4 Carina Fung ${ }^{1}$, Sharna Naughton ${ }^{1}$, Lynne Turnbull ${ }^{2}$, Pholawat Tingpej ${ }^{1}$, Barbara Rose ${ }^{1}$, Jonathan

6 Whitchurch 2 and Jim Manos ${ }^{1 *}$
$8{ }^{1}$ Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia, $9{ }^{2}$ Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney

4 the CF lung. We have produced a modified artificial sputum medium (ASMDM) more closely

1

5 colonies that resemble biofilm form \#2 (bacteria attached together and not to surfaces) (Hassett et 6 al., 2009) within hypoxic mucus zones of the airway lumen (Hassett et al., 2002; Worlitzsch et al., 7 2002). Biofilm and planktonic P. aeruginosa forms coexist in long-term infection (Garcia-Medina 8 et al., 2005).

9

10 The use of CF-patient sputum to study the pathobiology and growth characteristics of P. aeruginosa
11 in the CF lung is impractical due to changes in consistency on sterilization, presence of highly-

12 resistant yeasts, patient-to-patient variability and antibiotic use. Sputum provides amino acids as the 13 major carbon source (Sriramulu et al., 2005), however the particular carbon source used 14 dramatically affects biofilm formation (Klausen et al., 2003; Shrout et al., 2006). Mucin is another 15 important nutrient source and triggers changes in expression, reduces surface motility and enhances 16 biofilm formation (Landry et al., 2006; Sriramulu et al., 2005; Wang et al., 1996). Concentration of 17 the principal mucins in sputum (MUC5AC and MUC5B) also increases greatly during periods of 18 exacerbation (Henke et al., 2007). The presence of high molecular weight DNA is important in the

19 formation of mature multicellular biofilm structures (Barken et al., 2008; Beatson et al., 2002; Tetz 20 et al., 2009).

21

22 Various synthetic or semi-synthetic media have been developed in attempts to mimic the CF lung

23 environment. Studies using the reference strain P. aeruginosa UCBPP-PA14 (Rahme et al., 1995)
24 grown in a medium containing $10 \%(\mathrm{v} / \mathrm{v})$ CF sputum (sputum-containing medium) (Palmer et al.,
25 2005) showed upregulated expression of branched chain and aromatic amino acid catabolism genes,
26 the Pseudomonas quinolone signal (PQS) molecule and repression of anabolism genes.

Subsequently this group demonstrated upregulation of nutritionally-controlled genes in a totally synthetic CF sputum medium (SCFM) (Palmer et al., 2007a). However SCFM lacked DNA and mucin, while sputum-containing medium contained these components at below CF-sputum levels. DNA and mucin also help to form a biological matrix to facilitate P. aeruginosa biofilm formation. Studies using P. aeruginosa PAO1 in an artificial medium containing porcine mucin instead of human sputum $(\mathrm{ASM}+$) showed that amino acids, salt, low iron, lecithin and DNA were necessary for the establishment of the macroscopically visible clumps seen in CF sputum and described as tight microcolonies (Sriramulu et al., 2005). However, as far as we are aware there are no published studies of P. aeruginosa gene expression during stationary phase growth in an artificial CF sputum medium.

We have produced an artificial CF sputum medium (ASMDM) based on modifications of ASM + that avoids use of CF sputum and contains other components including mucin, albumin and DNA at CF-sputum levels, and have extended previous studies by using PAO1 arrays to examine global P. aeruginosa gene expression in early exponential and stationary phase growth, mimicking the process of infection in the CF lung.

MATERIALS AND METHODS

All microarray experiments were performed using P. aeruginosa UCBPP-PA14, the strain used in expression studies in sputum-containing medium (Palmer et al., 2005) and SCFM (Palmer et al., 2007a), and sourced from the same research group (Rahme et al., 1995). For exponential phase studies, growth protocols were as described for sputum-containing medium with MOPS-glucose medium used as reference (Palmer et al., 2005) allowing comparisons of expression data from the two studies. Growth curves were used to determine the OD_{600} required for harvest in MOPSGlucose, exponential phase ASMDM, and LB (Fig. 1). Phenotypic growth studies were carried out

4 Exponential growth for early gene expression

5 MOPS-Glucose medium

6 Two ml of MOPS-glucose medium (MOPS buffer (50_mM MOPS [pH 7.2], 93 _mM NH4Cl, 43_mM
$7 \mathrm{NaCl}, 3.7 _\mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 1 _\mathrm{mM} \mathrm{MgSO}_{4}$, and $3.5 _\mathrm{M} \mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$ with $6.3 _\mathrm{mM}$ glucose) in 5 ml
8 screw-capped bottles was inoculated with culture (final concentration $\mathrm{OD}_{600}=0.003 \mathrm{McFarland} 0.5$
9 Standard) (bioMerieux SA, France) and incubated with shaking (250 rpm) at $37^{\circ} \mathrm{C}$. Cells were
10 harvested at an $\mathrm{OD}_{600}=0.3 \pm 0.1$, ca. 6 h post-inoculation by comparison with growth curve readings
11 (Fig. 1) and uninoculated MOPS-Glucose was used as a blank. (Palmer et al., 2005), pelleted (5
$12 \mathrm{~min}, 5000 \mathrm{~g}, 4^{\circ} \mathrm{C}$), resuspended in $1 \times \mathrm{PBS}$, and treated with RNAprotect ${ }^{\mathrm{TM}}$ (Qiagen).

