney 32,477,574 25,7

gill 30,928,282 24,7

AW Liver 28,660,883 23,7

Kidney 29,645,565 24,9

gill 30,008,601 25,9

Total 187,430,252 154,2
FW population with FDR ≤ 0.01 and fold-change ≥ 2
(Figure 2). M-A plots were drafted using “eps” format
files as shown in Figure 3. Of these differentially
expressed genes, 154, 1,087, 1,949 genes showed higher
expression in gill, kidney, and liver of the AW population,
respectively; and 323, 1,674, 1,427 genes showed higher
expression in gill, kidney, and liver of the FW population,
respectively. Of these, 127, 64, 314 genes were exclu-
sively expressed in gill, kidney, and liver of the AW
population, and 85, 335, 125 genes were exclusively
expressed in in gill, kidney, and liver of the FW
population (Additional file 1: Table S1). Venn diagram
of the DEGs illustrated that majority of these genes were
not shared in three tissues, suggesting that the mechanism
and pathways in response to alkaline stress are significant
different in gill, kidney, and liver (Figure 4).
To validate RNA-Seq results, 35 genes with high level

of significance or important stress-responding functions
were selected for qRT-PCR analysis with beta-actin as
reference gene. Primers for all genes are listed in
Additional file 2: Table S2. Overall, the expression patterns
of 30 genes were in agreement across the RNA-Seq and
qRT-PCR analyses with minor differences in the expression
level (Figure 5). There were only 5 genes that not showed
the consistency of expression in the two assays. Thus, these
genes showed similar patterns of mRNA abundance in
RNA-Seq analysis and qRT-PCR, validated the genome-
wide expressed profiling in gill, kidney, and liver in
response to AW stress.

Functional analysis on differential expressed genes in gill
In response to AW stress, we observed significant
gene enrichment of several Gene Ontology (GO)
terms in gill that related to stress response. These
GO terms include “transcription regulator activity
(GO:0030528)”, “metabolic process (GO:0008152)” and
“cell communication (GO:0007154)” in up-regulated genes,
and “response to stimulus (GO:0050896)” in the down-
regulated genes. Notably, there are a total of 26 DEGs in
the category of “response to stimulus”. Detailed analysis
revealed that 12 genes are related to “response to
stress (GO:0006950)”, 12 genes are related to “response to
reads Mapped reads Mapping ratio (%)

02,462 25,626,600 88.1

39,081 20,784,208 80.8

21,200 21,141,048 85.5

33,500 19,620,262 82.7

74,142 21,061,309 84.3

95,315 21,628,548 83.2

65,700



Table 2 Statistics of transcriptome reference assembly
and annotation

Assembly Number of contigs 64,603

Maximum contig length 16,177 bp

Minimum contig length 201 bp

Average contig length 879 bp

Median contig length 404 bp

N50 length 1,776 bp

Annotation Contigs with blast hits on NR 27,724

Contigs with blast hits on Uniprot 23,111

Contigs with blast hits on D.rerio protein 26,611

Unigenes with blast results 20,371

Contigs with GO terms 22,460

Unigenes with GO terms 14,326
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chemical stimulus (GO:0042221)”, 7 genes are related to
“response to external stimulus (GO:0009605)” and 6 genes
are related to “cellular response to stimulus (GO:0051716)”.
We further investigated those highly DEGs in gill, and

