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Summary

Mammals differ more than 100-fold in maximum lifespan, which

can be altered in either direction during evolution, but the

molecular basis for natural changes in longevity is not under-

stood. Divergent evolution of mammals also led to extensive

changes in gene expression within and between lineages. To

understand the relationship between lifespan and variation in

gene expression, we carried out RNA-seq-based gene expression

analyses of liver, kidney, and brain of 33 diverse species of

mammals. Our analysis uncovered parallel evolution of gene

expression and lifespan, as well as the associated life-history

traits, and identified the processes and pathways involved. These

findings provide direct insights into how nature reversibly

adjusts lifespan and other traits during adaptive radiation of

lineages.

Key words: aging; lifespan; mammals; gene expression;

life-history traits.

Introduction

Extant mammals diversified dramatically, featuring more than 100-fold

difference in species maximum lifespan, 100-million-fold difference in

body mass and adaptations to both terrestrial and aquatic life as well as to

powered flight and subterranean life. Nature has been continuously and

reversibly adjusting morphology and life histories of mammals while

preserving fitness, but how it does this, and what the molecular processes

are involved, remains unclear. Accumulating evidence suggests a role of

widespread heritable variation combined with extensive natural variation

in gene expression within and between heterologous mammalian

populations (Brawand et al., 2011). Although much of the variation is

thought to evolve under neutral drift, the variation in expression of

numerous genes exhibited selective constraints in diverse vertebrate

species (Jordan et al., 2005; Whitehead & Crawford, 2006a). The extent

to which evolution of gene expression contributed to certain mammalian

traits is subject to debate. It is of fundamental importance to estimate the

rate of gene expression changes among and within taxa and to

characterize the underlying forces shaping evolution of the mammalian

transcriptome.

Predominant neutrality of changes in gene expression evolving under

minimal or no selective constraints was proposed as a primarily model for

evolution of transcriptomes (Khaitovich et al., 2004a). However, the null

effect of gene expression changes on phenotypes is questionable, since

numerous case studies showed that gene expression alterations can

result in drastic phenotypic effects, such as changes in lifespan (Yuan

et al., 2011) and morphological differences (Beldade et al., 2002;

Gompel et al., 2005). While inherited and acquired genetic variants

may feature low predictable effects on phenotypes, gene expression

profiles can be coordinately modified in response to environmental

signals, thereby promoting specific phenotypic outcomes. Dietary

interventions, such as caloric restriction (CR), which do not affect

genetic structure, may control lifespan of diverse species by modulating

the transcription of specific genes and remodeling metabolism (Lee

et al., 1999; Anderson & Weindruch, 2009). Fundamental evolutionary

questions, such as which forces govern the variance in transcript levels

among and within distant mammalian taxa and how these variations

connect genomic content and phenotypes, have only begun to be

understood.

Mammals differ dramatically in their life-history strategies and,

therefore, represent a model for uncovering mechanisms and underlying

forces that govern evolution of phenotypes. Interspecific competition

could change adaptive strategies of lineages in opposite directions,

whereas environmental cues could lead to convergence in molecular

mechanisms that underlie phenotypes (Losos et al., 1998). Lifespan, like

other life-history traits, exhibits a moderate phylogenetic signal (Blom-

berg et al., 2003) that, at the molecular level, could be explained by

accumulation of sequence polymorphisms and interspecies variation in

transcription levels (Janecka et al., 2012). However, interplay between

and within heritable and environmental components directing micro-

and macroevolution of morphological traits has been questioned

(Stearns, 2000).

It was proposed that adaptive changes in morphology and develop-

ment are more evident in alterations in gene expression than in protein

sequences (Carroll, 2005). Indeed, local ecological adaptations are 10-

fold more likely to affect gene expression than amino acid sequences

(Fraser, 2013). Therefore, studies on gene evolution at the expression

level could provide further insights in phenotype evolution.

In this study, we prepared 143 RNA-seq gene expression profiles for

liver, kidney, and brain and carried out comparative gene expression

analyses of 33 mammalian species. By considering gene expression as a

quantitative character, we examined evolution of gene expression across

whole-organism life-history traits. We offer a concept of parallel

evolution of mammalian life histories and gene expression profiles over

evolutionary timescale and uncover the biological processes involved.
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Results and Discussion

Analysis of gene expression to elucidate lifespan and other

life-history strategies

We carried out an analysis of gene expression divergence on 33 species of

terrestrial mammals of young adult age belonging to Euungulata (n = 4),

Carnivora (n = 4), Chiroptera (n = 2), Didelphimorphia (n = 1), Diproto-

doncia (n = 1), Erinaceomorpha (n = 1), Lagomorpha (n = 1), Monotre-

mata (n = 1), Primate (n = 8), Rodentia (n = 9), and Soricomorpha (n = 1)

lineages (Table S1). Most representatives of these lineages were placental

mammals (Placentalia), except for platypus (Monotremes), and opossum

and sugar glider (Marsupials), and the total divergence of examined

lineages corresponded to a period of ~160 million years (Fig. 1A).

Evolution of these mammals yielded widespread variation in their life

histories, such as time to maturity, maximum lifespan, and oxygen

consumption (as a measure of basal metabolic rate, BMR) (Fig. 1B). The

relationship between these life histories defines a set of lineage-specific

functional trade-offs and adaptive investments developed during envi-

ronmental specialization. For example,most primates are characterized by

extended longevity, slow growth, and reduced BMR, whereas most

rodents, and in particular the muroid species (Eumuroida), commonly

utilize opportunistic-type strategies characterized by rapid development

and growth, low body mass, large litters, and short lifespan (Fig. 1B).

