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The development of DNA microarray technologies over the past decade has revolutionised translational cancer research. These
technologies were originally hailed as more objective, comprehensive replacements for traditional histopathological cancer
classification systems, based on microscopic morphology. Although DNA microarray-based gene expression profiling (GEP) remains
unlikely in the near term to completely replace morphological classification of primary brain tumours, specifically the diffuse gliomas,
GEP has confirmed that significant molecular heterogeneity exists within the various morphologically defined gliomas, particularly
glioblastoma (GBM). Herein, we provide a 10-year progress report on human glioma GEP, with focus on development of clinical
diagnostic tests to identify molecular subtypes, uniquely responsive to adjuvant therapies. Such progress may lead to a more precise
classification system that accurately reflects the cellular, genetic, and molecular basis of gliomagenesis, a prerequisite for identifying
subsets uniquely responsive to specific adjuvant therapies, and ultimately in achieving individualised clinical care of glioma patients.
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Morphological evaluation of cancers by light microscopy has been
the foundation for diagnosis, prognostication, and therapeutic
stratification for well over a century. However, patients with
morphologically identical tumours can have significantly different
clinical outcomes. To address the pressing medical need for more
accurate predictions, a variety of transformative technologies have
been developed over the last four decades – electron microscopy,
molecular biology, immunohistochemistry, and quantitative
RT–PCR – to refine traditional cancer classification or as outright
replacements. The newest such technology, DNA microarrays, was
introduced in 1995, and its potential clinical utility in oncology was
quickly recognised. In fact, the Director of the US National Cancer
Institute issued a challenge to the scientific community in 1999
(NCI, 1999) to ‘harness the power of comprehensive molecular
analysis technologies to make the classification of tumours vastly
more informative. This challenge is intended to lay the ground-
work for changing the basis (emphasis added) of tumour
classification from morphological to molecular characteristics.’
The response from the cancer research community has been

intense: nearly 14 000 publications have utilised DNA microarrays
for genome-wide gene expression profiling (GEP) in all aspects of
cancer research, from basic to translational to clinical. GEP has
unequivocally established that significant molecular heterogeneity
exists within morphologically defined cancers and that potentially

clinically relevant molecular subtypes can be identified. However,
to date, only two molecular diagnostic tests, developed using DNA
microarrays, have either been approved by the US Food and
Drug Administration (MammaPrint) or incorporated into practise
guidelines (Oncotype Dx) for clinical use in breast cancer
(Weigelt et al, 2009).
This discordance between scientific productivity and clinical

implementation over the course of a decade is not unexpected,
given the stringent sample requirements, pace of technology
development, data volume and complexity, continually evolving
data analysis techniques, lack of defined best practices for analysis,
and levels of evidence required for clinical use. A number of
excellent review articles have discussed these and other impedi-
ments in implementing GEP clinically (Dupuy and Simon, 2007;
Weigelt et al, 2009; Subramanian and Simon, 2010). Herein,
we review a decade of DNA microarray-based GEP on the most
common and biologically aggressive group of primary brain
tumours, the diffuse gliomas (hereafter referred as gliomas). The
discussion will re-visit morphological classification and address
the potential role of GEP in identifying clinically relevant
molecular subtypes of gliomas. We will then primarily focus on
studies that have examined the prognostic impact of multi-gene
signatures for the most deadly glioma, glioblastoma (GBM).

MORPHOLOGICAL CLASSIFICATION OF GLIOMAS

Bailey and Cushing established the first diagnostic classification
system for primary brain tumours in 1926, based on their
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understanding of the histogenetic basis of brain development and
the morphological resemblance of primary brain tumours to their
presumed developmental counterparts by light microscopy.
This system has been refined periodically, culminating in the
current World Health Organization (WHO) scheme (Louis et al,
2007). Seven gliomas are currently recognised as distinct clinico-
pathological entities, each characterised by cytological and
immunohistochemical evidence of differentiation along astro-
cytic, oligodendroglial, or both glial lineages (Table 1). Further
refinement into distinct prognostic groups is dictated by
histological grading (II–IV), based on morphological features
associated with more aggressive biology, including mitoses,
microvascular proliferation, and necrosis (Miller and Perry,
2007). Molecular and genetic features constitute an additional
level of detail utilised not only to diagnostically differentiate
among these entities but also increasingly to predict clinical
outcomes and response to adjuvant therapies.
The prognostic power of the current WHO glioma classification

has facilitated its widespread adoption for clinical patient manage-
ment. However, it has long been recognised that individual
patients within each diagnostic category can have vastly different
outcomes that are not otherwise accounted for by established
prognostic factors, including age, Karnofsky performance status
(KPS), and therapy. This prognostic variability can be visualised