observed that 7 heat shock protein genes, 4 Cathepsin
genes and 3 proteasome subunit genes are highly
up-regulated in gill of AW (Additional file 1: Table S1).
Heat shock proteins target damaged proteins to the
proteasome to prevent accumulation of dysfunctional
proteins and to recycle peptides and amino acids [23].
This result suggested that the high level of autophagy
occurred in gill under AW stress.
In the IPA analysis, we observed significant Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment of the differential expressed genes in gill
Figure 1 Length distribution of assembled transcriptome contigs of L
in response to AW environment stress. “Eukaryotic
Initiation Factor 2 (EIF2) Signaling”, “Regulation of eIF4
(Eukaryotic Initiation Factor 4) and p70S6K (P70S6 kinase)
Signaling” and “mTOR (Mammalian Target of Rapamycin)
Signaling” were listed in the top enriched pathways, and all
of them had been reported that played essential roles on
stress response and tolerance. Eukaryotic Initiation Factor
2 (EIF2) is a GTP (Guanosine Triphosphate)-binding pro-
tein that escorts the initiation-specific form of Met-tRNA
(Met-tRNAi) onto the ribosome, it also plays a role in
identifying the translational start site. EIF2 signaling
is the protein synthesis pathway in eukaryotic organisms.
Because protein synthesis is energetically costly, stressed
cells usually inhibit this process to devote resources to
stress responses. In many cases EIF2α phosphorylation is a
biological response that facilitates cells to cope with stress-
ful environments by down-regulation of protein synthesis
[24,25]. mTOR is a serine/threonine kinase distributed
within two protein complexes (mTORC1 and mTORC2)
in the cell [26], which plays important roles in response
to stress, including activation of the autophagy [27]
and modulation of protein synthesis [28]. These responses
can conserve energy and promote survival during prolonged
periods of stress [19]. “Regulation of eIF4 and p70S6K
Signaling” pathway has similar functions on protein
synthesis regulation. p70s6k has been considered an
mTOR activation mirror and a marker of increased protein
synthesis induced by stress and stimulation [29].
According to above evidences from GO and KEGG

pathway analysis, we hypothesized that high alkaline stress
suppressed protein synthesis and increased the level
of autophagy in gill of L. waleckii in Dali Nor, which
. waleckii.



Table 3 GO enrichment analysis of genes up- or down-regulated in response to AW stress

Tissue Go term Definition No. up- or down- regulated Total in category P value

Liver Up

GO:0016491 oxidoreductase activity 52 616 0.001

GO:0005215 transporter activity 139 690 0.001

GO:0008047 enzyme activator activity 30 141 0.019

GO:0045182 translation regulator activity 1 65 0.009

GO:0002376 immune system process 70 219 0.001

GO:0008152 metabolic process 686 5,566 0.010

Down

GO:0016740 transferase activity 201 1,555 0.002

GO:0009055 electron carrier activity 28 99 0.001

GO:0016491 oxidoreductase activity 132 616 0.000

GO:0030234 enzyme regulator activity 77 506 0.001

GO:0009056 catabolic process 139 1,061 0.007

GO:0009058 biosynthetic process 216 1,791 0.027

Kidney Up

GO:0016491 oxidoreductase activity 150 616 0.000

GO:0016740 transferase activity 165 1,555 0.000

GO:0016829 lyase activity 32 121 0.000

GO:0005215 transporter activity 77 690 0.005

GO:0009055 electron carrier activity 32 99 0.000

GO:0030234 enzyme regulator activity 56 506 0.001

GO:0050896 response to stimulus 91 678 0.000

Down

GO:0016491 oxidoreductase activity 41 616 0.000

GO:0005215 transporter activity 124 690 0.000

GO:0030234 enzyme regulator activity 93 506 0.001

GO:0003700 transcription factor activity 75 488 0.042

Gill Up

GO:0030528 transcription regulator activity 1 524 0.041

GO:0008152 metabolic process 108 5,566 0.001

GO:0007154 cell communication 10 1,772 0.019

Down

GO:0050896 response to stimulus 26 678 0.011

GO:0042221 response to chemical stimulus 12 217 0.003
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could conserve energy and provide sufficient amino
acids and macromolecules for surviving in high alkaline
environment.

Functional analysis on differential expressed genes in liver
In response to AW stress, we observed significant gene
enrichment under several GO terms in liver, including
“oxidoreductase activity (GO:0016491) (52 genes)” and
“transporter activity (GO:0005215) (139 genes)” in up-
regulated genes, and “transferase activity (GO:0016740)
(201 genes)”, “electron carrier activity (GO:0009055)”
and “oxidoreductase activity (GO:0016491) (132 genes)”
in the down-regulated genes. The genes in the molecular
function category of “oxidoreductase activity” and “electron
carrier activity” are widely studied and recognized to associ-
ate with oxidative stress and adaptation on environmental
stimuli in coupling with mitochondrial functions. For
instance, Mitchell et al. performed genome-wide gene
expression profiling on two model microorganisms,
Escherichia coli and Saccharomyces cerevisiae, in response
to environmental stimuli, showed significant functional
enrichment of oxidative stress categories, including



Figure 3 M-A plots showing gene expression in three tissues.
(A) M-A plot showing gene expression in liver; (B) M-A plot showing
gene expression in kidney; (C) M-A plot showing gene expression in gill.