13
14 ASMDM
15 ASMDM contains the following modifications compared to ASM+ (Sriramulu et al., 2005): We
16 added $10 \mathrm{mg} \mathrm{ml}^{-1}$ bovine serum albumin (Sigma) (not added to ASM +), since studies have shown 17 CF patient sputum has higher albumin concentrations compared to the sputum of non-CF patients

18 (Sagel et al., 2001). This is probably due to vascular leakage that may be occurring as part of the
19 inflammatory process (Reid et al., 2004); We increased the concentration of porcine stomach mucin
$20\left(10 \mathrm{mg} \mathrm{ml}^{-1}\right.$ versus $5 \mathrm{mg} \mathrm{ml}^{-1}$) to better reflect the findings of Henke et al (Henke et al., 2007) who 21 identified greatly increased mucin levels during pulmonary exacerbations and lowered the
using UCBPP-PA14 and two CF isolates, an Australian Epidemic Strain-1 isolate (AES-1R) and a non-epidemic isolate (34Bris). (Qiagen) concentration of herring sperm DNA (Sigma) $\left(1.4 \mathrm{mg} \mathrm{ml}^{-1}\right.$ versus $\left.4 \mathrm{mg} \mathrm{ml}^{-1}\right)$ to bring it closer to that of CF sputum as described by Brandt et al (Brandt et al., 1995). Ingredients were stirred for 5 min and homogenized to dissolve mucin and DNA. As ASMDM could not be autoclaved without damage to the mucin, antibiotics (final concentration: $16 \mu \mathrm{~g} \mathrm{ml}^{-1}$ tetracycline, $1 \mu \mathrm{~g} \mathrm{ml}^{-1}$ penicillin and $1 \mu \mathrm{~g} \mathrm{ml}^{-1}$ ampicillin) were added to inhibit contaminants. Volume was made up to 100 ml with

5 harvested at $\mathrm{OD}_{600}=\underline{0.3 \pm 0.1}$, ca. 14 h post-inoculation by comparison with the growth curve 6 readings (Fig. 1). Cells were processed for RNA as above.

8 Stationary phase growth

9 Luria broth
$10 \mathrm{LB}\left(25 \mathrm{mg} \mathrm{ml}^{-1}\right)$ (Oxoid) was used as reference medium for stationary phase planktonic growth as it
$\mathrm{dH}_{2} \mathrm{O}$ and pH adjusted to 6.5 , the estimated pH of CF airway mucus (Yoon et al., 2006). Ten ml of ASMDM in 30 ml screw-cap clear glass bottles (e.g. McCartney bottles) with loosened caps to provide adequate aeration was inoculated with a starting culture as for MOPS-Glucose (above) and incubated at $37^{\circ} \mathrm{C}$ with shaking (250 rpm). Uninoculated ASMDM was used as a blank. Cells were has been widely used as a non-specialized growth medium for P. aeruginosa transcriptomics in both CF and non-CF studies (Alvarez-Ortega \& Harwood, 2007; Juhas et al., 2005; Schuster et al., 2003; Waite et al., 2005). Cells were incubated at $37^{\circ} \mathrm{C}$ with a loose lid and slow rotation (50rpm) to circulate nutrients and prevent settling, and harvested at mid stationary phase $\underline{(O D}_{600}=1.1 \pm 0.1-$ ca. 11 h post inoculation - determined by growth curves (Fig. 1).

ASMDM

Overnight cultures were diluted in $1 \times$ PBS to an $\mathrm{OD}_{600}\left(\right.$ ca. $1 \times 10^{8} \mathrm{CFU} \mathrm{ml}^{-1}$). Ten ml ASMDM in McCartney bottles was inoculated with $50 \mu 1$ of culture just under the surface of the medium and incubated statically at $37^{\circ} \mathrm{C}$ with a loose lid. As it is not possible to determine the OD_{600} of the biofilm, we used our observations of growth patterns from 48 to 120 h to choose the 72 h time-point as indicator of stationary phase. At 72 h the pellicle and the deep anaerobic growth were harvested and washed $5 \times$ in PBS on ice. RNA was extracted and cDNA synthesized, purified, fragmented and labelled as described (Manos et al., 2008; Palmer et al., 2005; Schuster et al., 2003).

9 Data Analysis

10 Microarrays were performed in biological duplicate for each sample in each condition tested (same 11 isolate; with different culture, RNA extraction, and microarray) to assess biological variability 12 within cultures. Microarray data were analyzed with BIOCONDUCTOR (Gentleman et al., 2004) 13 using the robust multi-array average (RMA) method (Bolstad et al., 2003; Gautier et al., 2004) for 14 data normalization, incorporating probe level background-correction, quantile normalization, and

15 linear extraction of a final expression measure for each gene per array. The false discovery rate 16 method (Benjamini \& Hochberg, 1995) was controlled to reduce false positives. A positive B17 statistic, where B-statistic is the log-odds that that gene is differentially expressed (Smyth, 2003), or $18 \mathrm{p}<0.05$ was used as a guide for statistically significant differential expression. Additional 19 differentially expressed biologically-relevant genes falling just outside these criteria ($\mathrm{B}<0$ or $20 \mathrm{p}>0.05$) have also been included. The microarray data are available on the Gene Expression

21 Omnibus (GEO) website http://www.ncbi.nlm.nih.gov/projects/geo (series GSE18594).
22
23 Microarray Validation
24 Quantitative SYBR-green-PCR using Platinum SYBR Green qPCR Supermix-no UDG (Invitrogen
25 Corp., Australia) and Real-Time amplification (Rotor-Gene6000, Qiagen, Australia) was performed 26 on cDNA synthesized from RNA used for microarray analysis: six genes (trpA, putA, dadX, oprB,

9 Microcolony observation

101 ml ASMDM containing $0.1 \%(\mathrm{w} / \mathrm{v})$ agar for better visualization of the microcolony structure, was 11 added to wells of a 24 -well polystyrene plate and after setting, 5μ of diluted culture was inoculated 12 under the surface. Plates were incubated with slow rotation (40 rpm) at $37^{\circ} \mathrm{C}$ and growth monitored 13 for 72 h by visual checking for formation of clusters of cellular growth (Fig. 2A). The extent of 14 actively growing cells was ascertained by the addition of $2,3,5$ triphenyltetrazolium chloride

15 (Sigma) ($5 \% \mathrm{w} / \mathrm{v})$ to the medium during preparation. Tetrazolium chloride turns red upon oxidation 16 by living cells and does not affect growth. All experiments were carried out in triplicate and 17 representative results are shown.

