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Gene expression divergence recapitulates the
developmental hourglass model
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The observation that animal morphology tends to be conserved
during the embryonic phylotypic period (a period of maximal
similarity between the species within each animal phylum) led to
the proposition that embryogenesis divergesmore extensively early
and late than in the middle, known as the hourglass model1,2. This
pattern of conservation is thought to reflect a major constraint on
the evolution of animal body plans3. Despite a wealth of morpho-
logical data confirming that there is often remarkable divergence
in the early and late embryos of species from the same phylum4–7, it
is not yet known to what extent gene expression evolution, which
has a central role in the elaboration of different animal forms8,9,
underpins the morphological hourglass pattern. Here we address
this question using species-specific microarrays designed from six
sequenced Drosophila species separated by up to 40 million years.
We quantify divergence at different times during embryogenesis,
and show that expression is maximally conserved during the
arthropod phylotypic period. By fitting different evolutionary
models to each gene, we show that at each time point more than
80% of genes fit best to models incorporating stabilizing selection,
and that for genes whose evolutionarily optimal expression level is
the same across all species, selective constraint ismaximized during
thephylotypic period.Thegenes that conformmost to thehourglass
pattern are involved in key developmental processes. These results
indicate that natural selection acts to conserve patterns of gene
expression duringmid-embryogenesis, and provide a genome-wide
insight into themolecular basis of the hourglass pattern of develop-
mental evolution.
The notion that early development is similar among related animal

species has been a guiding principle in comparative embryology since
von Baer (1828) formalized the observation as his third law10. Darwin
(1859) believed this to be themost compelling evidence in favour of com-
mondescent,reasoningthatadult life-stageswillaffordthegreatestoppor-
tunity for natural selection to operate, and thus adult structures should
showsignsofspecies-specificadaptationsmorethanearlierstages11.These
earlier stages, where adaptive opportunities are limited, will ultimately
represent the ‘pruned’ butnecessary featuresof ancestral differentiation12.
Despite its intuitive appeal, the principle of early embryonic con-

servation has not been supported by morphological studies2. Counter
to the expectations of early embryonic conservation, many studies
have shown that there is often remarkable divergence between related
species both early and late in development, often with little apparent
influence on adult morphology4–7. The extensive variation that is seen
in early and late development is contrasted by a period of conserved
morphology occurring in mid-embryogenesis. This is known as the
phylotypic period because it coincides with a period of maximal
similarity between the species within each animal phylum13.
The morphological conservation evident in the phylotypic period

motivated a proposal of the hourglassmodel1,2 as a revised formulation

of von Baer’s third law. The hourglass model predicts that early and
late divergence is separated by a ‘waist’ corresponding to the phylotypic
period. One of these studies argues that an increase in the number of
global interactions between genes and developmental processes during
the phylotypic period renders any evolutionary modification highly
deleterious due to their damaging side-effects2, whereas the other study
views conservation during this period as a consequence of the need for
precise coordination between growth and patterning, which is seen to
be reflected in the genomic organization of the vertebrate Hox genes1.
Support for the hourglass model has been found at the morpho-

logical7,14 and sequence levels15–17. However, both the model and the
concept of the phylotypic period remain controversial subjects in the
literature3,18, with some studies of heterochrony in vertebrates indi-
cating that divergence peaks at the phylotypic period19 or that there is
no temporal pattern of phenotypic conservation20.
Although it is generally appreciated that gene expression divergence

has a key role in the evolution of morphological diversity8,9, no studies
so far have addressed the extent towhich expression divergence under-
pins the morphological hourglass pattern at the genome-wide level.
Here, we test the molecular basis of the hourglass model of develop-
mental evolutionusing geneexpressiondata fromsixDrosophila species
with sequenced genomes (D. melanogaster, D. simulans, D. ananassae,
D. persimilis, D. pseudoobscura and D. virilis), thereby enabling unam-
biguous quantitative comparisons across orthologous genes for a set of
species separated by up to 40million years. Gene expression levels were
measured for 3,019 genes, known to be expressed during embryonic
development fromRNA in situdata21, at 2-h intervals for themajority of
embryogenesis using a microarray time course with three biological
replicates per species and four species-specific probes per gene (Sup-
plementary Figs 1 and 2).
For each gene in each species we generated a gene expression time