Figure 2 DEGs in three tissues between AW and FW for
L. waleckii.
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oxidoreductase activity [30]. The expression profiling stud-
ies on teleost species also showed similar response that a
cluster of genes of oxidoreductase activity differential
expressed in response to environmental stress, such as
temperature stress and confinement stress [31,32]. Here we
identified 6 oxidoreductase genes differentially expressed
in AW and FW environment. Genes in the category of
“transporter activity” are in charge of the movement of sub-
stances, such as macromolecules, small molecules and ions,
etc. They were significantly enriched in the sub-terms of
“substrate-specific transmembrane transporter activity” and
“ion transmembrane transporter activity” in this study,
suggesting their important roles in regulating homeostasis
of various substrates in response to environmental stress,
which were consistent with those previous reports on stress
adaptation and resistance of many organisms. For instance,
amino acid and ion transmembrane transporters were
reported to be essential factors to salt and osmotic
stress response in many plants [33,34], as well as in
many aquatic animals including mollusks [35,36] and tele-
osts [37,38] etc. We further inspected those highly
DEGs in liver and confirmed that 128 accessions en-
coding various transporter proteins or solute carrier (SLC)
family members, suggesting they were important regula-
tors in response to alkaline stress in liver of L.
waleckii. IPA pathway enrichment analysis on those
DEGs in liver showed significant pathway enrichment
on “Superpathway of cholesterol biosynthesis”,
suggesting the cholesterol synthesis had been signifi-
cantly induced under the severe environmental stress in
the liver of L. waleckii.

Functional analysis on differential expressed genes in kidney
Kidney is the essential organ which serves homeostatic
functions such as the regulation of electrolytes, mainten-
ance of acid–base balance, and salt and water balance in
the body. From those 2,761 DEGs in kidney, we
identified significant enrichment on several GO terms,
including “oxidoreductase activity (GO:0016491) (150
genes)”, “transferase activity (GO:0016740) (165 genes)”,
“transporter activity (GO:0005215) (77 genes)”, “electron
carrier activity (GO:0009055) (32 genes)”, “enzyme regula-
tor activity (GO:0030234) (56 genes)”, “response to stimu-
lus (GO:0050896) (91 genes)” in the up-regulated genes,
and “oxidoreductase activity (GO:0016491) (41 genes)”,
“transporter activity (GO:0005215) (124 genes)”, “enzyme
regulator activity (GO:0030234) (93 genes)”, “transcription
factor activity (GO:0003700) (75 genes)” in the down-
regulated genes. The enrichment profile is similar to those
DEGs in liver on “oxidoreductase activity”, suggesting
that both tissues were facing oxidative stress caused
by environmental stimuli, and the genes with oxidoreductase