Moreover, some organisms such as representatives of Chiroptera and

Hystriocognathi feature Eumuroida-sized species, but possess life-history

attributes of larger, longer-lived mammals.

We analyzed gene expression in three organs, liver, kidney and brain,

because of their easier availability, dominance of one cell type (i.e. liver),

difference in metabolic functions, size of organs (which is a limitation for

smaller animals), and compatibility with data from other laboratories. The

majority of the examined species were represented by duplicated (52–

60% of species) or triplicated (30–42% of species) biological replicates to

account for within species gene expression variation (Table S1).

We generated 25–60 millions of 51-bp paired-end RNA-seq reads for

each biological replicate. Reads were then mapped to genomic

sequences of 21 organisms obtained from Ensembl and NCBI databases

(Table S2). We used database gene model annotations and precomputed

1–1 orthologous sequence relationships for these organisms to calculate

gene expression values defined as fragments per kilobase of transcript

per million RNA-seq reads mapped (FPKM). Depending on species, RNA-

seq read alignment efficiency varied from 55 to 99% (Table S2). For 12

species with no available genome sequences, we de novo assembled full-

length transcriptomic contigs using RNA-seq reads (Fig. S1, Table S3), ab

initio predicted encoded peptides (Figs S2 and S3, Table S4), and inferred

1–1 orthologous sequence relationships with database proteins (Sup-

plementary Information, Fig. S4). We further focused our analyses on the

expression of protein-coding genes with 1–1 orthologous relationship,

derived from the dataset of 19 643 unique groups of sequences (Fig. S5,

Table S5).

Relationship between life histories and phylogeny of

mammals

We first examined the extent to which phylogeny of the species in our

study influenced life-history evolution, including gestation period,

weaning time, maturation time, maximum lifespan, growth, body

weight, and metabolic rate (Table S6). We used the k model (Pagel,

1999) to test life-history variation simultaneously against randomized

value (no effect of phylogeny) and against the diffusive or the Brownian

motion (BM) model (neutral drift). Species phylogeny provided the null

distribution, given an appropriate model of neutral evolution. The

method produces a quantitative estimate of the phylogenetic signal (the

extent to which correlation in traits reflects shared evolutionary history of

the species) in a character, the k parameter. Under the BM model, traits

are inherited from a common ancestor and diverge linearly in a manner

analogous to random walk. k describes the proportion of variance that

can be attributed to BM. The value of k equal or close to 1 suggests a

character evolution evolving under the stochastic process, whereas k < 1

indicates departure from neutral drift. We ensured that the k model

performs well, even when the true model of trait evolution deviates from

strict BM process (Supplementary Information, Figs S6 and S7).

The data showed that life-history variation of study subjects signif-

icantly departs from the diffusive model of evolution. For example,

phylogeny could explain only a moderate portion of variance (k = 0.65,

P = 0.02, likelihood-ratio test) in maximum lifespan (Table S7). Body

weight exhibited relatively greater constraints than the other examined

traits (k = 0.39, P = 0.003, likelihood-ratio test). The results indicated

(A) (B)

Fig. 1 Species phylogeny and life-history traits. (A) Chronogram tree

demonstrating phylogenetic relationships between mammals. Bootstrap support

for the branching order of 33 species was reconstructed with 1000 randomization

steps. Species divergence time is plotted as upper and lower-bounded intervals

(gray bars). (B) Comparative plots of the life histories. From left to right: time to

maturity, maximum lifespan, and oxygen consumption. Each bar denotes a value

of life-history variable for a particular organism in standard scale.
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that with increasing genetic distance, phenotypic divergence becomes

nonlinear within and between lineages.

Although life-history evolution deviated from phylogeny, distinct

traits preserve covariance with each other. To demonstrate this, we

analyzed life-history data of ~800 species of mammals (de Magalhaes &

Costa, 2009) using nonphylogenetic regression (Fig. 2). The analysis

showed that, for example, maximum lifespan strongly covariates with

body weight (r2 = 0.47, P = 4 9 10�113, F-test), time to maturity

(r2 = 0.71, P = 1 9 10�156, F-test), and other examined traits (Fig. 2).

The data suggest that selective forces governed parallel evolution of life

histories. These forces maximized fitness and interdependence between

distinct traits and may also represent conserved underlying mechanisms.

Life-history evolution shaped interspecies gene expression

variation

Mammalian life histories exhibited drift and selection (Blomberg et al.,

2003). Yet, little research has been conducted to determine the

mechanisms of trait evolution in mammals because the exceptional

level of life-history variation was historically influenced by complex

interactions between genetics and environment.

Because life-history variation significantly departed from the model of

neutral evolution, we adopted nonphylogenetic ordinary least squares

(OLS) instead of phylogenetic regression to assess the relationship

between transcript levels and whole-organism traits. When used

improperly, the phylogenetic regression can have poor statistical

performance, even under some circumstances in which the type I error

rate of the method is not inflated over its nominal level (Revell, 2010).

We further applied Kruskal–Wallis one-way analysis of variance as a

post-hoc test to ensure that interspecies gene expression variation

exceeded those within species. The analyses identified gene sets whose

expression levels significantly associate (FDR-corrected P < 0.05, F-test)

with life-history variation (Fig. S8).