course, corrected for differences in developmental time (Supplemen-
tary Information, Section 2.2), and measured the correlation of the
resulting temporal profiles for each pair of species (Fig. 1a, b). The
distribution of the correlation coefficients shows that whereas most
genes are positively correlated in their temporal expression, the diver-
gence in embryonic gene expression follows the known phylogenetic
relationships22. These results clearly demonstrate that there is evolu-
tionary signal across the data set as a whole.
To quantify gene expression divergence rigorously we fitted a linear

model to the expression data. This approach enables us to quantify the
divergence between species by measuring the influence that different
specieshaveon the expressionof individual genes at specific timesduring
development. We extract two different measures of divergence from the
model: quantitative divergence, which reflects differences in expression
across the whole time course; and temporal divergence, which reflects
divergence of temporal profiles at specific time points (Supplementary
Information, Section 2.6). We show that both of these measures of
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divergence recapitulate the known evolutionary relationships between
the species when the phylogeny is constructed using all of the genes
simultaneously (Fig. 1c, d). However, despite producing an identical
topology to the known phylogeny, we see relatively long terminal
branches in the phylogram, indicating that gene expression divergence
does not scale with the amount of time separating pairs of species
(Supplementary Fig. 3)23.
If temporal expression divergence has saturated through time thenwe

would expect to find a reduced capacity for reconstructing the known
phylogeny at the level of individual genes. To explore this possibility we
estimated the phylogenetic signal for each gene using a statistic that
compares the observed phylogenetic signal to what would be expected
under a process of random evolutionary change24. A random evolution-
ary process produces a phylogenywhere closely related species resemble
each other more than distantly related species as lineages inherit the
random changes of their ancestors. The results show that at each time
point the majority of genes exhibit a weaker phylogenetic signal than
expected under random evolution (Supplementary Fig. 5a).
Phylogenetic signal may be eroded by stabilizing selection23, and to

test for this possibilitywe compareddifferent evolutionary scenarios by
fitting four alternativemodels to the expression data. Themodels were
purely random evolutionary change and three stabilizing selection
models where the optimal expression level may vary between groups
of species, allowing us to model adaptive changes in expression
(Supplementary Fig. 4)25. The stabilizing selection models describe
the change in expression as a combination of random changes and
stabilizing selection curtailing the accumulating variance. The results
show that at each time point at least 80%of genes fit best tomodels that
incorporate stabilizing selection (Supplementary Fig. 5b). We also see
that a substantial fraction of the genes fit best tomodelswhere there are
adaptive changes in expression, indicating that a combination of both

stabilizing and directional selectionmay be acting on a large fraction of
the genes26.
The variance between species in the behaviour of a particular gene at a

particular time point provides a measure of the divergence of a gene’s
temporal dynamics (see Methods). Plotting these values across all genes
as a function of time shows that temporal expression divergence follows
an hourglass pattern withmaximal conservation occurring at time point
5 (8–10h), a period that corresponds to the extended germband stage,
generally regarded as the arthropod phylotypic period (Fig. 2a). We
confirmed that the hourglass pattern is not an aggregate behaviour of
the data set, but is present on a gene-by-gene basis for the majority of
genes (SupplementaryFigs6and7), andalso that thispattern is evident in
the absolute, untransformed gene expression levels (Supplementary Fig.
8b and Supplementary Information, Sections 2.6 and 2.7). For genes that
fit best tomodelswhere the optimal expression level is the same across all
species we calculate a measure of selective constraint23 (Fig. 2b). This
shows that for genes whose evolutionary optimum is the same across
species, selective constraint is maximized during the phylotypic period
when gene expression divergence isminimized. Therefore, natural selec-
tion conserves gene expression patterns during the phylotypic period.
To discover the functional classes of genes responsible for driving the

hourglass pattern in the data, we correlated each gene’s divergence pro-
filewith the average across all genes, thereby allowingus to rank genes by
their tendency to follow the global hourglass divergence profile.We find
that these genes are enriched for biological processes involved in cellular
and organismal development and gene expression (Supplementary
Tables 1–3). Moreover, functional characterization of genes that follow
an absolute expression hourglass (Supplementary Fig. 8b) shows that
they are also enriched for developmental and gene expression processes
(Fig. 3a and Supplementary Tables 4–6). Taken together, these results
show that genes involved in core developmental processes conform
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Figure 1 | Gene expression during Drosophila embryogenesis recapitulates
the known phylogeny. a, Between-species pairwise correlation coefficients for
temporal profiles are depicted using a colour gradient. b, Species profiles are
shown for two genes with both positive and negative correlations between
different species pairs (Ahcy89E andCyp6d5) and two genes that are temporally
conserved (tara and eIF3-S9). Log2 expression profiles are averaged over probes