21 Excel files of array data from all biological replicates were checked for total number of genes
exaB, exoT) were selected from the exponential growth array data and five (aroQ2, aprE, phzD, $a p r D$ and $p f e A$) from the stationary phase array data. Gene selection was based on differential gene expression and association with nutrition or virulence, and included genes with $\mathrm{p}>0.05$ or $\mathrm{B}<0$. Primers were designed using Oligo6 Version 6.67 (Molecular Biology Insights Inc., USA) and obtained from Sigma-Genosys Inc. (Australia). The genes $\operatorname{lpd} 3$ and recA were used as endogenous controls in exponential and stationary phase RNA, respectively, because of uniform expression across arrays.

RESULTS AND DISCUSSION

Microarray expression levels

 showing expression (present -P) and no expression (absent -A), to determine replicate consistency. Transcript expression levels averaged 89 \% for MOPS-glucose grown bacteria, 86 \% for LB-grown cells and 88% for ASMDM-grown organisms, (range $82.7 \%-94.2 \%$). These results are in line with other studies (Manos et al., 2009; Wagner et al., 2003). Since a PAO1 array was used, the5 Genes differentially expressed ≥ 2-fold in ASMDM versus MOPS-glucose medium and sputum6 containing medium are shown in Table 1A. Fifteen of the 39 nutrition-controlled genes reported to 7 be upregulated in sputum containing medium (Palmer et al., 2005) were also upregulated ($\mathrm{B}>0$ or $8 \mathrm{p}<0.05)$ in ASMDM. Twenty three of the remaining 24 genes in this group were also upregulated in 9 ASMDM, although below the cutoffs ($\mathrm{B}<0$ and $\mathrm{p}>0.05$). Data from SCFM showed similar findings 10 (Palmer et al., 2007a). In terms of expression levels, there were a few outliers, including PA0865 11 hpd (66 -fold vs 2.3 -fold) and PA2322-gluconate permease (-5.5 -fold vs -35.5 -fold). This is 12 probably due to compositional differences between the media leading to different metabolic

14 for both media fell within a similar range (-5.5 to 20 -fold for sputum containing medium and -12.3
15 to 10.8 -fold for ASMDM). The early upregulation of nutrition-controlled genes is an important 16 early step in the development of the dense multicellular biofilm-like phenotype seen in the sputum 17 of chronically infected CF patients (Sriramulu et al., 2005). The upregulation of these key nutrition-

20 Notable among other genes upregulated in both ASMDM and sputum containing medium were 21 exaB, coding for cytochrome c550 and part of the exaAB promoter controlling ethanol-oxidation, database v2.pseudomonas.com. All genes had homologues in the UCBPP-PA14 genome.

1. UCBPP-PA14 exponential growth gene expression in ASMDM

 requirements. However, it should be noted that for nutrition-controlled genes, most fold differences related genes suggests that ASMDM provides a very good mimic of the lung environment. and the virulence-related genes hcnB, and oprC. hcnA and phzAB were also upregulated in ASMDM, as predicted by Palmer et al for CF sputum (Palmer et al., 2005). However, 24 QSrelated genes, 23 T3SS genes and several anaerobic metabolism genes were upregulated in ASMDM but not in sputum containing medium (Table 1B). Elevated QS and T3SS gene expression has been well documented in acute infection in vivo and in vitro (Berthelot et al., 2003;1 Roy-Burman et al., 2001), thus ASMDM may have some advantages over sputum-containing 2 medium. The upregulation of the T3SS in ASMDM does not reflect the low calcium environment, 3 since calcium concentrations were the same as those in sputum containing medium (Palmer et al., 4 2005). T3SS upregulation in ASMDM may have been mediated in part by upregulation of QS 5 regulators in conjunction with the down-regulation of trpA, which suppresses the T3SS as the 6 bacterium transitions from low to high density growth (Lin et al., 2006). The upregulation of the QS

7 system in exponential growth also promotes biofilm development (Singh et al., 2000) and thus

10 One of the features of P. aeruginosa growth in CF mucus is its ability to switch to anaerobic or 11 microaerophilic growth. An upregulation of anaerobic metabolism genes involved in nitrate, nitrite

15 Worlitzsch et al., 2002). Furthermore, studies indicate CF sputum contains sufficient nitrate to 16 support significant anaerobic growth of P. aeruginosa (Palmer et al., 2007b) and the phenotypic exponential phase UCBPP-PA14 in ASMDM is likely primed for biofilm growth. and nitrous oxide utilization was seen in exponential phase growth in ASMDM but not sputumcontaining medium, suggesting that even in exponential phase growth, ASMDM may better mimic the hypoxic or anaerobic environment of the CF lower airway mucus plugs (Hassett et al., 2002; characteristics of growth by CF isolates (Fig. 2B) showed deep widespread anaerobic growth in ASMDM. The upregulation of anaerobic respiration genes including nirJ-S, encoding the dissimilatory nitrite reductase and the oxygen-independent dehydrogenase hem N, may have contributed to T3SS upregulation, since nitric oxide produced via anaerobic metabolism of nitrite by the dissimilatory nitrite reductase is critical for the assembly of the entire T3SS (Van Alst et al., 2009).

Iron-related genes, including pyochelin synthesis ($p c h D C B A$), pyoverdine synthesis ($p v d E$) and ferric uptake ($f p t A, \operatorname{ton} B$) were downregulated in ASMDM but upregulated in sputum-containing medium. The downregulation of pyochelin ($p c h D C B A$), pyoverdine synthesis ($p v d E$) and ferric

1 uptake genes (fptA, tonB) in exponential growth suggests that ASMDM contains adequate iron for 2 exponential growth despite the presence of the chelator DPTA. In vivo P. aeruginosa utilises ferric 3 enterobactin at the expense of pyochelin and pyoverdine because of its superior iron-chelating 4 ability (Dean et al., 1996). Thus the upregulation of pyochelin and pyoverdine synthesis genes seen

5 in sputum-containing medium (Palmer et al., 2005) may reflect the fact that sputum comprised only 610% of the volume.