Overall, at the level of FDR-corrected P < 0.05, we detected ~5000

unique 1–1 orthologs significantly associated with 7 traits in the three

organs with some overlap (381 transcripts) between organs (Table 1). As

an example, Fig. 3A shows expression profiles of 3249 transcripts

associated with gradient of time to maturity variation in liver, kidney, and

brain. Although organisms examined in the study represent both

laboratory and nonlaboratory populations, the sources of measurement

error such as sampling and biological variations were not overdispersed

compared to the estimate.

The analyses provided evidence that the interspecies variation in the

expression of numerous orthologs in mammals was shaped by evolution

constraints in agreement with gradient in life-history change. Life-history

variation of animals in our study could explain ~11–18% of total

variability in interspecies transcript levels (Table 1), whereas variability in

the expression of other orthologs could be explained by drift (Figs S9 and

S10, Table S8) and stabilizing constraints (Figs S11 and S12, Table S9).

It was reported previously that life-history variation governed by

natural selection explains expression variation of 22% genes in marine

species (Whitehead & Crawford, 2006b). Thus, gene expression

(A) (B)

(D) (E)

(C)

Fig. 2 Relationship between maximum lifespan and other life histories. (A) Time to maturity. (B) Gestation period. (C) Weaning time. (D) Growth rate (Gompertz

coefficient). (E) Adult weight. Number of informative species (n) used in the analysis is indicated in the bottom right corner of each plot. Lineages are highlighted with distinct

colors (legend in the bottom right corner). Determination coefficient (r-squared) and statistical significance of correlation (P, F-test) are indicated at the top of each panel.
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evolution in vertebrates exhibits widespread selective constraints,

whereas drift appears to account for less variation than expected.

Gene set enrichment analysis (GSEA) revealed statistically nonrandom

distribution of transcripts positively and negatively correlated with life-

history traits among GO functions (Figs 3B and 4, Dataset S1). In liver,

we detected downregulated mitochondrial metabolic GO functions,

such as metabolism of saturated and unsaturated fatty acids, and

degradation of amino acids and their derivatives linked to ATP

production through the TCA cycle and mitochondrial respiratory

pathways (Fig. 3B, cluster C3). In brain, downregulated functions

included inositol and calcium-mediated signaling pathways and trans-

membrane channel transport (Fig. 3B, cluster C2). DNA repair and

defense GO functions were positively associated with gradient in

lifespan variation, maturation time, and related traits (Fig. 3B, cluster

C1).

We detected minor overlap, which did not reach the level of statistical

significance (P = 0.12, hypergeometric test), between individual genes

shown to alter lifespan in model organisms (de Magalhaes & Costa,

2009) and genes associated with natural variation in life histories

(Fig. 3F). The data suggest that evolutionary changes in lifespan in

mammals are associated with coordinated reprogramming of expression

levels at the genomewide scale rather than with changes in expression of

individual genes.

Lifespan varies among individuals of the same species, and accuracy

of the estimates may be influenced by environmental conditions and

sample size (Kawasaki et al., 2008). Thus, gene sets identified in the

study may be inflated partially by quality of independent variables. We

further used the gene set associated with maturation time as a

representative of other sets to assess sequence conservation of the

encoded proteins. The analysis showed that the downregulated ortho-

logs were more conserved than the upregulated ones (Fig. 3C). We also

used Shannon’ information entropy criterion (Mirny & Shakhnovich,

1999) to evaluate the number of radical amino acid substitutions and

found that the number of such substitutions was also lower in the

downregulated sequences (Fig. 3D).

A positive relationship between amino acid substitution rate and gene

expression divergence was previously reported for several species of

mammals (Khaitovich et al., 2005). The phenomenon could be explained

by nonuniform GC content in the genome defining frequencies of

transitions and transversions (Misawa & Kikuno, 2011). Our data suggest

parallel evolution of biological sequences and expression levels (Fig. 3E)

and also point out that the degree of purifying forces varies between

distinct functional classes of sequences.

Intimate relationship between life-history variation and

central metabolism

We examined most relevant genes and biological pathways associated

with life histories (Figs 4, 5 and S13). GSEA showed statistically

significant label overrepresentation in the central energy metabolism

combining numerous pathways such as pyruvate metabolism

(P = 1 9 10�7, hypergeometric test, Fig. 6), carbohydrate degradation

pathways (P = 1 9 10�5, hypergeometric test, Fig. S14), catabolism of

tryptophan (P = 4 9 10�5, hypergeometric test, Fig. S15), lysine

(P = 3 9 10�6, hypergeometric test, Fig. S16) and valine

(P = 7 9 10�7, hypergeometric test, Fig. S17), oxidation and biosyn-

thesis of fatty acids (P = 2 9 10�5, hypergeometric test, Fig. S18), Ppar

(P = 4 9 10�4, hypergeometric test, Fig. S19), peroxisome

(P = 1 9 10�6, hypergeometric test, Fig. S20), Ampk (P = 8 9 10�4,

hypergeometric test, Fig. S21), growth hormone (Gh/Ghr) signaling, and

others (Fig. 5). Interestingly, adaptive variation in growth and lifespan of

marine vertebrates was also shown to be associated with expression

changes in central metabolic pathways (St-Cyr et al., 2008). Taking

together, these data suggest fundamental relatedness of strategies

governing parallel life history and transcriptome evolution in vertebrates.

Genetic interventions re-balancing expression of the effectors of these

pathways are capable of modifying life-history attributes in opposite

directions. In yeast, changing gene dosage for glycolytic enzyme genes

resulted in variation in life-history traits such as growth and lifespan (Wang

et al., 2010). In mice, deletion of Ghr results in increased longevity

(Coschigano et al., 2003), whereas elevated growth hormone treatment

shortens lifespan (Panici et al., 2010). Consistent with experimental data,

natural expression divergence of Ghr negatively correlateswith life-history

variation of mammals (Fig. 5).