Figure 4 Venn diagram of DEGs among three tissues.
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activity changed their expression to adapt the changes. The
genes of “transporter activity” were enriched in both up- and
down-regulated genes. A significant portion of these trans-
porters are substrate-specific transmembrane transporters
(GO:0022891). The active transmembrane transporters
are much more than those passive transmembrane
transporters, which indicate that active transporters
play the essential roles to transport specific substrates
such as ion and organic acid across membranes under
severe osmotic and alkaline stress with great energy
consumption than those in FW environment. The increased
energy requirement leads to active proteolysis in the kidney,
which can be demonstrated by observed up-regulation of
genes encoding various aminotransferases, including
tyrosine aminotransferase, aspartate aminotransferase,
ornithine aminotransferase, and alanine aminotransferase,
etc. Other than aminotransferases, abundant genes under
the term of “transferase activity” are significantly enriched
Figure 5 Differentially expressed genes validated by qRT-PCR.
Comparison between RNA-Seq results and qRT-PCR validation
results. X-axis shows genes in three tissues validated in this study;
Y-axis shows Log2Ratio of expression of AW (alkaline water) versus
FW (fresh water).
in up-regulated genes, which are mainly comprised
of “transferring one-carbon groups”, “transferring acyl
groups”, “transferring glycosyl groups”, “transferring
phosphorus-containing groups”, suggesting their important
roles in response to environmental stress in AW. One of
well-studied transferase families is glutathione S-transferase
(GST) gene family, which have been confirmed their
essential functions in protection against oxidative
stress caused by various stress from toxic heavy metal
ions [39-41], osmotic imbalance [42], salinity [43] and
pH change [44]. GSTs have been even used as biomarkers
for environmental pollution and toxins monitoring
recently [45,46]. In the biological process, we identified 47
DEGs that belong to the subcategory of “response to
chemical stimulus” in those 91 up-regulated genes of
“response to stimulus” in kidney, corresponding to the
essential roles of kidney in response to external and
endogenous chemical stresses in AW environment.

Expression of the genes under positive selection
Previous dN/dS analysis on transcriptome of L. waleckii
from Dali Nor Lake revealed that there were 61
genes experienced strong positive selection under severe
environmental stress [7]. We investigated the genes under
strong positive selection and found that significant portions
of these genes were also expressed differentially under AW
and FW environment (Table 4). For instance, we identified
5 carbonic anhydrase genes, 2 superoxide dismutase genes,
5 glutathione S-transferase genes, 3 aminopeptidase N
genes, and 2 perforin-1 genes from the DEG list of liver,
and identified 4 carbonic anhydrase genes, 2 superoxide
dismutase genes, 8 glutathione S-transferase genes, 3
aminopeptidase N genes, and 2 Perforin-1 genes from
the DEG list of kidney. Obviously, a number of genes
that retain specific nucleotide changes under strong
positive selection also change their expression profiles
under severe alkaline stress, as well as osmotic, salt
and heavy metal stress in the Dali Nor lake.



Table 4 Differentially expression of positively selected genes

Genes Gene ID Differentially expression tissues

Integrin alpha-X sp|P20702|ITAX_HUMAN kidney liver

Polymeric immunoglobulin receptor sp|P15083|PIGR_RAT kidney liver

T-cell receptor beta chain T17T-22 sp|P11364|TCB_FLV kidney liver

Cytokine receptor common subunit gamma sp|Q95118|IL2RG_BOVIN kidney liver

Transposable element Tcb1 transposase sp|P35072|TCB1_CAEBR kidney liver

B-cell antigen receptor complex-associated protein alpha chain sp|P11911|CD79A_MOUSE kidney liver

Carbonic anhydrase 4 sp|P48284|CAH4_RAT kidney liver

Interleukin-8 sp|P08317|IL8_CHICK liver

Extracellular superoxide dismutase [Cu-Zn] sp|O09164|SODE_MOUSE kidney

Stonustoxin subunit beta sp|Q91453|STXB_SYNHO gill liver

Ig mu chain C region membrane-bound form sp|P01873|MUCM_MOUSE kidney liver

Transposable element Tc1 transposase sp|P03934|TC1A kidney liver

Perforin-1 sp|P14222|PERF_HUMAN kidney liver

Midnolin sp|Q5EB28|MIDN_XENTR kidney liver

Apolipoprotein B-100 sp|P04114|APOB_HUMAN gill kidney liver

Disabled homolog 2-interacting protein sp|Q3UHC7|DAB2P_MOUSE kidney liver

Complement factor H sp|P06909|CFAH_MOUSE kidney liver

Glutathione S-transferase A sp|P30568|GSTA_PLEPL kidney liver

Complement factor B sp|P81187|CFAB_BOVIN kidney liver

Caspase-1 sp|P55867|CAS1B_XENLA liver

Myb-binding protein 1A-like protein sp|Q6DRL5|MBB1A_DANRE liver

Plexin-C1 sp|O60486|PLXC1_HUMAN kidney

Interferon-induced very large GTPase 1 sp|Q7Z2Y8|GVIN1_HUMAN liver

RNA-directed DNA polymerase from mobile element jockey sp|P21329|RTJK_DROFU gill kidney liver