using the 95% confidence intervals of Kaplan–Meier survival
curves (Figure 1). The extent to which prognostic factors account
for outcome variability in multivariate Cox proportional hazards
models can be quantified with metrics such as Harrell’s C statistics
(Table 1) (Miller et al, 2006). Using these two measurements,
prognostic variability is least pronounced in astrocytic gliomas
(Figure 1A), particularly GBM, and is substantially higher in mixed
(Figure 1B) and pure oligodendroglial (Figure 1C) gliomas.
Prognostic variability is most pronounced among the lower-grade
gliomas (Figures 1D and E). For these gliomas in particular,
accurate classification and prognostication have become increas-
ingly dependent on molecular assays. The most notable test detects
co-deletion of chromosomal arms 1p and 19q, a genetic signature
and favourable prognostic factor, strongly associated with
oligodendroglial differentiation (Miller et al, 2006). However, even
with ancillary molecular testing, classification of a subset of
morphologically ambiguous grade II and III gliomas remains
challenging, even among experienced neuropathologists (Miller
et al, 2006; Miller and Perry, 2007). Clearly, more objective,
molecular methods for diagnostic discrimination among gliomas
are needed.
The clinicopathological variables central to the WHO 2007

classification – patient age at diagnosis, differentiation (cytology),
histological grade, and 1p19q co-deletion status – account for

Table 1 Prognostic utility of the WHO 2007 classification for diffuse gliomas

WHO grade Multivariate analysis

II III IV
Prognostic

factor HR P-value
DC or

overall Ca

Astrocytomas
DA, A2 AA, A3 GBM, A4

N 78 161 748 Grade 1.9 o0.001 0.61
Median OS (y) 10.0 2.2 0.9 Ageb 1.9 o0.001 0.08
95% CI 6.9–13.0 1.7–2.7 0.8–1.0 All (N¼ 987) 0.69
Mean age 33 39 57
Grading criteria Mitoses MVP with/without necrosis

Oligoastrocytomas
OA, MOA2 AOA, MOA3 GBM-O, MOA4c

N 400 218 71 1p19q codel 2.6 o0.001 0.54
Median OS (y) 11.1 3.9 2.2 Ageb 2.1 o0.001 0.15
95% CI 9.0–15.0 2.8–4.6 1.3–3.4 Grade 2.2 0.007 0.10
Mean age 38 42 48 All (N¼ 559) 0.79
Grading criteria Mitoses with/without MVP Necrosis

Oligodendrogliomas
ODG, O2 AO, O3

N 395 273 1p19q codel 2.1 0.020 0.54
Median OS (y) 16.4 8.8 Ageb 2.4 o0.001 0.17
95% CI 12.9–21.1 6.5-ND Grade 2.5 0.004 0.03
Mean age 40 44 All (N¼ 539) 0.74
Grading criteria Mitoses with/without MVP

with/without necrosis

All diffuse gliomas
N 2344 1p19q codel 1.9 0.002 0.63
Median OS (y) 2.9 Ageb 1.8 o0.001 0.13
95% CI 2.5–3.6 Cytology 1.7 o0.001 0.04
Mean age 46 Grade 2.0 o0.001 0.03

All (N¼ 1363) 0.83

Abbreviations: AA, A3¼ anaplastic astrocytomas; AO, O3¼ anaplastic oligodendroglioma; codel¼ co-deletion; CI¼ confidence interval; DA, A2¼ diffuse astrocytoma;
HR¼ hazard ratio; GBM, A4¼ glioblastoma; GBM-O, MOA4¼ glioblastoma with oligodendroglial features; OA, MOA2¼mixed oligoastrocytoma; AOA, MOA3¼mixed
anaplastic oligoastrocytoma; MVP¼microvascular proliferation; ODG¼ olidodendroglioma; OS¼ overall survival; WHO¼World HeALTH organization; y¼ years. aHarrell’s C
statistic for the multivariable Cox proportional hazards model with all factors (C) or DC for each individual factor in the model Miller et al (2006). bAge at diagnosis trichotomized
as follows: p40, 40–60, X60 y Miller et al (2006). cNote that GBM-O (MOA4) is not currently recognised as a distinct clinicopathological entity by the WHO; instead, it is
considered a morphological pattern of GBM with a slightly more favourable prognosis Louis et al (2007). Data from adult patients (X20 y) with newly diagnosed gliomas at
Washington University School of Medicine (1977–2009 and Miller et al (2006)).
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70–80% of the prognostic variability among each of the three
major types of gliomas, based on the C index (Table 1). Inclusion
of additional clinical factors (e.g., KPS, therapy) not otherwise
available in this retrospective data set would likely account for
even more of the prognostic variability. Despite the inability to
accurately predict outcomes for individual patients, this example
clearly illustrates that existing clinicopathological factors account
for the vast majority of prognostic variability in gliomas. It is in
this context – the ability to provide prognostic information
independent of established factors – that the clinical utility of
GEP must be defined (Dupuy and Simon, 2007). The key for
clinical implementation of GEP will therefore be to quantify the
remaining 20–30% of prognostic variability by one of two means:
(1) utilising GEP as a diagnostic adjunct to more accurately classify
morphologically ambiguous gliomas, or (2) to identify prognos-
tically distinct molecular subtypes within otherwise morphologi-
cally homogeneous gliomas.