and replicates. Selected correlation coefficients are shown on the plots, and the
P-value refers to quantitative divergence. Time points along the x axis are 2-h
intervals starting from 0–2h (1) and ending at 14–16 h (8). c, The first three
principal components for quantitative divergence. d, A maximum likelihood
phylogeny based on temporal expression divergence across all genes.
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strongly to the global hourglass divergence pattern both in terms of
temporal dynamics and absolute expression differences.
We also asked whether there are sets of genes that don’t follow the

global hourglass pattern and found genes enriched for processes
involved in secondarymetabolism, the immune system, and responses
to oxidative and wounding stresses (Supplementary Fig. 9a and
Supplementary Table 7). These are processes that are upregulated late
in development, such as pigment or chitin metabolism, or processes
that will be upregulated in response to changes that are independent of
the developmental program, such as a change in the external envir-
onment or the presence of a parasite. The transcript levels of genes in
this latter category will reflect the particular challenges faced by indi-
vidual embryos and so we would not expect these genes to follow a
clear temporal pattern of conservation and divergence. These genes
tend to be zygotically expressed and are largely present in the yolk
(Supplementary Table 7).

Independent of the hourglass patterns, ourmeasures of quantitative
and temporal expression divergence exhibit similar functional associa-
tions; housekeeping processes tend to be conserved and metabolic
processes tend to be divergent (Supplementary Tables 8–11 and
Supplementary Information, Sections 2.8 and 2.9). Given these broad
functional similarities, it is of interest to ask whether genes in these
categories of divergence also share similar genomic and gene-level
features. We observe that genes that diverge quantitatively tend to
have short introns and 59 intergenic regions (Fig. 3b) whereas genes
that diverge temporally have long introns and 59 intergenic regions
consistent with the notion that increased regulatory complexity in long
noncoding regions27 may provide opportunities for temporal expres-
sion divergence (Fig. 3c). This increased regulatory complexity is also
supported by a strong positive correlation between temporal diver-
gence and tissue specificity. Additionally, temporal divergence is nega-
tively correlated with mRNA length, raising the possibility that the
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Figure 2 | Temporal expression divergence is minimized during the
phylotypic period. a, Temporal divergence of gene expression at individual
time points during embryogenesis. The curve is a second-order polynomial that
fits best to the divergence data. Embryo images are three-dimensional
renderings of time-lapse embryonic development of D. melanogaster using
Selective Plane Illumination Microscopy (SPIM). b, Selective constraint for

genes that fit best to single optimum stabilizing selection models, calculated as
the negative log of the equilibrium variance (see Methods and Supplementary
Fig. 5b). Time points are 2-h intervals starting from 0–2 h (1) and ending at 14–
16 h (8). Red diamonds indicate themean; error bars encompass data within 1.5
times the inter-quartile range, and the boxes show the lower andupper quartiles
together with the median.
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Figure 3 | Properties of genes with different divergence patterns. a, A
neighbour-joining dendrogram of enriched functional processes for genes that
follow an hourglass pattern of divergence. b, c, Correlation of gene-level
variables with quantitative divergence (b) and temporal divergence (c). Error

bars are 95% confidence intervals based on 1,000 bootstraps. Asterisks indicate
significant correlations. dN, non-synonymous substitution rate; dS,
synonymous substitution rate.
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proteins of these shorter genes are engaged in fewer protein–protein
interactions. We also observe a positive correlation between rates of
amino acid evolution (dN) and both quantitative and temporal diver-
gence, supporting similar findings based on adult expression levels28,
and providing further evidence that embryonic expression divergence
is measuring biologically relevant signals.
Our results show that gene expression is more resistant to evolu-

tionary change during mid-embryogenesis than either early or late
periods of Drosophila development. Evolutionary analyses support
the notion that this conservation is the result of natural selection acting
to maintain expression levels and their temporal relationships during
mid-embryogenesis for genes involved in building up the body plan of
the larva. These results complement a recent finding suggesting that
the pupal stage in Drosophila is under strong stabilizing selection due
to the complexity of the processes that occur during metamorphosis, a
process that parallels many aspects of embryonic development29. These
findings seemto support thehypothesis of ref. 2 that an increase in global
interactions constrains evolutionary change of the phylotypic period;
however, neither study directly addresses the coordination of growth
and patterning proposed by ref. 1. Such a relationship may be best
examined in the context of gene regulatory networks. Future studies will
also need to address the mode and strength of selection acting on gene
expression with greater resolution by coupling interspecific expression
divergence with intraspecific variation during embryogenesis30.