7 2. UCBPP-PA14 stationary phase growth and gene expression

8 Phenotypic characteristics

9 In 24-well plates, tight microcolony formation similar to that described by Sriramulu et al for PAO1
10 (Sriramulu et al., 2005) was observed for P. aeruginosa UCBPP-PA14 grown in ASMDM (Fig. $11 \mathbf{2 A}$). By 72 h the entire wells were red, indicating microcolony growth throughout (not shown).

12 Similar observations were made for both CF isolates: the acute infection isolates of Australian

21 Forty seven genes were differentially expressed ($\mathrm{B}>0$ or $\mathrm{p}<0.05$) in stationary phase ASMDM

5 Sririamulu et al that it is not required for tight microcolony and hence biofilm formation (Sriramulu

11 Conversely, the rhamnolipid regulator rhlG was upregulated in stationary phase growth in 12 ASMDM, indicating that rhamnolipid production probably facilitates biofilm development and the 13 acquisition of hydrophobic carbon sources (Davey et al., 2003; Lequette \& Greenberg, 2005). Also 14 upregulated were the ferric enterobactin siderophore receptor and transport protein ($p f e A, f e p C$) and

15 the assimilatory nitrate reductase genes (nasC, nirD). The upregulation of the siderophore receptor 16 probably reflects the iron-depleted conditions in ASMDM which in turn mimic those of CF sputum

17 (Sriramulu et al., 2005). nirD and nasC are in the same operon and form part of the assimilatory
antibiotics influenced expression, a down-regulation of QS-related genes and the T3SS is consistent with chronic infection in the CF lung (Shen et al., 2008). In vivo, reduced expression of QSregulated virulence determinants likely reduces inflammation, limiting the robustness of the et al., 2005). Of the structural component genes (algD, pilB, fliC) mutated by Sriramulu et al to test effects on microcolony formation, none were significantly differentially expressed during stationary phase growth in ASMDM, possibly because they were no longer required once the biofilm had nitrate reduction pathway, involving the reduction of nitrate to ammonia. Nitrate utilization is vital for growth and survival in the microaerophilic and anaerobic environment of CF sputum (Schreiber et al., 2007). We propose to study the utilization of nitrate by creating nirS-gfp and nasC-gfp

3. Validation of differential expression data by qRT-PCR

Validation studies using quantitative SYBR-green RT-PCR showed that all 11 genes (including those with $\mathrm{B}<0$ and $\mathrm{p}>0.05$) were up or downregulated in the same manner as in microarray analysis, and the correlation plot (Fig. 3) yielded a correlation coefficient of R ${ }^{2}=0.7629$.

1 CONCLUSIONS

2 This study represents the first assessment of global gene expression of a P. aeruginosa strain in an 3 artificial sputum medium under both exponential and stationary phase conditions. Overall, the 4 results show a switch from upregulation of nutrition-related genes, QS, and T3SS genes in early 5 exponential phase to upregulation of iron transport, fimbrial biogenesis and alginate genes, with 6 concomitant downregulation of virulence-related genes and QS regulators in stationary phase.

7 Upregulated anaerobic gene expression is present in both early exponential and stationary phases.
8 The differential gene expression patterns in exponential phase confirm conclusions drawn from
9 other acute infection in vitro model systems and CF sputum (De Kievit et al., 2001; Manos et al.,
10 2008; Manos et al., 2009; Palmer et al., 2005). Gene expression in stationary phase is consistent
11 with findings in other in vitro models (De Kievit et al., 2001; Sarkisova et al., 2005; Wagner et al.,
12 2003), while phenotypic growth characteristics compare well with those found in sputum from
13 patients with established infection (Bjarnsholt et al., 2009). Therefore ASMDM provides a
14 physiologically relevant picture of P. aeruginosa growth in CF sputum. However UCBPP-PA14 is
15 a wound-derived isolate, with likely differences in its gene expression pattern compared to CF
16 isolates. Furthermore, component concentrations in ASMDM may have to be adjusted to account
17 for variations in patients' CF sputum based on their disease stage. Nonetheless, the results obtained 18 herein are a valid starting point for further studies of the pathobiology of P. aeruginosa in the CF 19 lung and for investigations of how individual components of ASMDM affect gene expression in 20 both CF and non- CF isolates.

21

22 ACKNOWLEDGEMENTS

23 We thank Dr. Lawrence Rahme (Harvard Medical School, Mass, USA), for kindly providing strain
24 UCBPP-PA14, Dr David Armstrong (Monash Medical Center, Melbourne, Australia) for strain 25 AES-1R and Dr Claire Wainwright (Royal Children's Hospital Brisbane Australia) for strain 26 34Bris. We are also grateful for support from Cure Finders Foundation (Sevierville, TN) to D. J.

1 Hassett, a non-profit organization dedicated to a cure for Cystic Fibrosis. C. Whitchurch was 2 supported by a NHMRC Career Development Award and a NHMRC Senior Research Fellowship. 3 This study was partly funded by a University of Sydney Early Career Research (ECR) Grant to J. 4 Manos (2009-K9424 R5554).

FIGURE LEGENDS

Fig. 1: Growth curves of P. aeruginosa UCBPP-PA14 in MOPS-Glucose, ASMDM and LB. Test tubes containing 2 ml of media were inoculated from a single colony and grown with shaking at 250 rpm for MOPS-Glucose and ASMDM, and 50 rpm for LB. Readings were taken periodically at $\underline{\mathrm{OD}}_{600}$.