MOLECULAR CLASSIFICATION OF GLIOMAS

The earliest GEP studies utilised class comparison to identify
differentially expressed genes among morphologically defined
gliomas. Such genes were found in low-grade vs high-grade

astrocytomas (Rickman et al, 2001), high-grade oligodendroglio-
mas vs GBM (Nutt et al, 2003; Shirahata et al, 2007), primary vs
secondary GBM (Godard et al, 2003; Shai et al, 2003; Tso et al,
2006), adult vs paediatric GBM (Faury et al, 2007), or a variety of
morphologically defined glioma subtypes (Godard et al, 2003; Shai
et al, 2003; van den Boom et al, 2003). Using primarily hierarchical
clustering on differentially expressed genes, transcriptomal
profiles of individual tumours were shown to be most similar to
those from the same diagnostic category, that is, gliomas of similar
differentiation and grade. These studies confirmed that morpho-
logical differences among gliomas are reflected at the mRNA
transcript level and that differentially expressed genes could be
utilised to distinguish among morphologically defined subtypes.
However, discordance between morphological diagnosis and
GEP-defined molecular subtype was frequent, likely due in part
to inclusion of difficult to classify morphologically ambiguous
gliomas.
Nutt, Louis, and colleagues provided a glimpse of the potential

clinical utility of GEP as an ancillary diagnostic test for more
accurate glioma classification (Nutt et al, 2003). These investiga-
tors identified genes significantly correlated with either morpho-
logically classical GBM or anaplastic oligodendroglioma in a
training set of 21 tumours, and built a class prediction model that
showed 86% accuracy in assigning 29 diagnostically challenging
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Figure 1 Overall survival of patients with newly diagnosed gliomas, grouped on the basis of the two main components of the WHO classification system:
differentiation (cytology) – astrocytic (A), mixed oligoastrocytic (B), or oligodendroglial (C); and histological grade – WHO grade II (D), III (E), or IV (F).
Clinicopathological parameters, statistics, and abbreviations are listed in Table 1.
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GBM and anaplastic oligodendrogliomas to their respective
diagnostic categories. More importantly, a statistically significant
difference in overall survival for the GEP but not the morpholo-
gically defined groups was found, suggesting that GEP may provide
more accurate classification and prognostication, particularly for
morphologically ambiguous gliomas. These findings were con-
firmed by Shirahata et al (2007), who identified 168 differentially
expressed genes from PCR array data on 32 GBM and anaplastic
oligodendrogliomas, and used a weighted voting algorithm to
develop a 67-gene diagnostic assay with 96.6% accuracy
in distinguishing between these two prognostically distinct high-
grade gliomas from the published Nutt data set (Nutt et al, 2003).
Li, Fine, and colleagues provided the first report of a

comprehensive, molecular classification of all gliomas (Li et al,
2009). These authors utilised two unsupervised machine-learning
methods on a large training set (N¼ 159) of WHO grade II–IV
gliomas taken from all three histological categories. Guided only by
molecular data, without influence of prior morphological diagnosis,
they identified six hierarchically nested subtypes, divided into two
main categories (O and G). The first category contained two
subgroups (OA and OB) and the second had four nested subgroups
(GA1, GA2, GB1, and GB2). These data confirmed that morpho-
logical differences among gliomas are reflected at the mRNA
transcript level. Survival analyses showed that the O and G main
groups and the OA and OB subgroups of O-type tumours, but not
the four G subgroups, were prognostically distinct. Importantly, the
prognostic impact of the two main subgroups was confirmed in an
independent data set from The Cancer Genome Atlas (TCGA),
consisting entirely of GBM (Verhaak et al, 2010), whereas that of
the six subgroups was confirmed in the REMBRANDT (Madhavan
et al, 2009) and Phillips et al (2006) data sets consisting of all seven
gliomas. However, the concordance between GEP-defined subtypes
and histopathological diagnoses was not assessed and multivariate
survival analyses with known prognostic factors were not
conducted.
In retrospect, the aforementioned studies utilised small (No100