Statistical analysis revealed significant relationships between life-

history variation and expression levels of numerous genes involved in

DNA repair, defense, and detoxification (Fig. 5). We offer functional

classification of these orthologs based on the activities in Datasets S2

Table 1 Statistics on genes whose expression variation is associated with life-history variation

Variable (PFDR < 0.05)*

Liver (n = 14 679)† Kidney (n = 16 063) Brain (n = 16 424)

Combined¶Nb. of genes‡ % from total Nb. of genes % from total Nb. of genes % from total

Gestation period 1017 (121) 6.9 (0.8) 588 (126) 3.7 (0.8) 926 (168) 5.6 (1.0) 2097 (75)

Weaning time 1690 (198) 11.5 (1.3) 1098 (203) 6.8 (1.3) 1453 (246) 8.8 (1.5) 3295 (193)

Body weight 506 (44) 3.4 (0.3) 116 (8) 0.7 (0.0) 549 (62) 3.3 (0.4) 1062 (11)

Growth rate 918 (116) 6.5 (0.8) 698 (173) 4.6 (1.1) 783 (123) 5.0 (0.8) 1989 (79)

Time to maturity 1740 (149) 11.9 (1.0) 998 (88) 6.2 (0.5) 1393 (95) 8.5 (0.6) 3249 (170)

Maximum lifespan 1399 (90) 9.5 (0.6) 713 (31) 4.4 (0.2) 1195 (57) 7.3 (0.3) 2683 (119)

Metabolic rate 510 (44) 3.5 (0.3) 213 (30) 1.3 (0.2) 438 (37) 2.7 (0.2) 1042 (15)

Combined§ 2610 (134) 17.8 (0.9) 1753 (30) 10.9 (0.2) 2384 (97) 14.5 (0.6) 4996 (381)k

*PFDR denotes OLS P-value cut-off.
†n denotes total number of orthologous groups assayed in the analysis.
‡Number of unique genes associated with trait variation and number of genes specific for a trait (in brackets).
§Number of unique genes identified in the organ and its overlap between all traits (in brackets).
¶Number of unique genes identified in three organs for a specific trait and interorgan overlap (in brackets).
kNumber of unique genes identified in three organs for all traits and interorgan overlap (in brackets).
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and S3. As a less established example, haptoglobin (Hp) and hemopexin

(Hpx) were reported to prevent oxidative damage resulting from

hemoglobin in erythrocytes as well as protect kidney in humans (Burbea

et al., 2004). There is positive relationship between lifespan and liver

expression of Hp (r2 = 0.51, FDR corrected P = 5 9 10�3, F-test) and

Hpx (r2 = 0.38, FDR corrected P = 1 9 10�2, F-test), although such

relationship would also reflect species allometry and constitutive

differences among homologous organs.

One would expect that changes in gene expression result in

correlated downstream changes in protein levels because of positive

relationship between transcript and protein levels in mammals (Schwan-

hausser et al., 2011). Therefore, rates of bioenergetic conversion and/or

its efficiency may be differentially adjusted, in an organ-specific manner,

in mammals in accordance with gradient of life-history changes. As a

consequence, this would contribute to the levels of metabolic

by-products which are thought to influence aging (Houtkooper et al.,

2012). A higher rate of metabolism may allocate energy resources

necessary for growth and reproduction in the opportunistic-type

organisms such as Eumuroida species.

Relationship between body weight and longevity traits

Body weight was shown to exhibit nonrandom association with life-

history traits (de Magalhaes et al., 2007). When the body size is

(A)

(C)

(D)

(E) (F)

(B)

Fig. 3 Covariance of transcript levels and life-history variation. (A) Cumulative expression profiles of transcripts associated with time to maturity. Genes positively correlated

with life-history variation are plotted on the top panel (pink), and negatively correlated on the bottom panel (blue). Vertical axes denote relative FPKM (log2 ratio of mean

FPKM of a given species to minimal mean FPKM observed among species) in standard scale. Horizontal axes denote relative time to maturity (log2 ratio of a given value to

minimal observed value). Each rhomb on the plot denotes mean expression value of all genes (n) for a particular organism. Shaded areas denote 60%, 75%, and 90% upper

and lower quantiles of log2 ratio distribution. (B) A cluster map that shows GO terms for genes associated with gradient of life-history variation. Columns on the plot

correspond to a particular trait (indicated at the bottom). Rows on the plot show GO terms. Upregulated GO terms are in red. Downregulated GO terms are in blue.

Magnitude of respective color denotes statistical significance of enrichment (negative logarithm of FDR-corrected P-value, bar at the bottom). (C) Conservation scores for

molecules associated with gradient of time to maturity variation. Each panel shows distributions of per-residue similarity scores for up- (pink) and downregulated (blue)

molecules for the liver, kidney, or brain. Numbers of individual orthologous groups examined in the analysis are indicated at the bottom of each bar. Significance of the

difference between distributions was assessed with two-tailed Welch’s t-tests (P-values at the top). (D) Shannon’s information entropy for molecules significantly associated

with gradient of time to maturity variation. Each panel shows distributions of per-residue entropy scores for up- (pink) and downregulated (blue) genes for the liver, kidney,

or brain. (E) A model of parallel accumulation of changes in biological sequences and gene expression. (F) Overlap between gene sets associated with gradients of life-history

variation and database longevity genes (mouse, fly, worm and yeast; from the GenAge dataset).
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Fig. 4 A cluster map that shows GO terms associated with gradient of life-history variation. Columns on the plot correspond to life histories (bottom). Rows show GO terms.