Fig. 2: Growth of P. aeruginosa UCBPP-PA14 and two strains isolated from CF patients, in ASMDM. Cell growth was identified by the oxidation of 2,3,5 triphenyltetrazolium chloride (5\% w/v) added to the medium. Fig. 2A: Growth of P. aeruginosa UCBPP-PA14, the Australian Epidemic Strain-1 isolate AES-1R and the non-epidemic isolate 34Bris in 24-well plates at 24 and 48 h post-inoculation, showing evidence of microcolony formation through the increasing density of the stained regions. The red color of the indicator oxidized by growing cells demarcates the boundaries of the expanding region of cell to cell attachment leading to microcolony formation. By 72 h the entire wells were colored red in all strains tested (not shown). Fig. 2B: Growth of P. aeruginosa UCBPP-PA14 and AES-1R in McCartney bottles: 24 h : A pellicle of varying thickness has developed. 48 h : Pellicle has thickened and deeper growth is evident in the form of finger-like projections (circled). 72 h : Projections coalesce to form an almost continuous growth in the upper two-thirds of the medium.

Fig. 3: Correlation plot of microarray and quantitative RT-PCR fold value data for 11 genes (trpA, putA, dadX, oprB, exaB, exoT, aroQ2, phzD, pfeA, aprE and pchD) used in the validation of the microarray results. The plot had a correlation coefficient $\mathrm{R}^{2}=\underline{0.7629}$.

Fig. 1

Fig. 2A

Fig. 2B

Fig. 3

Table 1A: Genes differentially expressed during early log-phase growth ($\mathrm{OD}_{600}=0.3 \pm 0.1$) in both ASMDM and CF sputum-containing medium ($\geq \mathbf{2}$-fold).

Gene ID	Description	Fold Change	
		CF Sputum	ASMDM vs
		medium vs	glucose ${ }^{\text {\# }}$
		glucose ${ }^{\dagger}$	

Nutrition-controlled genes

Amino Acid Biosynthesis

PA0035 trpA	Tryptophan synthase alpha chain	-7	-7.3
PA0036 trpB	Tryptophan synthase beta chain	-9	-8.6
	Acetolactate synthase isozyme III small		
PA4695 ilvH	subunit	-2.6	-2.5

Amino Acid Transport and Degradation

PA0782 putA	Proline dehydrogenase PutA	4.3	10.0
*PA0865 hpd	4-Hydroxyphenylpyruvate dioxygenase	66	2.3
*PA0870 phhC	Aromatic amino acid aminotransferase	9.0	2.4
*PA0871 phhB	Pterin-4- α-carbinolamine dehydratase	5.0	2.6
*PA0872 phhA	Phenylalanine-4-hydroxylase	32	2.9
*PA0898 aruD	Succinylglutamate-5-semialdehyde	2.7	2.4
	dehydrogenase		
PA2001 atoB	Acetyl coenzyme A acetyltransferase	16	10.8
PA2007 maiA	Maleylacetoacetate isomerase	8	3.0
PA2008 fahA	Fumarylacetoacetase	9	4.9
PA2009 hmgA	Homogenitisate 1,2-dioxygenase	11	8.9
*PA2249bkdB	Branched chain α-keto acid	13	2.5

dehydrogenase			
*PA2250 lpdV	Lipoamide dehydrogenase-Val	19	3.0
PA4470 fumC1	Fumarate hydratase	6	-8.7
PA5302 dadX	Catabolic alanine racemase	9	4.5
	D-amino acid dehydrogenase, small		
PA5304 dadA	subunit	20	5.7
Glucose Transport and Metabolism			
PA2322	Gluconate permease	-5.5	-35.0
	Probable glyceraldehyde-3-phosphate		
PA2323	dehydrogenase	-3.8	-9.6
	2-Keto-3-deoxy-6-phosphogluconate		
PA3181	aldolase	-3	-12.3
	Carbohydrate outer membrane porin		
PA3186 oprB	OprB	-2.7	-11.7
	Glyceraldehyde-3-phosphate		
*PA3195 gapA	dehydrogenase	-3.2	-4.8
Other genes differentially expressed in CF sputum-containing medium and ASMDM			
PA0034	Probable two-component response regulator	-7	-7.3
PA0672	Heme oxygenase	6.0	-6.9
*PA0730	Probable transferase	-7	-5.3
PA1983 exaB	Cytochrome c550	-16	-5.4
PA1999	Probable coenzyme A tranferase, subunit A	28	48.2
PA2000	Probable coenzyme A transferase, subunit B	22	22.2
*PA2194 hcnB	Hydrogen cyanide synthase HenB	5	8.0
PA2426 pvdS	Sigma factor PvdS	10	-68.1
*PA3790 oprC	Outer membrane porin protein C	14	2.5

	Probable permease of ABC taurine		
PA3936	transporter	-8	-5.1
PA3938	Probable periplasmic taurine-binding	-5	-9.3
	protein precursor		
PA4131	Probable iron-sulfur protein	7	5.6
PA4221 fptA	Fe(III)-pyochelin outer membrane receptor	44	-67.9
PA4224 pchG	Precursor		
PA4225 pchF	Pyochelin synthetase	96	-26.3
PA4226 pchE	Dehydroaeruginoic acid synthetase	75	-19.9
PA4229 pchC	Pyochelin biosynthesis protein PchC	80	-29.8
PA4230 pchB	Salicylate biosynthesis protein PchB	139	-44.3
PA4231 pchA	Salicylate biosynthesis isochorismate	121	-108.1
PA4514	Pynthase	-33.2	
PA5303	Conserved hypothetical protein	21	9

[^0]\# Fold change of UCBPP-PA14 grown in ASMDM compared to growth in MOPS-glucose medium.

* Fold change below cutoff, i.e. $\mathrm{B}<0$ or $\mathrm{p}>0.05$.