per diagnostic category), ostensibly convenience cohorts of
previously banked, frozen gliomas. As such, individual studies
were statistically underpowered to assess the diagnostic discrimi-
natory power of GEP vis-à-vis morphological classification. More-
over, the relatively small sample sizes and lack of data on known
prognostic covariates precluded comprehensive multivariable
analyses. Particularly for the earlier studies, the prognostic impact
of GEP signatures could not be validated in large, external data sets
(Subramanian and Simon, 2010). Fortunately, most data have been
deposited in publically available online repositories, including the
Gene Expression Omnibus and REMBRANDT (Madhavan et al,
2009). These data have already been instrumental in both novel
hypothesis-driven, mechanistic studies (Brennan et al, 2009) and
subsequent GEP studies described below. Only through collection
of GEP data on a sufficient number of all seven morphologically
defined gliomas will it be possible to assess whether GEP will be
diagnostically robust enough to replace morphology as the basis
for glioma classification.

GEP IDENTIFIES PROGNOSTICALLY DISTINCT
MOLECULAR SUBTYPES OF GLIOMAS

A number of GEP studies have identified prognostically distinct
molecular subtypes of gliomas. In 2004, Freije, Nelson, and
colleagues analysed 74 gliomas from four histological types and
identified 595 differentially expressed genes that correlated with
overall survival (Freije et al, 2004). Hierarchical clustering showed
four molecular subtypes (labelled HC1A, HC1B, HC2A, and HC2B)
that segregated into two distinct (P¼ 0.00011) survival clusters
(SCs): SC1 (93% HC1A/B and 62% non-GBM) and SC2
(76% HC2A/B and 89% GBM) with 4.8 and 0.6 years (y) median

overall survival, respectively. Prognostic significance was con-
firmed in the independent Nutt data set (Nutt et al, 2003), and
multivariate analysis showed that survival cluster was independent
of patient age and histological grade. Functional annotation of the
gene lists showed that HC1A subtype tumours were enriched for
genes involved in neurogenesis (Kriegstein and Alvarez-Buylla,
2009), suggesting a more differentiated phenotype. In contrast, the
poor survival subtypes were enriched for proliferation (HC2A) and
extracellular matrix/invasion-related (HC2B) genes. A similar list
of survival-related genes implicated in neurogenesis was identified
by Liang et al (2005), who also showed that GBM could be divided
into two prognostically distinct molecular subtypes (median
overall survival 2.1 vs 0.3 y).
In 2006, Phillips, Aldape, and colleagues analysed 76 high-grade

astrocytomas and identified 108 differentially expressed genes
significantly associated with overall survival (Phillips et al, 2006).
Hierarchical and k-means clustering with those genes showed
three distinct subtypes termed as proneural, proliferative, and
mesenchymal, based on functional annotation of representative
genes. Like Frieje HC1A, the proneural subtype was defined by
genes implicated in neurogenesis, composed predominantly (69%)
of non-GBM, and associated with significantly more favourable
median overall survival (3.6 vs p1.3 y), independent of
histological grade. In contrast, the proliferative and mesenchymal
gene signatures were enriched for proliferation- and extracellular
matrix/invasion-related genes, similar to the Frieje HC2A and
HCA2B subtypes, respectively. Prognostic significance of molecu-
lar subtype was validated in an independent cohort of 184 gliomas
of various histological types. Taken together, these results suggest
that (1) the molecular subtype of a majority of WHO grade II-III
gliomas is HC1A/proneural, and (2) HC1A/proneural GBM may
be more prognostically favourable.
Using published data sets and new GEP data on 86 GBM, a

subsequent meta-analysis by Lee et al (2008) utilised 377 differentially
expressed genes that divided GBM into four distinct subtypes on
hierarchical clustering: HC1A/proneural, HC2A/proliferative, HC2B/
mesenchymal, and a fourth with hybrid HC2A/HC2B features termed
ProMes. Survival analysis confirmed the more favourable prognosis of
HC1A/proneural GBM vs the remaining three molecular subtypes
(median 1.4 vs 0.9 y). With this larger data set of 267 GBM, the authors
also confirmed an association first identified by Phillips et al (2006),
namely that the mean age at diagnosis of proneural GBM patients was
significantly younger (51 vs 55 y, P¼ 0.02). Moreover, in multivariable
analyses, only molecular subtype, but not age, was significantly
associated with overall survival. These data suggest a molecular basis
for the known association of younger age with improved overall
survival in GBM patients.
However, it is of critical note that none of these prognostic