Sub rectangles in red denote GO terms positively correlated with life-history variables. Negatively correlated GO terms are in blue. Color intensities denote statistical

significance of GO term (negative logarithm of FDR corrected P-value, bar in the bottom right corner of plot). Life histories and GO terms were clustered using the Ward’s

method and Euclidean distance metric. GO terms were grouped into five clusters using constant height cutoff method (left side). Titles of representative GO terms are

presented on the right side of plot (in brackets).
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increased in natural populations, fecundity is maximized through a

longer period of growth and increased lifespan, providing trade-offs

between reproduction and survival mediated through body size and

development time.

We calculated the residuals of several traits (maturation time and

maximum lifespan) to elucidate whether these variables evolved under

the stochastic evolution. We excluded allometric component from the

linear regression models (Fig. 7A and B) and calculated the k model on

Fig. 5 Schematic overview of genes and functions associated with gradient in lifespan variation in the liver. Rectangles in red indicate upregulated genes (FDR corrected

P < 0.05, F-test) or functions, while rectangles in blue indicate downregulated genes (FDR corrected P < 0.05, F-test) or functions. Solid arrows denote direct effects

(activation) when upstream partners interact with the targets, while dashed lines show an indirect effect (or compound entry in the pathway) occurring during downstream

reactions. P-values denote statistical enrichment of biological pathways with significant genes (FDR corrected P, right-sided hypergeometric test). Refer to Dataset S1 for

specific statistical details on GO functions.
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the residuals of life histories (Table S7). We found that the residual of

maturation time significantly departs from neutral evolution defined by

phylogeny variance structure (k = 0.72, P = 0.04, likelihood-ratio test).

The analyses also demonstrated a similar relationship between phylog-

eny and residuals of other traits, such as maximum lifespan and oxygen

consumption (Table S7). The observations provided further evidence of

constraints contributing to life-history evolution in mammals, probably

through interplay between drift and selection.

Nonrandom association of gene expression with life-history

residuals

We identified genes whose expression variation explains the residual of

maximum lifespan and maturation time by examining statistical

interaction between life histories and body weight variable in the

OLS model (Fig. 7, Table 2). The identified genes overlapped with the

gene sets associated with respective life histories, but not with body

weight (Fig. S22).

GSEA indicated label overrepresentation in the central metabolism,

including mitochondrial and peroxisomal GO functions (Fig. 7C, Datasets

S4 and S5) and DNA repair such as nonhomologous end-joining pathway

(NHEJ) (Fig. 8). The latter pathway is predominantly upregulated in the

primate lineage. Genes associated with NHEJ (Xrcc5, Xrcc6, Prkdc, etc.)

mediate telomeric and chromosomal DNA repair through interaction with

Wrn, whose functional impairment may promote accelerated aging

syndrome and genome instability in humans (Ferguson et al., 2000). The

processes involved in genomestability related to aging are likely to bemore

complex than an enhancement in simple NHEJ kinetics or telomere length,

(A) (C)

(B)

Fig. 6 Gene expression variation associated with the TCA cycle in liver. (A) Mean FPKM of all significant genes. Error bars indicate standard deviation of the mean. Gray line

is the relative value of life-history variable (time to maturity, axis on the right). Species are shown at the bottom. Color-coded rectangles distinguish lineages. Bar at the top

right shows proportion of significant genes from all genes associated with this pathway. P-value denotes statistical enrichment (right-sided hypergeometric test). (B) Genes

whose expression variation correlates with life-history variation. Vertical axis is the relative FPKM log2-transformed. Horizontal axis is the relative life-history variable in

logarithmic space. Rhombs are the means of FPKM. Colors of rhombs distinguish lineages. Error bars show standard deviation of the mean. P-value denotes significance of

the OLS model. Median gray line is best-fit OLS line. Shaded areas indicate observed and predicted upper (95%) and lower (5%) confidence intervals. (C) Functional

interaction network. Color of nodes denotes significance of the OLS model (scale on the top). Positively correlated genes are in red. Negatively correlated genes are in blue.

Color of edges denotes type of interaction (bottom).
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but may be related to maintenance of telomere capping (Lorenzini et al.,

2009).

Overall, the analysis showed that the residual of life-history traits does

not provide additional statistical support to explain life-history variation

at the level of gene expression, although significantly reduces the

associated gene sets.

Conclusions

To our knowledge, this is the first systemic report that provides a direct

evidence of widespread selection on gene expression governed by

evolution of whole-organism traits in mammals. Body weight exhibited

greater constraints and probably influenced evolution of other life

histories, such as lifespan and maturation time. There is reciprocal

interaction between forces that maximize fitness and equilibrium

between life-history traits. Our analyses provide a direct evidence that

expression variation of at least ~11–18% orthologs exhibited constraints

in heterologous mammalian organs and evolved in agreement with

gradient of life-history variation.

Although the data may reflect allometry and local adaptive responses

of species to habitat, we observed nonrandom association of gene

expression variation with functions related to central energy metabolism.

(A) (C)

(B)

Fig. 7 Gene expression signatures of the residual of life histories. (A) and (B) Plots show the residual of maximum lifespan (tmax) and maturation time (tsex) plotted against

body weight, respectively. Vertical axes are the residuals log2-transformed. Horizontal axes denote body weight log2-transformed. n denotes total numbers of species.