Ig heavy chain V region 5A sp|P19181|HV05_CARAU kidney liver

Aminopeptidase N sp|P15684|AMPN_RAT kidney liver

UPF0577 protein KIAA1324-like sp|A8MWY0|K132L_HUMAN kidney

UHRF1-binding protein 1-like sp|Q6NRZ1|UH1BL_XENLA liver

Nuclear factor 7, ovary sp|Q91431|NF7O_XENLA kidney

Ceramide synthase 2 sp|Q3ZBF8|CERS2_BOVIN kidney liver

Laminin subunit alpha-3 sp|Q16787|LAMA3_HUMAN kidney
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Conclusion
We performed comparative transcriptome profiling
study on L. waleckii inhibiting in alkaline water of
Dali Nor lake and in fresh water of Ganggeng Nor
lake, and identified a relatively large number of genes
that displayed distinct differences on their expression
in gill, liver and kidney. Further analysis revealed that
several well-known functional categories of genes and
signaling pathway, which are associated with stress
response and extreme environment adaptation, had
been significantly enriched, including the functional
categories of “response to stimulus”, “transferase activity”,
“transporter activity” and “oxidoreductase activity”, etc.,
and signaling pathways of “mTOR signaling”, “EIF2
signaling”, “superpathway of cholesterol biosynthesis”, etc.
We also identified significantly DEGs in three tissues,
encoding important modulators on stress adaptation and
tolerance, including carbonic anhydrases, heat shock
proteins, superoxide dismutase, glutathione S-transferases,
aminopeptidase N, and aminotransferases. Overall, this study
demonstrated that transcriptome changes in L. waleckii
played a role in adaptation to complicated environmental
stress in the highly alkalized Dali Nor lake. The results set
a foundation for further analyses on alkaline-responsive
candidate genes, which would help us understand teleost
adaptation under extreme environmental stress and
ultimately benefit future breeding for alkaline-tolerant
fish strains.
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Methods
Ethics statement
This study was approved by the Animal Care and Use
committee of Centre for Applied Aquatic Genomics at
Chinese Academy of Fishery Sciences.
Fish sampling
Ten individuals (five males, five females) of L. waleckii
inhabiting alkaline water were sampled at north shore of
Dali Nor lake, Inner Mongolia, China (43o22′43"N,
116o39'24"E). Nine individuals (five males, four females)
inhabiting fresh water were sampled at west shore of
Ganggeng Nor lake (43o17'48"N, 116o53'27"E). Both
groups weighted ranging from 130 grams to 150 grams.
Liver, kidney and gill were dissected and collected,
due to previous report that these organs play import-
ant role in hyperosmotic and hypersaline conditions [47].
Tissue samples were stored in RNAlater (Qiagen, Hilden,
Germany) and transported to laboratory in Beijing at room
temperature, then stored at −20°C prior to RNA extraction.
RNA extraction and quality control
Total RNA was extracted from each tissue using
TRIZOL Kit (Invitrogen, Carlsbad, CA, USA) with
manufacturer’s instructions. RNA samples were then
digested by DNase I to eliminate potential genomic
DNA. Integrity and size distribution were checked on
Bioanalyzer 2100 with RNA 6000 Nano Labchips
(Agilent technologies, Santa Clara, CA, USA). Equal
amounts of the high quality RNA samples from each
tissue were then pooled for RNA-Seq.
cDNA library construction and sequencing
RNA-Seq library preparation and sequencing was
carried out by HudsonAlpha Genomic Services Lab
(Huntsville, AL, USA) as previously described [48].
cDNA libraries were prepared with ∼2.5 μg of starting
total RNA following the protocols of the Illumina
TruSeq RNA Sample Preparation Kit (Illumina). The
final library had an average fragment size of 270 bp
and final yields of 400 ng. After KAPA quantitation
and dilution, the library was sequenced on an Illumina
HiSeq 2000 with 101 bp paired-end reads.
Sequence data processing and de novo assembly
Adaptor sequences were trimmed and low quality
reads were removed. Then read length less than 10
were removed. TRINITY was used to assemble all
cleaned reads with default parameters [22] and gen-
erate reference sequences for comparative transcriptome
study.
Functional annotation of assembled contigs
The assembled transcriptome contigs were subjected to
similarity search against NCBI non-redundant (nr) protein
database using BLASTx with e-value cutoff of 1E-10. Gene
name and description was assigned to each contig based
on the top BLASTx hit with the highest score. Gene ontol-
ogy (GO) analysis was conducted on assembled transcrip-
tome using InterProScan (http://www.ebi.ac.uk/Tools/pfa/
iprscan/) and integrated protein databases with default
parameters. The GO terms associated with transcrip-
tome contigs were then obtained for describing their
biological processes, molecular functions and cellular
components.