studies distinguished among recognised morphological variants of
GBM. As shown in Table 1, GBM with oligodendroglial features
occur in younger patients and have a significantly prolonged
overall survival compared with their GBM counterparts
(Po0.0001). Similarly, another morphological variant of GBM,
small-cell GBM (Miller and Perry, 2007), characterised by frequent
gains of chromosome 7 (EGFR) and loss of chromosome 10q
(PTEN), is morphologically similar to the prognostically more
favourable anaplastic oligodendroglioma, but lacks 1p19q
co-deletion. The recent recognition of these morphological patterns
of GBM (Louis et al, 2007; Miller and Perry, 2007), prognostically
distinct from anaplastic oligoastrocytoma and anaplastic oligoden-
droglioma, respectively, raises the possibility that earlier studies
were ‘contaminated’ with tumours known to have different
prognoses. In addition, at least two significant design flaws were
common in these studies (Dupuy and Simon, 2007; Subramanian
and Simon, 2010): (1) subtype-specific signature genes were
identified using heterogeneous training sets composed of various
histological subtypes (e.g., anaplastic astrocytoma and GBM) with
known differences in overall survival (Table 1) and (2) signature
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genes were defined on the basis of their association with outcome
in training sets, and their prognostic significance was re-analyzed
in independent test sets, raising the possibility that the correlation
between GEP-defined subtypes and overall survival were a
consequence of prior selection for outcome-related genes (Dupuy
and Simon, 2007). To avoid the first problem, future studies should
ideally define prognostic signatures in morphologically- and hence
prognostically homogeneous cohorts of gliomas. Moreover, con-
sensus diagnosis among multiple, experienced neuropathologists
and/or utilisation of ancillary molecular testing such as 1p19q
status for accurate assignment of morphologically ambiguous cases
into established diagnostic categories will be important quality
control measures.
The second problem is likely mitigated by two recently

published studies that have identified the HC1A/proneural subset
of GBM using gene signatures defined completely by unsupervised
methods. In the largest single-institution study conducted to date,
Gravendeel et al (2009) defined molecular subtypes for 276
gliomas of all histological types. Using 5000 genes with highly
variable expression, these authors identified six molecular
subtypes with distinct prognoses. Glioblastoma largely (73–86%)
fell into three clusters (18, 22, and 23) and these tumours showed
inferior prognosis relative to GBM in other clusters (9, 16, and 17)
(median overall survival 0.7 vs 2.1 y). Cluster 9 consisted primarily
(86%) of oligodendroglial neoplasms and the vast majority (82%)
appropriately harboured combined 1p19q loss-of-heterozygosity.
Notably, the prognostically superior cluster 17 (median overall
survival 3.3 and 2.1 y for all C17 gliomas and GBM, respectively)
significantly (97%) overlapped with the Phillips proneural subtype,
suggesting that detection of a subgroup of GBM with improved
prognosis and transcriptional profiles similar to lower-grade
gliomas was not a consequence of prior selection of outcome-
related genes (Phillips et al, 2006). Notably, cluster 22 was enriched
(38%) for secondary GBM, tumours that progress from lower-
grade precursors, arise in younger patients (Miller and Perry,
2007), and feature IHD1mutations (Yan et al, 2009), but lack EGFR
amplification (Louis et al, 2007). These findings confirm those
from a previous study that demonstrated distinct molecular
profiles in primary vs secondary GBM (Tso et al, 2006). Clusters
18 and 23 contained predominantly GBM (78 and 86%,
respectively) and showed significant overlap with Phillips pro-
liferative (52%) and mesenchymal (93%) subtypes (Phillips et al,
2006). On analysis of data (Murat et al, 2008) from the definitive
phase III clinical trial that established concomitant chemo-
radiotherapy and adjuvant temozolomide as the standard-of-care
for newly diagnosed GBM patients (Stupp et al, 2005), these
clusters were found to selectively benefit from combined
chemoradiation vs radiation alone. Importantly, multivariate
analysis included most known prognostic factors, including age,
gender, histological type, grade, KPS, surgery, chemotherapy,
EGFR amplification, 1p19q status, and IDH1 mutation (Yan et al,
2009). Only molecular subtype, KPS, and gender were significant,
independent prognostic factors in this data set (Pp0.02),
suggesting that molecular subtyping may be more prognostically
accurate than morphological classification. Moreover, these
authors validated the prognostic significance of their signatures
in four independent data sets (Phillips et al, 2006; TCGA, 2008; Li
et al, 2009; Madhavan et al, 2009).
The TCGA, established by the US National Cancer Institute and