METHODS SUMMARY
RNA was extracted from embryos from six Drosophila species (D. melanogaster,
D. simulans,D. ananassae,D. persimilis,D. pseudoobscura andD. virilis) reared at
25 uC. The embryos were aged at 2-h intervals to form a time course. Sixty-base-
pair-long, species-specific microarray probes (four per species) were selected by
choosing regions of the orthologous genes of each species that were maximally
conserved according to an information entropymeasure. Candidate probes with a
G1C content higher than 50% were penalized and hence were less likely to be
chosen. After scaling the time courses and normalizing replicates, the following
linear model was fitted to log expression levels:

log yijklmn
! "

~mzGizSjzTkzrl jð Þzpm ijð ÞzGSijzGTikzSTjk

zrGl jð ÞizpTmk ijð Þzrpl jð Þm ijð ÞzrTkl jð ÞzGSTijkzen ijklmð Þ

where m is the global average, Gi is the gene effect, Sj is the species effect, Tk is the
time effect, rl(j) is the replicate effect nested in species, pm(ij) is the probe effect
nested in genes and species, and en(ijklm) is the residual error. Values are averaged
over missing subscripts. Divergence per time point was measured as the between-
species variance in GST values for each gene separately. We fitted four different
evolutionary models to the GST values for each gene using the R package ‘ouch’
and ranked them by their Akaike Information Criterion (AIC). The models were
Brownian motion plus three stabilizing selection models with between one and
three selective optima (Supplementary Fig. 4). Genomic features of genes were
retrieved from FlyBase release 5.14, adult expression level and tissue specificity
were retrieved from FlyAtlas, and tissue expression data were retrieved from
APOGEE (http://fruitfly.org/cgi-bin/ex/insitu.pl). Partial correlations were calcu-
lated and 95% confidence intervals for each partial correlation were generated
from 1,000 bootstraps.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Embryo collections and RNA isolation and labelling. Embryos were collected
from a population of well-fed adults reared at 25 uC. To synchronize the age of the
embryos in each sample we pre-laid the flies twice for 1 h with a fresh apple juice
plate with yeast paste before every collection. Another fresh plate with yeast was
used to collect embryos. The plate was removed from the cage after a 2-h interval
and aged in the same incubator for the remaining time required by each time point.
After ageing, embryos were collected and rinsed with water to remove yeast paste,
and then dechorionated in 100% bleach for 2min and then washed in desalinated
water. The embryos were then transferred into a 1.5-ml tube and snap-frozen in
liquid nitrogen and stored at280 uC.
When isolating RNA, embryos were thawed on ice and homogenized with a

pellet pestle and a pellet pestle cordlessmotor (Kontes). RNAwas isolated with the
RNeasy Mini kit (Qiagen) and eluted with 30ml of water. The RNA concentration
was measured with the NanoDrop spectrophotometer and RNA quality was
assessed with Bioanalyser using the Agilent RNA 6000 Nano kit.
To prepare samples for hybridization to the chip, we followed the Agilent One-

Colour Microarray-Based Gene Expression Analysis protocol version 5.5. The
starting amount of RNA was normalized to 600ng for all samples. Samples of a
given time-course were processed on the same day.
Probe selection. Probe selection was limited to 60-mers that started within 1 kb
from the 39 end of the transcript. The two main factors that influenced subsequent
probe selection were the similarity of orthologous probes in six species determined
by information entropy (Supplementary Fig. 1) and the specificity of a probe esti-
mated by the G1C content-weighted BLAST score (Supplementary Information,
Section 1.1).
Additionally, we incorporated the distance from the 39 end of the transcript into

the information entropy measure by means of weighting the information entropy
(Supplementary Fig. 2). Hence, the further away the candidate probe was from the
end of the transcript, the higher the final information entropy measure became.
Probe specificity was verified in two steps. We first rejected candidate probes