Species examined in the study are highlighted with colors (legend at the bottom). Equations in the bottom right corner of each plot define linear relationship between

respective life histories and body weight. (C) A cluster map that shows GO terms associated with gradient of residual variation. Columns on the plot indicate residuals of tmax

and tmax (bottom). Rows show GO terms. Sub rectangles in red denote GO terms positively correlated with residual variable. Negatively correlated GO terms are in blue.

Color intensities denote statistical significance of GO term (logarithm of FDR corrected P-value, bottom right corner).

Table 2 Statistics on genes whose expression variation is associated with the residuals of life histories

Variable (PFDR < 0.05)*

Liver (n = 14 679)† Kidney (n = 16 063) Brain (n = 16 424)

Combined¶Nb. of genes‡ % from total Nb. of genes % from total Nb. of genes % from total

Maximum lifespan 659 (123) 4.5 (0.8) 469 (65) 2.9 (0.4) 366 (36) 2.2 (0.2) 1255 (43)

Time to maturity 1186 (650) 8.1 (4.4) 897 (493) 5.6 (3.1) 948 (618) 5.8 (3.8) 2428 (113)

Combined§ 1309 (536) 8.9 (3.7) 962 (404) 6.0 (2.5) 984 (330) 6.0 (2.0) 2585 (126)k

*PFDR denotes OLS P-value cut-off.
†n denotes total number of orthologous groups assayed in the analysis.
‡Number of unique genes associated with trait variation and number of genes specific for a trait (in brackets).
§Number of unique genes identified in the organ and its overlap between all traits (in brackets).
¶Number of unique genes identified in three organs for a specific trait and interorgan overlap (in brackets).
kNumber of unique genes identified in three organs for all traits and interorgan overlap (in brackets).
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The magnitude of these changes was significantly correlated with

gradient of life-history variation. This would make biological sense

because reversible changes in species-specific developmental dynamics

during chronological evolution required flexible and adjustable instru-

ments allowing allocating cellular resources, such as energy, for growth

and reproduction.

The results are intriguing because numerous case studies of aging and

dietary interventions such as CR also showed gene expression alterations

associated with energy metabolism, growth hormone, and stress

signaling pathways (Lee et al., 1999; Anderson & Weindruch, 2009).

CR may reduce the levels of by-products by switching glucose degra-

dation to gluconeogenesis and lowering the rate of mitochondrial

metabolism in liver (Hart et al., 1992), although, the magnitude of CR-

inducible changes is small (Lee et al., 1999). An even stronger alteration

in gene expression may promote longer survival of subjects, as evident

from correlated variation in transcript levels and life histories in

mammals. Genes and biological processes reported in the study provide

a valuable resource for examination of new candidate interventions that

mimic gene expression changes associated with natural changes in

lifespan.

Experimental procedures

Animal tissue collection and RNA extraction

The description and classification of mammals examined in the study is

provided in Table S1. The 143 organ samples of 23 species were

obtained from various sources. The collected species belong to

Euungulata (domestic cattle, domestic goat, domestic boar, horse),

Carnivora (domestic dog, domestic cat, Asian badger, American black

bear), Chiroptera (greater tube-nosed bat, Brazilian free-tailed bat),

Didelphimorphia (short-tailed opossum), Diprotodoncia (sugar glider),

Lagomorpha (old world rabbit), Primate (vervet), Rodentia (spiny mouse,

guinea pig, golden hamster, Mongolian gerbil, house mouse, white-

footed mouse, Norway rat, Siberian chipmunk), and Soricomorpha

(house shrew). All animals were young adults and, with the exception of

horse and vervet, all were males. Additional RNA-seq libraries for liver,

kidney, and brain of 10 species (Primate, Erinaceomorpha, Monotre-

mata, and Bathyergidae sp.) were obtained from NCBI Gene Expression

Omnibus. The experimental protocols were approved by the Institutional

Animal Care and Use Committee (IACUC) of Ewha Womans University

(No. 2011-03-038,039,062,063 and 065) and Korea Research Institute

of Bioscience and Biotechnology (KRIBB-AEC-12005).

The organs examined in the study represent heterogeneous tissues

whose structural and cellular composition varies among species. To

account for this issue and maximize sample compatibility, major parts of

each organ (covering different structures/cells) were dissected and

homogenized prior to RNA extraction. Given that brain is a heteroge-

neous organ, we sampled prefrontal cortex/frontal lobe (Primate,

Euungulata, Carnivora, Diprotodoncia, Didelphimorphia, Lagomorpha

sp.) or entire brain except for olfactory bulb and cerebellum (Rodentia

and Chiroptera sp.). Previous studies suggested that while the cortical

regions substantially differ from the cerebellum in terms of gene

expression (which we account for by our sampling procedure), different

regions within the cerebral cortex show small expression variation

(Khaitovich et al., 2004b). Immediately after sacrificing, liver, kidney,

(A)

(B)

(C)

Fig. 8 Gene expression variation associated with NHEJ positively correlates with residual of maximum lifespan and maturation time in liver. (A) Mean FPKM of all significant

genes. Error bars indicate standard deviation of the mean. Gray line is the relative value of residual variable (time to maturity, axis on the right). Species are shown at the

bottom. Color-coded rectangles distinguish lineages. Bar at the top right shows proportion of significant genes from all genes associated with this pathway. P-value denotes

statistical enrichment (right-sided hypergeometric test). (B) Genes whose expression variation correlates with residual variation. Vertical axis is the relative FPKM log2-

transformed. Horizontal axis is the residual of maturation time in logarithmic space. Rhombs are the means of FPKM. Colors of rhombs distinguish lineages. Error bars show

standard deviation of the mean. P-value denotes significance of the OLS model. Median gray line is best-fit OLS line. Shaded areas indicate observed and predicted upper

(95%) and lower (5%) confidence intervals. (C) Functional interaction network. Color of nodes denotes significance of the OLS model. Positively correlated genes are in red.