National Human Genome Research Institute in December 2005,
with the mission of understanding ‘the molecular basis of cancer
through the application of genome analysis technologies,’ selected
GBM as its first cancer type for study, based on its uniformly poor
prognosis and limited treatment options. As part of this multi-
institutional project, we analysed 200 GBM on three different GEP
platforms (Verhaak et al, 2010). Unsupervised hierarchical cluster
analysis defined four subtypes, termed proneural, neural, classical,
and mesenchymal, based on functional gene annotation and prior

convention (Phillips et al, 2006). Significant overlap in molecular
subtypes was found for TCGA mesenchymal/Phillips mesenchymal/
Freije HC2B and TCGA proneural/Phillips proneural/Freije HC1A
(Freije et al, 2004; Phillips et al, 2006). Unlike previous studies, the
TCGA proneural subtype was not associated with improved
prognosis in the TCGA data set consisting solely of GBM, but
was in the validation of the data sets (Phillips et al, 2006;
Madhavan et al, 2009) containing lower-grade gliomas. Conversely,
re-analysis of the TCGA GBM data with Phillips molecular subtype
designations confirmed a slightly more favourable prognosis of the
Phillips proneural GBM (median overall survival 1.2 y) relative to
Phillips mesenchymal/proliferative GBM subtypes (1.0 and 0.6 y,
respectively, P¼ 0.03). These findings suggest that subtyping based
on prognosis-defined, but not ‘intrinsic’, unsupervised gene
signatures may identify a subset of GBM with more favourable
prognosis. However, similar to previous findings (Gravendeel et al,
2009), the TCGA classical and mesenchymal subtypes showed
significantly improved overall survival after conventional chemo-
radiation or X4 cycles of cytotoxic chemotherapy (P¼ 0.02),
suggesting that these subtypes may be particularly sensitive to
DNA-damaging agents. These hypotheses will be tested further in
two ongoing phase III clinical trials conducted by the Radiation
Therapy Oncology Group (RTOG), as discussed below.
Capitalising on the unprecedented level of molecular data

available for these tumours (TCGA, 2008), we identified recurrent
genomic aberrations in each molecular subtype. The classical
subtype was characterised by frequent EGFR amplification and
EGFRvIII mutations, CDKN2A deletion, and a lack of TP53
mutations, whereas the mesenchymal subtype was characterised
by NF1, TP53, and PTEN mutations. Consensus neuropathological
review of a subset of TCGA cases has shown that the proneural,
classical, and mesenchymal subtypes are enriched for GBM
with oligodendroglial features, small-cell GBM, and gliosarcoma
(a morphological variant of GBM with mesenchymal differentia-
tion (Miller and Perry, 2007)), respectively (Cameron Brennan,
personal communication). Moreover, pseudopalisading necrosis
and to a lesser extent florid microvascular proliferation are
frequent in mesenchymal GBM, but the proneural subtype
typically lacks necrosis. These findings suggest that mesenchymal
GBM may be uniquely susceptible to angiogenesis inhibitors, a
hypothesis currently being tested in the RTOG 0825 trial discussed
below. The proneural subtype, which like previous studies (Phillips
et al, 2006; Lee et al, 2008) was found in younger patients,
harboured frequent PDGFRA amplification and mutations in
IDH1, TP53, and PIK3CA/PIK3R1, suggesting susceptibility to
PDGFRA- and PI3K-targeted therapies. A recent proteomic
analysis confirmed protein- and phosphorylation-level signalling
abnormalities in the EGFR, PDGFR, and NF1 pathways in classical,
proneural, and mesenchymal subtypes of GBM, respectively,
further suggesting that these GBM subtypes may be uniquely
susceptible to targeted agents (Brennan et al, 2009).
A recent TCGA effort utilised methylation profiling to identify a

GBM CpG island methylator phenotype (G-CIMP) in a significant
fraction (29%) of proneural GBM, particularly secondary, IDH1
mutation-positive GBM that progressed from lower-grade tumours
(Noushmehr et al, 2010). This implies that G-CIMP might be
common in lower-grade gliomas, the majority of which cluster
with the proneural molecular subtype of GBM (Phillips et al, 2006;
Gravendeel et al, 2009). To further investigate this hypothesis,
Noushmehr and colleagues analysed eight G-CIMP gene regions in
seven hypermethylated loci in an independent cohort of 152 WHO
grade II and III gliomas by a MethyLight real-time PCR assay and
found 46% of astrocytomas and 93% of oligodendrogliomas to be
G-CIMP-positive. Furthermore, G-CIMP-positive GBM patients
were younger (median 36 vs 59 y, Po0.0001) and survived longer
than G-CIMP-negative GBM of both proneural and non-proneural
subtypes (median overall survival 2.9 vs 0.8 and 1.0 y, P¼ 7E�7).
Importantly, G-CIMP positivity was independent of age and
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Table 2 Summary of glioma microarray studies

Gliomas analysed Signature

Reference
Data
set Histologya

Total
(N) Source Findings

Genes
(N)

Biological process or
molecular
subtype

Rickman et al (2001) 19 PA, 21 GBM 40 Distinguishes PA and GBM. 360

T 7 O3, 14 GBM 21 Distinguishes O3 and GBM. 19
Nutt et al (2003) V 15 non-classic O3 29 86% predictive accuracy for morphologically ambiguous cases.