that did not have a 60-nucleotide-long match to the respective genome assembly.
By doing so we eliminated probes that fell on the border of two exons in the
transcript sequence. For the remaining candidate probes the G1C content-
weighted BLAST score was calculated. This score was the sum of nucleotides that
were identical to the query 60-mer and were found in short, unspecific hits. The
sum was weighted by the G1C content of hits shorter than 60 nucleotides. If the
G1C content exceeded 50% the sumwas multiplied by a factor greater than 1 and
as a consequence the probe was penalized. Four probes were selected for each gene
in each species and we calculated the base-pair overlap between the probes and,
where possible, tried to minimize this value (Supplementary Fig. 13).
Time-course registration and correlation analysis. To register the time courses
for different species with different developmental time periods31 onto a common
time axis we scaled the non-melanogaster time courses to D. melanogaster by
maximizing the similarity among the profiles across all genes. The selection of
genes on the array resulted in a progressive shift of signal intensity distributions
from bimodal (mixture of non-expressed and expressed genes early) to unimodal
(most genes expressed late) across the time course (Supplementary Fig. 18).
Therefore we normalized the replicates for each time point in each time course
separatelyusingquantilenormalization.Nextweaveraged theprobe signal intensities
using the Tukey biweight algorithm to obtain a single expression value per gene and
time point in each species while removing outliers. We then re-sampled each time
course to 100 time points using cosine transform interpolation (DCT)32.
Subsequently, all 3,019 expression profiles of the non-melanogaster species were
scaled by factors ranging from 0.4 to 1.6 in 0.01 increments to find the optimal
scaling factor. We calculated squared sums of average differences between all the
scaled profiles andD. melanogaster profiles and plotted these sums as a function of
the scaling factor applied (SupplementaryFig. 16). The globalminimum in the graph
corresponded to the scaling factor at which all the profiles of the two species were
most similar to each other. We applied the optimal scaling factors (Supplementary
Table 12) to the averaged non-melanogaster profiles with the DCT interpolation
resulting in registered time courses (four example genes, before and after registration,
are shown in Supplementary Fig. 17).
To compare the overall shape of the profiles among species we row normalized

the gene expression values for each gene in each time course and calculated pair-
wise correlation coefficients for all pairs of orthologous genes. Genes ordered by
this simple measure of similarity give an intuitive impression of the amount of
conservation of temporal profiles among each pair of species (Fig. 1a).
For the statistical analysis described below, we applied the optimal scaling

factors to the raw log2 Agilent array signal intensities and subsequently quantile-
normalized each time point in each time course separately, as described above.
Linearmodels.AglobalANOVAmodelwas fitted to the data to partition themain
effect variables and interactions of biological interest from random factors and

residual error. This normalizes the gene expression values and provides a single
coherent statistical framework in which to explore the variance and covariance
structure of the data33. The model for gene expression, yijklmn, is a five-factor,
partially nested, mixed-model ANOVA

log yijklmn
! "

~mzGizSjzTkzrl jð Þzpm ijð ÞzGSijzGTikzSTjk

zrGl jð ÞizpTmk ijð Þzrpl jð Þm ijð ÞzrTkl jð ÞzGSTijkzen ijklmð Þ

where m is the global average,Gi is the gene effect, Sj is the species effect,Tk is the time
effect, rl(j) is the replicateeffectnested inspecies,pm(ij) is theprobeeffectnested ingenes
and species, and en(ijklm) is the residual error. Values are averaged over missing sub-
scripts. The probe and replicate effects are random factors in the model and account
for error variance arising fromdifferent probes and fromdifferent samples of within-
strain genotypes respectively.
The remaining terms are two- and three-way interactions between the main

factors.Thegene-by-species,GSij~log yij
! "

{Gi{Sj{m,andgene-by-species-by-time,
GSTijk~log yijk

! "
{Gi{Sj{Tk{GSij{GTik{STjk{m, effects contain informa-

tion about divergence between species. Here we treat time as a categorical variable
so that we can extract variances at discrete time points in different species.
Divergence at each time point is then measured as the between-species variance
in GST values per gene and per time point (Fig. 2a). Mean sums of squares were
estimated for each variable in the model after subtracting the mean from the data,
and the resulting ANOVA table is shown in Supplementary Information, Section
2.4. A Principal Component Analysis (PCA) of the gene3 time (GT) effect from
the above model was computed and the results are shown in Supplementary
Information, Section 2.3.
A reduced version of the above model was fitted as a linear regression to each