Table 1B: Genes of known function differentially expressed in ASMDM but not CF sputumcontaining medium during early log-phase growth $\left(\mathrm{OD}_{600}=0.3 \pm 0.1\right)(\geq 3-$ fold $)$.
Gene ID Description Fold \dagger
Upregulated
PA0044 exoT Exoenzyme T 15.5
PA0265 gabD Succinate-semialdehyde dehydrogenase 5.0
PA0447 gcdH Glutaryl-CoA dehydrogenase 11.3
PA0511 nirJ Heme d1 biosynthesis protein NirJ 4.6
PA0514 nirL Heme d1 biosynthesis protein NirL 4.8
PA0516 nirF Heme d1 biosynthesis protein NirF 6.4
PA0517 nirC Probable c-type cytochrome precursor 12.5
PA0518 nirM Cytochrome c-551 precursor 14.7
PA0519 nirS Nitrite reductase precursor 14.8
PA0783 putP Sodium/proline symporter 3.3
PA0796 prpB Carboxyphosphoenolpyruvate phosphonomutase 8.2
PA1477 ccmC Heme exporter protein CcmC 3.2
PA1480 ccmF Cytochrome C-type biogenesis protein CcmF 5.1
PA1546 hemN Oxygen-independent coproporphyrinogen III oxidase 4.8
PA1693 pscR Translocation protein in type III secretion 7.1
PA1694 pscQ Translocation protein in type III secretion 5.3
PA1695 pscP Translocation protein in type III secretion 9.4
PA1696 pscO Translocation protein in type III secretion 11.3
PA1698 popN Outer membrane protein PopN 4.8
PA1704 pcrR Transcriptional regulator protein PcrR 3.2
PA1706 pcrV Type III secretion protein PcrV 23.2
PA1707 pcrH Regulatory protein PcrH 41.0
PA1708 popB Translocator protein PopB 19.9
PA1709 popD Translocator outer membrane protein PopD precursor 17.2
PA1710 exsC ExsC, exoenzyme S synthesis protein C precursor 13.1
PA1712 exsB Exoenzyme S synthesis protein B precursor 9.3
PA1713 exsA T3SS transcriptional regulator ExsA 8.3
PA1715 pscB Type III export apparatus protein 13.0
PA1716 pscC Type III secretion outer membrane protein PscC precursor 8.9
PA1717 pscD Type III export protein PscD 5.7
PA1718 pscE Type III export protein PscE 12.9
PA1719 pscF Type III export protein PscF 9.9
PA1720 pscG Type III export protein PscG 7.3
PA1721 pscH Type III export protein PscH 11.7
PA1722 pscI Type III export protein PscI 8.1
PA1723 pscJ Type III export protein PscJ 7.5
PA1724 pscK Type III export protein PscK 3.8
PA1725 pscL Type III export protein PscL 4.6
PA1871 lasA LasA protease precursor 5.3
PA2003 bdhA 3-hydroxybutyrate dehydrogenase 4.5
PA2191 exoY Adenylate cyclase ExoY 8.7
PA2193 hcnA Hydrogen cyanide synthase HenA 3.5
PA2279 ars $C \quad$ ArsC protein 3.4
PA2300 chiC Chitinase 3.8
PA2442 gcvT2 Glycine cleavage system protein T2 6.4
PA2444 glyA2 Serine hydroxymethyltransferase 36.9
PA2445 gcvP2 Glycine cleavage system protein P2 25.7
PA2446 gcvH2 Glycine cleavage system protein H2 43.6
PA2755 eco Ecotin precursor 3.8
PA2830 hptX Heat shock protein HptX 3.8
*PA3478 rhlB Rhamnosyltransferase chain B 5.9
PA3479 rhlA Rhamnosyltransferase chain A 5.4
PA3569 mmsB 3-hydroxyisobutyrate dehydrogenase 5.9
PA3570 mmsA Methylmalonate-semialdehyde dehydrogenase 10.8
PA4210 phzA1 Phenazine biosynthesis protein A 9.1
PA4211 phzB1 Phenazine biosynthesis protein B 4.5
PA4587 ccpR Cytochrome c551 peroxidase precursor 64.4
PA4865 ureA Urease gamma subunit 4.6
PA5098 hutH Histidine ammonia-lyase 5.0
PA5100 hutU Urocanase 6.8
PA5170 $\operatorname{arcD} \quad$ Arginine/ornithine antiporter 4.1
PA5172 $\operatorname{arcB} \quad$ Ornithine carbamoyltransferase 5.1
PA5415 glyA1 Serine hydroxymethyltransferase 8.7
PA5427 adhA Alcohol dehydrogenase 21.1
Downregulated
PA0281 cysW Sulfate transport protein CysW -5.3
PA0282 cysT Sulfate transport protein CysT -3.8
PA1178 oprH PhoP/Q and low Mg^{2+} inducible outer membrane protein H 1 -9.7
precursor
PA1493 cysP Sulfate-binding protein of ABC transporter -3.0
PA2386 pvdA L-ornithine N5-oxygenase -21.4
PA2397 pvdE Pyoverdine biosynthesis protein PvdE -10.9
PA2398 fpvA Ferripyoverdine receptor -28.9

PA2507 catA	Catechol 1,2-dioxygenase	-4.4
PA2508 catC	Muconolactone delta-isomoerase	-3.8
PA2513 antB	Anthranilate dioxygenase small subunit	-3.7
PA2687 pfeS	Two-component sensor PfeS	-5.4
PA3192 gltR	Two-component response regulator GltR	-3.9
PA3193 glk	Glucokinase	-3.2
PA3603 dgkA	Diacylglycerol kinase	-3.0
PA3935 tauD	Taurine dioxygenase	-10.6
PA3937	Probable ATP-binding component of ABC taurine transporter	-6.9
PA4442 cysN	ATP sulfurylase GTP-binding subunit/APS kinase	-4.7
PA4468 sodM	Superoxide dismutase	-7.4
PA4687 hitA	Ferric iron-binding periplasmic protein HitA	-7.1
PA4688 hitB	Iron (III)-transport system permease HitB	-5.6
PA5531 tonB	TonB protein	-7.1

[^1]* Fold change below cutoff, i.e. $\mathrm{B}<0$ or $\mathrm{p}>0.05$.

Table 2: Genes differentially expressed in ASMDM after 72 h compared to stationary phase growth in LB (≥ 2-fold $)$.