14 non-classic GBM Improved prognostic stratification vs histological classification.

Shai et al (2003) 5 A2, 3 O2, 18 priGBM, 9
secGBM

35 Distinguishes among histological subtypes. 170

van den Boom
et al (2003)

T Six A2, two MOA2-four
secGBM, two A3, two MOA3

16 Correlates with malignant progression. 66

V 9 A2, 10 A3, 17 priGBM, 7
secGBM

43 Progression-associated signature confirmed. 9

Godard et al (2003) T 12 A2, 14 priGBM, 5 secGBM 31 Confirmed findings of Shai et al (2003) and van den Boom et al
(2003).

9 Angiogenesis

Distinguishes A2/secGBM and priGBM. 13 Immune response
V 12 A2, 4 pri GBM, 4 secGBM 20 93% prediction accuracy. 72

Distinguishes priGBM and non-GBM astrocytomas. 58 Cell cycle

Tso et al (2006) 4 A2, 9 A3, 8 O2, 11 O3, 46
priGBM,

92 Distinguishes secGBM and non-GBM astrocytomas. 21 ECM

14 secGBM 84% predictive accuracy for 25 similarly treated priGBM and secGBM. 79
32 paediatric GBM Distinguishes two molecular subtypes of paediatric GBM,

based on Ras-Akt activation status.
1437

Faury et al (2007) Seven adult GBM 39 Distinguishes paediatric and adult GBM. 1569
Distinguishes among Ras-Akt with/without paediatric GBM and
adult GBM.

108 Phillips et al (2006)
proliferative

T 12 O3, 20 GBM 32 Distinguishes O3 and GBM. 168
Shirahata et al (2007) V 22 O3, 28 GBM 50 Nutt et al (2003) 96.6% predictive accuracy. 67

Improved prognostic stratification vs histological classification,
confirming Nutt et al (2003).

T 52 A2, 29 A3, 55 GBM, 11 O2,
11 O3, 1 MOA2

159 Defined six hierarchically nested molecular subtypes with three
distinct prognoses.

54 G-O

92% prediction accuracy. 69 OA-OB
352 GA1-GA2-GB1-GB2

Li et al (2009) V 7 A2, 18 A3, 68 GBM, 12 O2, 9
O3, 7 MOA2, 68 gliomas

187 Reproduced six molecular subtypes.

V 21 A3, 55 GBM 76 Phillips
et al (2006)

Prognostic significance confirmed.

O subtype perfectly overlapped Phillips proneural GBM, but with
two distinct prognoses.

V 265 GBM 265 TCGA Prognostic significance confirmed.

T 8 A3, 7 O2, 9 O3, 50 GBM 74 Defined four molecular subtypes with two distinct prognoses. Survival
Improved prognostic stratification vs histological classification. 595-44 HC1A – neurogenesis

Freije et al (2004) Prognostic independence from patient age and histological grade. HC1B – synaptic
transmission
HC2A – proliferation

V 22 O3, 28 GBM 50 Nutt et al (2003) Prognostic independence from patient age and histological grade. 344 HC2B – ECM

Liang et al (2005) 2 O2, 4 MOA2, 25 GBM 31 Defined two prognostic GBM subtypes, one similar to HC1A from
Freije et al (2004).

70 Survival

T 21 A3, 55 GBM 76 Defined three molecular GBM subtypes with two distinct
prognoses.

108-35

V 22 O3, 28 GBM 50 Nutt et al (2003) Prognostic significance validated. Survival
Phillips et al (2006) Prognostic independence from patient age and histological grade. Proneural – neurogenesis

V 31 A3, 1 O2, 13 O3, 7 MOA3,
132 GBM

184 89% of 73 WHO grade III gliomas are proneural. 35 Proliferative – cell cycle

Proneural subtype correlates with younger age at diagnosis. Mesenchymal – ECM

T 80 GBM from TMZ/XRT-TMZ
phase II/III clinical trials

80 Prognostic independence from patient age and MGMT
methylation.

18 HOX, self-renewal

Murat et al (2008) HOX signature associated with resistance to TMZ/XRT-TMZ. 10 EGFR
V 35 A3, 9 O3, 102 GBM 146 Freije et al (2004) Prognostic independence from patient age and histological grade. 18 HOX, self-renewal