Negatively correlated genes are in blue. Color of edges denotes type of interaction (bottom).
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and brain tissue samples were frozen in liquid nitrogen and stored at

�80 °C until further use. To ensure comparability of data derived from

homologous organs between species, each organ was ground in liquid

nitrogen-cooled mortar and used for RNA extraction. Most tissue

samples were prepared in biological duplicates or triplicates to ensure

biological variation in gene expression (Table S1). Total RNA was

extracted using RNAeasy kit Qiagen (Valencia, CA. USA) according to the

manufacturer’s instructions. RNA integrity was assessed using an Agilent

2100 Bioanalyzer (Lexington, MA. USA) prior to library construction.

RNA sequencing

Sequencing libraries were prepared using the mRNA-Seq Sample Prep Kit

Illumina (San Diego, CA. USA) in accordance with the manufacturer’s

instructions. Polyadenylated RNA was isolated using a poly-dT bead

procedure, chemically fragmented, and randomly primed for reverse

transcription. After second-strand synthesis, the ends of the double-

stranded complementary DNA were repaired. Following 30-end adeny-

lation of these products, Illumina paired-end sequencing adapters were

ligated to the blunt ends of the cDNA fragments. Ligated products were

run on gels; 300-bp fragments were excised and then PCR-amplified (15

cycles). After column purification, quality of the resulting libraries was

assessed using Agilent 2100 Bioanalyzer. Sequencing was performed on

the Illumina HiSeq2000 platform generating approximately 30 million

reads per sample.

RNA-seq read mapping

Genome annotations (GTF) for 17 mammals with sequenced genomes

were obtained from Ensembl, release 65. For the naked mole-rat

(Heterocephalus glaber), long-tailed macaque (Macaca fasciularis),

bonobo (Pan paniscus), and goat (Carpa hircus), we used GTF

annotations downloaded from NCBI database (Table S2). 51-bp

paired-end reads that passed the chastity filter threshold were

mapped using TopHat 2.0 (Trapnell et al., 2012) with default

parameter values, except for distance between mature pairs

(r = 200) and the number of allowable mismatches between read

and genomic sequences (n = 3) to account for a possible genetic

variability between study and database organisms. The anchor size (i.e.

the minimum aligned length spanning each of the two exons that

define a splice junction) was set at 8 bp, and we allowed one

mismatch on the anchor region. We filtered the read alignments

accepted by TopHat to remove mapping ambiguity. To do this, we

extracted the best mapping(s) for each read, based on the number of

mismatches in the alignment, and selected those reads for which the

best mapping was unique. Depending on species, final efficiency of

RNA-seq read alignments varied from 55 to 99% (Table S2). Average

gene expression levels were calculated as FPKM and normalized using

Cufflinks (Trapnell et al., 2012). An FPKM value of 3.0 was used to

filter out low abundant transcripts.

De novo transcriptome assembly

Draft transcriptomes for 12 species were de novo assembled using Trinity

(Grabherr et al., 2011). First, each RNA-seq reads set originating from

individual biological repeat was assembled and analyzed individually (Fig.

S4). As the Trinity assembler discards low coverage k-mers, no quality

trimming of the reads was performed prior to the assembly. Trinity was

run on the 51-bp paired-end sequences with the fixed default k-mer size

of 25, minimum contig length of 200, paired fragment length of 500,

and a butterfly heapspace of 25G (i.e. allocated memory). To remove

redundancy, contigs that overlapped with a minimum length of 50 bp

and minimum identity of 99% were merged using CAP3 (Huang &

Madan, 1999) to form the organ-specific transcriptome assemblies.

Finally, the assemblies from individual organs were collapsed with CAP3

for the liver, kidney, and brain to form a united reference assembly

(Table S3, Figs S1 and S4).

FPKM calculation for de novo transcriptomes

To calculate gene expression levels for de novo assembled transcripts, we

developed a strategy combining ab initio proteome prediction, redun-

dancy elimination followed by FPKM calculation (Fig. S4). De novo

assembled transcriptomic contigs represent a mix of noncoding, partial,

and complete cDNA sequences. The latter portion of molecules contains

both start and stop signals and, therefore, can be treated as complete

models in the ab initio protein prediction. We used AUGUSTUS v2.5

software (Stanke et al., 2006) with default parameters optimized for

eukaryote gene prediction to refine amino acid sequences encoded by

reference transcriptome assemblies (Figs S2 and S4). Although de novo

transcriptome assemblies were treated to eliminate redundant

sequences, the ab initio predicted proteomes contained homologous

sequences originating from software misassembly errors, highly homol-

ogous cDNA sequences, and transcript isoforms. To filter out redundant

amino acid sequences, we applied USEARCH v6.0 software (Edgar, 2010)

with default parameters. The final sets of amino acid sequences were

encoded by nonredundant longest transcripts expressed in the liver,

kidney, or brain (Fig. S3). An overview of proteome characteristics is

provided in Table S4 and additionally discussed in Supplementary

Information. GTF gene model annotations produced by AUGUSTUS

software were used for calculations of FPKM values using TopHat and

Cufflinks as described above. The statistics on RNA-seq read alignments

is provided in Table S2.