gene separately (the gene effect was dropped) using the R package ‘limma’ version
3.2.2 (ref. 34). Limma uses an empirical Bayesian approach to infer differential
expression in individual genes, producing moderated t-statistics with Bayesian-
adjusted denominators that incorporate information across the entire ensemble of
genes35. By fitting a linear model to each gene separately, limma allows for gene-
specific error distributions. The probe effect was also dropped from the ANOVA
model as the probes were normalized using Tukey’s median polish method to fit a
linearmodel for gene expression to each gene, yij5 expi1 aj1 eij, where expi is the
normalized gene expression value for gene i, aj is the probe effect for the jth probe,
and eij is the residual error36. The species effect from limma is equivalent to theGS
effect from the global ANOVA, and this value was used for assessing quantitative
divergence between species (Fig. 3b).
The temporal profiles of geneswere compared across species using a PCA-based

approach37. This method quantifies pairwise species differences in temporal pro-
files for individual genes using theMahalanobis distance, which is calculated using
GST values for all time points estimated from the global ANOVA model. The
Mahalanobis distance is calculated as

Di
2~ DZi{ZCð Þcov DZð Þ{1 DZi{ZCð ÞT ,

where DZi is the species GST score contrast for gene i, ZC is the centroid for all of
the GST score contrasts, and cov(DZ) is the covariance matrix for the difference
matrix DZ. This metric is distributed according to a chi-squared distribution with
k degrees of freedom where k is the number of principal components included in
the contrast. We used the Mahalanobis distances as a measure of temporal diver-
gence between species across all time points (Fig. 3c). The distances were calcu-
latedusing the first three principal components, which together account for 89%of
the total variance.
Phylogenetic analyses and evolutionary models.Amaximum likelihood phylo-
geny was constructed withGST values from every gene and every time point using
the ‘contml’ continuous character restricted maximum likelihood approach
implemented in PHYLIP version 3.69 (ref. 38) with D. virilis identified as the
outgroup, and the resulting phylogram was plotted using Dendroscope version
2.0 (ref. 39) (Fig. 1d).
We estimated the phylogenetic signal for the GST values at each gene by cal-

culating the K statistic described in ref. 24 using the R package ‘picante’ version
1.1-1. The tree used for this purpose was a phylogram based on median dS values
for ,10, 000 orthologous genes40 which was then converted to a chronogram in
the R package ‘ape’ version 2.5-141.
Ornstein–Uhlenbeck (OU) and Brownian motion models were fitted to the six

species-specific GST values for each gene at each time point using the R package
‘ouch’ version 2.6-1 (ref. 25). The OU models fitted to each gene describe evolu-
tionary change in a trait X over an infinitesimally small increment of time as
dX tð Þ~a h{X tð Þð ÞdtzsdB tð Þ where dB(t) describes Brownian motion (inde-
pendent and identically distributed normal random variables with mean 0 and
variance dt), s is the strength of Brownian motion, a is the strength of stabilizing
selection, and h is the trait optimum42. Under a purely Brownian process of
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evolutionary change the first termon the right-hand side is absent. Thismodel was
extended by ref. 25 to include branch-specific values for h, thereby allowing for
adaptive evolution along specific branches. We fitted four models to each gene:
Brownian motion plus three OU models with between one and three stabilizing
selection optima (Supplementary Fig. 4), based on the chronogram mentioned
above. Here we did not engage in an exhaustive model fitting endeavour as our
intention was to demonstrate two things: (1) models incorporating stabilizing
selection fit best to themajority of the genes, and (2)models incorporating adaptive
changes in trait optima often out-perform non-adaptive models.
To avoid treating time points as if they are independent we fitted models to

subsets of time points. These subsets were chosen by bootstrapping (1,000 boot-
straps) hierarchical clusters of time points based on GST values for each gene
separately using theRpackage ‘pvclust’ version 1.2-1 (ref. 43) and selecting clusters
of time points with P-values below 0.05. This approach allows different modes of
selection to operate across different periods of each gene’s time course.
For each gene the model that showed the best fit to the data was defined as the

model with the lowest Akaike Information Criterion (AIC), calculated as 2k2
2log(likelihood) where k is the number of degrees of freedom in the model in
question. AIC scores balance the likelihood of a model against its complexity (the
number of parameters in the model).
After ranking models by their AIC scores, genes for which Brownian motion

was not ranked first were tested to see if the top-ranked model showed a signifi-
cantly better fit to the data than Brownianmotion using a log-likelihood ratio test.
The resultingP-valueswere adjustedusing theBenjamini–Hochberg falsediscovery
rate correction in the R package ‘multtest’ version 2.4.0 (ref. 44) and models with
adjusted P-values above 0.05 were dropped down into the Brownian category. We
then repeated this process, but treating single optimum models as the null model
and testingmodels that ranked bestwith twoor threeoptima against this nullmodel
to ensure that the resemblance to the phylogeny for these geneswas not the result of
chanceunder a single optimumacross all species. If single optimummodels showed
a better fit then they were, in turn, tested against the Brownian model.
We extracted a measure of selective constraint from the genes that fitted best to

single optimummodels (Fig. 2b), calculated as the negative log of the equilibrium
variance, s