Read mapping and differential gene expression analysis
All the cleaned reads were mapped to the assembled
reference transcriptome by Bowtie [21], and about
84.1% of the reads can be mapped to the reference
for each sample (Table 1). RSEM was then used to
estimate and quantify the gene and isoform abundances
according to the trinity assembled transcriptome. Finally,
we used edgeR to normalize the expression levels in each
of these samples and obtain the differentially expressed
transcripts by pairwise comparisons [49].

Quantitative reverse transcription-PCR (qRT-PCR)
qRT-PCR was used to validate the RNA-Seq results on
randomly selected 30 gene accessions. The beta-actin gene
was used as an internal reference, and primers were
designed as below, forward primer: 5′- TGCAAAGCCGG
ATTCGCTGG -3′; reverse primer: 5′- AGTTGGTGACA
ATACCGTGC -3′. Briefly, qRT-PCR was performed in the
optical 96-well plates with an ABI PRISM 7500 Real-time
Detection System (Life Technology). The amplification was
performed in a total volume of 15 μl, containing 7.5 μl 2X
SYBR Green Master Mix reagent (Life Technology), 1 μl of
cDNA (100 ng/μl), and 0.3 μl of 10 μM of each gene-
specific primer. The PCR cycle was 50°C for 2 min, 95°C
for 10 min, 40 cycles of 95°C for 15 s and 60°C for 1 min.
All reactions were set up in triplicate including the
negative controls with no template. To assess PCR
efficiency, five 10-fold serial dilutions of a randomly
selected cDNA sample were used on both the target
genes and the reference gene to assess the PCR efficiency.
After the PCR, data were analyzed with ABI 7500 SDS
software. The comparative CT method (2-ΔΔCT method)
was used to analyze the expression of the target genes. All
data were given at levels relative to the expression of the
beta-actin gene.

IPA analysis
The genes differentially expressed in 3 tissues were further
analyzed using the Ingenuity Pathway Analysis program
(IPA; https://analysis.ingenuity.com) in order to identify

http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://www.ebi.ac.uk/Tools/pfa/iprscan/
https://analysis.ingenuity.com/
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the biochemical pathways affected. The IPA software con-
tains the biological function, interaction, and information
of a curated gene set and many biochemical pathways,
identifying global canonical pathways, dynamical bio-
logical networks and functions from a given list of genes.
Basically, the accession numbers of DEGs were uploaded
into the IPA and compared with the genes included in
each canonical pathway using the whole gene set as
the background. All the pathways with one or more
genes overlapping the candidate genes were extracted.
During IPA analyses, each of the pathways was
assigned a P value from Fisher’s exact test, denoting
the probability of overlap between the pathway and
the input genes.

Availability of supporting data
All supporting files have been deposited to LabArchives
entitled ‘amur ide DGE’ with a DOI of 10.6070/H4PZ56RJ
(https://mynotebook.labarchives.com/share/xujian/Mi42fD
IxOTY2LzIvVHJlZU5vZGUvMzc5NDY5ODU2MHw2-
LjY=).
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