Definition of orthologous genes

We obtained sequence orthologous relationships for 17 mammals with

sequenced genomes from Ensembl, version 65. We considered only 1–1

orthologs in downstream analyses. Any other relationships like uncertain

relationship due to the presence of paralogous sequences were excluded

from the analysis. For ab initio predicted peptides and protein sets from

the naked mole-rat (H. glaber), long-tailed macaque (M. fasciularis),

bonobo (P. paniscus), and goat (C. hircus), we used INPARANOID v4.1

software (Ostlund et al., 2009) with default parameters to refine initial

1–1 relationships with Ensembl peptides (Fig. S4). The software

predicted heterogeneous relationships with distinct species in rare cases.

We applied strict thresholds based on overall prediction performance

(P = 1, no multiple relationship was allowed) to filter out molecules with

inconsistent relationships from the dataset (Fig. S4). The final dataset of

orthologous groups (COG) accounted for 19 643 individual groups of

sequences (Table S5, Fig. S5). The list of COG referred in the study is

provided in Dataset S6.

Expression level normalization

Initially, FPKM values of each sample were normalized against single

reference sample individually using upper quartile normalization (Dillies

et al., 2013). We then calculated log2 ratios centered on 0 for every pair

of orthologs of two samples. The procedure was cyclically repeated for

every combination of samples. The final expression values were
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represented by a collection of log2 ratios accounting for variation

associated with normalization reference and biological variation

between samples. Means and standardized quantiles derived from the

distribution of FPKM were used in downstream analyses.

Data quality control

Because of the scale of the project and limitations in availability of tissue

samples, some inherent biases were present in our data collection and

analysis, so we acknowledge them. This includes de novo transcriptome

assemblies for organisms for which no genome is currently available, as

discussed above. In addition, organisms from published databases

(primarily, Primates) were used in our analysis even though some of them

featured difference in read length, sequencing platform, sex (we used

males, whereas some database organisms were females), and occasional

alignment to closely related genomes. Nevertheless, we found that the

addition of these organisms to the pipeline improved our analysis. An

analysis of traits is also less sensitive to issues with individual data points.

For further data quality control, we performed a series of statistical

tests to filter out any poor quality samples from the analyses. We

assessed intraspecies variation by examining CV defined as ratio of

standard deviation to mean. Comparable degree of gene expression

divergence among liver, kidney, and brain was observed, which did not

exceed the value of CV = 0.6 and with mean values centered on

CV = 0.05 (Fig. S23). The results indicated that measurement and

sampling errors as well as biological differences contribute little

additional variation and that much of interspecies variation was due to

distinct sources of variation.

Normalized gene expression values were examined visually and by the

K-S and Welch’s tests for any pair of organisms to ensure that resulting

values were sampled from identical uniform distributions (Fig. S24). Any

biological repeats with unusual deviation from homologous samples

were excluded from the analysis. For RNA-seq libraries produced by

previous studies (Brawand et al., 2011), we compared expression values

with in-house data and examined CV to ensure that the downloaded

data contained no instrumental or sampling errors (Fig. S25).

To verify the compatibility of FPKM calculated using conventional

method (RNA-seq reads mapped to the genome) and FPKM calculated

using de novo contigs, we assembled RNA transcripts using murine RNA-

seq reads from liver, kidney, and brain. We inferred multiple orthologous

relationships between ab initio predicted products with database

sequences (excluding mouse database orthologs). We then calculated

FPKM for liver, kidney, and brain and compared these values with FPKM

produced from mouse genome alignments (Fig. S26). The analysis

demonstrated no significant difference between FPKM produced by the

two approaches (P = 1, K-S test) and minor additional variation

introduced by two methods (Fig. S26).

Statistical analysis of gene expression and life histories

Analyses of gene expression and life histories were performed using OLS.

Life-history variables (log2 ratio) were examined for nonrandom associ-

ation with relative values of FPKM under assumption that the error

follows Gaussian distribution:

Y i jx1; x2 ¼ b0 þ b1x1 þ b2x2 þ ei ; ejx�Nð0;r2InÞ 2:1

where Yi is the average response for gene i, x1 is the first explanatory

variable, x2 is the covariate predictor, b0 is the intercept, ei is the random

error, In is an n 9 n identity matrix, and r2 determines the variance of

each observation.

OLS P-values (F-test) were then corrected with the Benjamini-

Hochberg FDR-controlling procedure. We further used randomization

test with n = 106 replications to ensure that observed significance

exceed level that can be obtained by chance. Distribution of inter- and

intraspecies expression variations were examined by Kruskal–Wallis one-

way analysis of variance by ranks.

Primary accessions

Raw sequencing data and gene expression for 143 biological

samples have been deposited in Gene Expression Omnibus under

accession GSE43013. All RNA-seq read data have been deposited into

the Short Read Archive database. Transcriptome shotgun assembly

projects and contig annotations were deposited to DDBJ/EMBL/GenBank

under the following accession numbers: PRJNA182762 (Chloroce-

bus aethiops), PRJNA182765 (Mesocricetus auratus), PRJNA182766

(M. leucogaster), PRJNA182767 (Meles meles), PRJNA182768 (Meriones

unguiculatus), PRJNA182769 (Petaurus breviceps), PRJNA182770 (Pero-

myscus leucopus), PRJNA182771 (Suncus murinus), PRJNA182772

(Tadarida brasiliensis), PRJNA182773 (Ursus americanus), PRJNA182705

(Acomys cahirinus), PRJNA183188 (Tamias sibiricus).
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