2

2a (ref. 23).
Gene Ontology and tissue expression enrichment. Gene Ontology (GO) ana-
lyses were conducted using the R package ‘topGO’ version 1.14.0 (ref. 45). Three
enrichment methods were used. For genes that were ranked by a real number score
(such as a correlation coefficient) a Kolmogorov–Smirnov ranking test was applied
andGOtermswith distributions among thegenes that showed significant departure
from a uniform distribution in a particular direction were deemed to be enriched.
Unranked sets of genes were tested for enriched GO terms using the ‘elim’ and
‘parent-child’ algorithms in topGO. The ‘elim’ algorithm decorrelates the local GO
graph structure to take into account local dependencies between terms so thatmore
biologically relevant terms are enriched45 and the ‘parent-child’ algorithm controls
for the inheritance bias between parent and child terms in the GO hierarchy46.
Fisher’s exact test was then used to determine enrichmentP-values for both of these
algorithms. The same approach was used to identify enriched tissue expression
terms from a controlled vocabulary based on in situ expression data21 by using
modified code from the topGO package.
P-values from Kolmogorov–Smirnov tests were adjusted using the Benjamini–

Hochberg false discovery rate correction, but no correction was applied to the
‘elim’ and ‘parent-child’ P-values because they are not calculated independently
for each GO term in these algorithms and are effectively already adjusted. For
defined sets of genes, the reference set was all of the genes on the chip.
Weplotted a neighbour-joining tree of enriched, non-redundantGO terms47 for

Fig. 3a using the R package ‘ape’ andDendroscope. Terms were enriched for 1,188
genes that show an hourglass profile in both temporal dynamics and absolute
expression levels using Fisher’s exact test and selecting terms with adjusted
P-values below 0.05.
Correlation of divergence with gene-level variables.Quantitative and temporal
divergence measures were generated for each of the 15 pairwise species com-
parisons. Following ref. 48, we converted these to nine branch lengths on the
knownphylogeny using the Fitch–Margoliash least squaresmethod (implemented
in the PHYLIP program ‘fitch’38). Negative branch lengths were set to zero. Total
expression divergence for each gene is the sum of branch lengths and constitutes
our ‘quantitative’ and ‘temporal’ measures using the limma or Mahalanobis dis-
tances, respectively.

We collated structural, functional and expression data for all of the genes on the
chip from public databases and previous genome-level studies. These data were
generated from gene coordinates retrieved from FlyBase Release 5.14 (January
2009). Only protein-coding genes were retained (as all genes on our chip are
protein coding) and genes from the heterochromatic portions of the otherwise
‘euchromatic’ chromosome arms were discarded (168 genes from the genome,
including 25 from our chip data set)49.
In addition, data on further variables for 8,500D. melanogaster genes compiled

by ref. 48 were obtained from the authors. These data could be assigned to 2,526 of
the genes on the chip. Gene expression was described by adult expression level and
tissue specificity (both from FlyAtlas50), expression divergence between adults
(measured in a very similar set of species by ref. 22), and we added the mean
embryonic expression level from our own data. Gene sequence evolution was
described by codon bias (the frequency of optimal codons) in D. melanogaster
and by dN and dS, the rates of non-synonymous and synonymous nucleotide
substitutions, respectively.
As many of our variables of interest were correlated with one another, we

calculated partial correlations between each variable and expression divergence
while controlling for the other variables. The set of variables included are described
in Supplementary Information, Section 1.3. We only used filtered genes for which
we had information on all the variables (n5 1,832). Partial correlations were
calculated from Spearman’s rank correlation matrices using the R package ‘corp-
cor’. Ninety-five per cent confidence intervals for each partial correlation were
generated by boot-strapping (random sample with replacement) the set of genes
contributing to the correlation. One thousand bootstraps were performed using
the R package ‘boot’.
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