Gene ID	Description	Fold
Upregulated		
PA0013	Conserved hypothetical protein	5.3
PA0245 aroQ2	3-dehydroquinate dehydratase AroQ2	5.2
PA0491	Probable transcriptional regulator	3.2
PA0685	Probable type II secretion system protein	5.5
PA0824	Hypothetical protein	3.2
PA0886	Probable C4-dicarboxylate transporter	6.8
PA0987	Conserved hypothetical protein	3.7
*PA1251	Probable chemotaxis transducer	3.2
PA1286	Probable MFS transporter	3.9
*PA1635 kdpC	Potassium-transporting ATPase	3.2
PA1779 nasC	Assimilatory nitrate reductase	3.0
PA1780 nirD	Assimilatory nitrate reductase small subunit	2.6
PA1962	Conserved hypothetical protein	3.8
PA2688 pfeA	Ferric enterobactin receptor PfeA	3.8
PA2780	Hypothetical protein	7.6
*PA3387 rhlG	Beta-ketoacyl reductase	2.9
*PA3545 algG	alginate-c5-mannuronan-epimerase AlgG	2.7
*PA3547 algL	poly(beta-d-mannuronate) lyase precursor AlgL	3.8
PA4033	Hypothetical protein	12.3
PA4072	Probable amino acid permease	4.5
PA4084	Probable fimbrial biogenesis usher protein	5.3
PA4158 fep C	Ferric enterobactin transport protein FepC	3.0

PA4574	Conserved hypothetical protein	4.8
PA4629	Hypothetical protein	3.2
PA4823	Hypothetical protein	5.6
*PA4901 mdlC	benzoylformate decarboxylase	2.7
PA5469	Conserved hypothetical protein	5.4
Downregulated		
PA0399	Cystathionine beta-synthase	-4.5
PA0400	Probable cystathionine gamma-lyase	-3.4
PA0572	Hypothetical protein	-5.1
PA0587	Conserved hypothetical protein	-6.2
PA0620	Probable bacteriophage protein	-5.8
PA0622	Probable bacteriophage protein	-9.2
PA0625	Probable bacteriophage protein	-5.7
PA0631	Probable bacteriophage protein	-3.9
PA0633	Probable bacteriophage protein	-7.6
PA0634	Probable bacteriophage protein	-7.6
PA0635	Probable bacteriophage protein	-7.2
PA0744	Probable enoyl-CoA hydratase/isomerase	-3.7
PA0745	Probable enoyl-CoA hydratase/isomerase	-4.4
PA0746	Probable acyl-CoA dehydrogenase	-3.7
*PA0958 oprD	Outer membrane porin protein OprD	-3.2
*PA0996	Probable coenzymeA ligase	-2.6
PA0997 pqsB	Beta-keto-acyl-acyl-carrier protein synthase B	-5.3
PA0998 pqsC	Beta-keto-acyl-acyl-carrier protein synthase C	-5.4
*PA0999 fabH1	3-oxoacyl-[acyl-carrier-protein] synthase III	-4.4
*PA1246 aprD	Alkaline protease secretion protein AprD	-2.8

*PA1247 aprE Alkaline protease secretion protein AprE -3.2
*PA1250 aprI Alkaline proteinase inhibitor AprI -2.7
PA1431 rsaL Regulatory protein RsaL -6.1
*PA1587 lpdG Lipoamide dehydrogenase G -5.9
*PA1871 lasA LasA protease precursor -7.2
*PA1901 phzC2 Phenazine biosynthesis protein PhzC -7.0
PA1902 phzD Phenazine biosynthesis protein PhzD -9.1
PA1903 phzE Phenazine biosynthesis protein PhzE -5.0
*PA1904 phzD2 Probable phenazine biosynthesis protein PhzD2 -6.0
PA1905 phzG2 Probable pyridoxamine 5'-phosphate oxidase -5.4
PA1999 Probable CoA transferase, subunit A -5.7
PA2000 Probable CoA transferase, subunit B -4.1
*PA2007 maiA Maleylacetoacetate isomerase -5.7
*PA2195 hcnC Hydrogen cyanide synthase -3.7
*PA2247 bkdA1 2-oxoisovalerate dehydrogenase (alpha subunit) -4.5
*PA2249 bkdB Branched-chain alpha-keto acid dehydrogenase -5.1
*PA2250 lpdV Lipoamide dehydrogenase V -6.7
PA2303 Hypothetical protein -3.4
PA2553 Probable acyl-CoA thiolase -4.7
PA3101 хсрT General secretion pathway protein G -3.5
*PA3103 хсрR General secretion pathway protein E -4.0
PA3190 Conserved hypothetical protein -6.0
PA3477 rhlR Transcriptional regulator RhlR -4.4
PA3719 Hypothetical protein -4.4
PA4208 Probable outer membrane efflux protein precursor -5.8
*PA4236 katA Catalase -6.4

* Fold change below cutoff, i.e. $\mathrm{B}<0$ or $\mathrm{p}>0.05$.

REFERENCES

Alvarez-Ortega, C. \& Harwood, C. S. (2007). Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65, 153-165.

Barken, K. B., Pamp, S. J., Yang, L. \& other authors (2008). Roles of type IV pili, flagellummediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10, 2331-2343.

Beatson, S. A., Whitchurch, C. B., Sargent, J. L., Levesque, R. C. \& Mattick, J. S. (2002). Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J Bacteriol 184, 3605-3613.

Benjamini, Y. \& Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Royal Statistical Society Series B 15, 289:300.

Berthelot, P., Attree, I., Plesiat, P., Chabert, J., de Bentzmann, S., Pozzetto, B. \& Grattard, F. (2003). Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes. J Infect Dis 188, 512-518.

Bjarnsholt, T., Jensen, P. O., Fiandaca, M. J., Pedersen, J., Hansen, C. R., Andersen, C. B., Pressler, T., Givskov, M. \& Hoiby, N. (2009). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44, 547-558.

Bolstad, B. M., Irizarry, R. A., Astrand, M. \& Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193.

Brandt, T., Breitenstein, S., von der Hardt, H. \& Tummler, B. (1995). DNA concentration and length in sputum of patients with cystic fibrosis during inhalation with recombinant human DNase. Thorax 50, 880-882.

Brint, J. M. \& Ohman, D. E. (1995). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177, 7155-7163.

Davey, M. E., Caiazza, N. C. \& O'Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185, 1027-1036.

De Kievit, T. R., Gillis, R., Marx, S., Brown, C. \& Iglewski, B. H. (2001). Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67, 1865-1873.

Dean, C. R., Neshat, S. \& Poole, K. (1996). PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J Bacteriol 178, 5361-5369.

Garcia-Medina, R., Dunne, W. M., Singh, P. K. \& Brody, S. L. (2005). Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells. Infect Immun 73, 82988305.

Gautier, L., Cope, L., Bolstad, B. M. \& Irizarry, R. A. (2004). affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307-315.

Gentleman, R. C., Carey, V. J., Bates, D. M. \& other authors (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, R80.

Gupta, R., Gobble, T. R. \& Schuster, M. (2009). GidA posttranscriptionally regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 191, 5785-5792.

Hassett, D. J., Cuppoletti, J., Trapnell, B. \& other authors (2002). Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54, 14251443.

Hassett, D. J., Sutton, M. D., Schurr, M. J., Herr, A. B., Caldwell, C. C. \& Matu, J. O. (2009). Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol 17, 130-138.

Henke, M. O., John, G., Germann, M., Lindemann, H. \& Rubin, B. K. (2007). MUC5AC and MUC5B mucins increase in cystic fibrosis airway secretions during pulmonary exacerbation. Am J Respir Crit Care Med 175, 816-821.

Juhas, M., Wiehlmann, L., Salunkhe, P., Lauber, J., Buer, J. \& Tummler, B. (2005). GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol Lett 242, 287-295.

Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S. \& TolkerNielsen, T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48, 1511-1524.

Landry, R. M., An, D., Hupp, J. T., Singh, P. K. \& Parsek, M. R. (2006). Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 59, 142-151.

Lequette, Y. \& Greenberg, E. P. (2005). Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187, 37-44.

Lin, H. H., Huang, S. P., Teng, H. C., Ji, D. D., Chen, Y. S. \& Chen, Y. L. (2006). Presence of the exoU gene of Pseudomonas aeruginosa is correlated with cytotoxicity in MDCK cells but not with colonization in BALB/c mice. J Clin Microbiol 44, 4596-4597.

Manos, J., Arthur, J., Rose, B. \& other authors (2008). Transcriptome analyses and biofilmforming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. J Med Microbiol 57, 1454-1465.

Manos, J., Arthur, J., Rose, B. \& other authors (2009). Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett 292, 107-114.

Palmer, K. L., Mashburn, L. M., Singh, P. K. \& Whiteley, M. (2005). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187, 5267-5277.

Palmer, K. L., Aye, L. M. \& Whiteley, M. (2007a). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189, 8079-8087.

Palmer, K. L., Brown, S. A. \& Whiteley, M. (2007b). Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum. J Bacteriol 189, 4449-4455.

Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G. \& Ausubel, F. M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899-1902.

Reid, D. W., Lam, Q. T., Schneider, H. \& Walters, E. H. (2004). Airway iron and iron-regulatory cytokines in cystic fibrosis. Eur Respir J 24, 286-291.

Roy-Burman, A., Savel, R. H., Racine, S., Swanson, B. L., Revadigar, N. S., Fujimoto, J., Sawa, T., Frank, D. W. \& Wiener-Kronish, J. P. (2001). Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183, 1767-1774.

Sagel, S. D., Kapsner, R., Osberg, I., Sontag, M. K. \& Accurso, F. J. (2001). Airway inflammation in children with cystic fibrosis and healthy children assessed by sputum induction. Am J Respir Crit Care Med 164, 1425-1431.

Sarkisova, S., Patrauchan, M. A., Berglund, D., Nivens, D. E. \& Franklin, M. J. (2005). Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 187, 4327-4337.

Schreiber, K., Krieger, R., Benkert, B., Eschbach, M., Arai, H., Schobert, M. \& Jahn, D. (2007). The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J Bacteriol 189, 4310-4314.

Schuster, M., Lostroh, C. P., Ogi, T. \& Greenberg, E. P. (2003). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185, 2066-2079.

Shen, D. K., Filopon, D., Chaker, H., Boullanger, S., Derouazi, M., Polack, B. \& Toussaint, B. (2008). High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. Microbiology 154, 2195-2208.

Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M. \& Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62, 1264-1277.

Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J. \& Greenberg, E. P. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762-764.

Smyth, G. (2003). Statistical issues in cDNA microarray data analysis. In Functional genomics: Methods and Protocols, pp. 111-136. Edited by M. J. Brownstein \& A. B. Khodursky. NJ: Juman Press.

Sriramulu, D. D., Lunsdorf, H., Lam, J. S. \& Romling, U. (2005). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54, 667-676.

Tetz, G. V., Artemenko, N. K. \& Tetz, V. V. (2009). Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53, 1204-1209.

Van Alst, N. E., Wellington, M., Clark, V. L., Haidaris, C. G. \& Iglewski, B. H. (2009). Nitrite reductase NirS is required for type III secretion system expression and virulence in the human monocyte cell line THP-1 by Pseudomonas aeruginosa. Infect Immun 77, 4446-4454.

Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. \& Iglewski, B. H. (2003). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185, 2080-2095.

Waite, R. D., Papakonstantinopoulou, A., Littler, E. \& Curtis, M. A. (2005). Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187, 6571-6576.

Wang, J., Lory, S., Ramphal, R. \& Jin, S. (1996). Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol Microbiol 22, 1005-1012.

Worlitzsch, D., Tarran, R., Ulrich, M. \& other authors (2002). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317325.

Yoon, S. S., Coakley, R., Lau, G. W. \& other authors (2006). Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest 116, 436-446.

[^0]: ${ }^{\dagger}$ (Palmer et al., 2005)

[^1]: ${ }^{\dagger}$ Fold change of UCBPP-PA14 grown in ASMDM compared to growth in MOPS-glucose medium.