Phillips et al (2006)

Mischel et al (2003) Survival
Nutt et al (2003) Defined four molecular GBM subtypes: three from Freije et al

(2004) and one hybrid ProMes.
HC1A-proneural

Lee et al (2008) 86 GBM 267 Shai et al (2003) Proneural subtype correlates with younger age at diagnosis. 595-377 HC2A-proliferative (Pro)
181 GBM from previous studies Freije et al (2004) Prognostic independence from patient age. HC2B-Mesenchymal (mes)

Rich et al (2005) ProMes
Phillips et al (2006)
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histological grade on multivariable analysis. These findings suggest
that G-CIMP defines a subset of proneural GBM and can be utilised
to further refine expression-defined subtypes. The co-occurrence
of G-CIMP/IDH1 mutation positivity in the proneural, neurogen-
esis-related subtype further suggests that IDH1 mutation and/or
G-CIMP may confer neoplastic susceptibility to a common neuron/
oligodendrocyte precursor cell of origin (Kriegstein and Alvarez-
Buylla, 2009), a hypothesis supported by the comparative
expression profiling data that showed enrichment of genes

expressed in purified, cultured murine oligodendrocytes in
proneural GBM (Verhaak et al, 2010).

CLINICAL IMPLEMENTATION OF GEP FOR GLIOMA
CLASSIFICATION

GEP-based diagnostic tests are currently being evaluated in
prospective, randomised clinical trials in breast cancer (Weigelt
et al, 2009). Similar progress in clinical neuro-oncology has

Table 2 (Continued )

Gliomas analysed Signature

Reference
Data
set Histologya

Total
(N) Source Findings

Genes
(N)

Biological process or
molecular
subtype

Defined six ‘intrinsic’ molecular subtypes with distinct prognoses.
Cluster nine prognostically favourable, enriched for
oligodendroglial neoplasms.

Gravendeel et al
(2009)

T 8 PA, 13 A2, 16 A3, 106 priGBM,
53 secGBM, 8 O2, 44 O3, 3
MOA2, 25 MOA3

276 Cluster 17 prognostically intermediate, histologically diverse,
overlapped with Phillips et al (2006) proneural.

5000

Clusters 18 and 23 prognostically inferior, enriched for GBM,
overlapped with Phillips et al (2006) proliferative and
mesenchymal.
Prognostic independence from Karnofsky performance status and
gender.

V 80 GBM 80 Murat et al (2008) Clusters 18 and 23 selectively benefited from TMZ/XRT-TMZ.
76 gliomas Phillips et al (2006)

V Li et al (2009) Prognostic significance confirmed.
296 gliomas Madhavan et al

(2009)
236 GBM TCGA

Defined four ‘intrinsic’ molecular subtypes; not prognostic in
TCGA data set.
Proneural: frequent PDGFRA amplification and mutations in IDH1,
TP53, and PIK3CA/PIK3R1.

Verhaak et al (2010) T 200 GBM 200 TCGA Classical: frequent EGFR amplification, EGFRvIII mutations, and
CDKN2A deletions.
Mesenchymal: frequent mutations in NF1, TP53, and PTEN.
TCGA proneural, Phillips proneural, and Freije HC1A overlap. Proneural – neurogenesis
TCGA mesenchymal, Phillips mesenchymal, and Freije HC2B
overlap.

840 Neural – synaptic
transmission

V 173 GBM TCGA Prognostic significance in five data sets with both GBM and
lower-grade gliomas.

Classical – EGFR

21 A3, 56 GBM Phillips et al
(2006)

Molecular subtypes reproducible in four independent data sets. Mesenchymal – immune
response

23 A3, 36 O2/3, 76 GBM 499 Sun et al (2006) Proneural subtype correlates with younger age at diagnosis.
44 GBM Beroukhim et al

(2007)
Molecular subtype – copy number correlations confirmed in
Beroukhim et al (2007) data set.

70 GBM Murat et al (2008) Intensive therapy-benefited classical and mesenchymal GBM from
TCGA and Murat et al (2008).

GBM CpG island methylator phenotype (G-CIMP) in 29% of
proneural GBM.

Noushmehr et al
(2010)

T 272 GBM 272 TCGA G-CIMP correlated with younger age at diagnosis and more
favourable prognosis.

1503

Prognostic independence from patient age and histological grade.
V 60 and 92 WHO grade II and III

gliomas
152 G-CIMP positivity in WHO grade II/III astrocytomas (45%) and

oligodendrogliomas (93%).
8

Nutt et al (2003)
T 110 GBM 110 Freije et al (2004) Defined consensus 38 gene signatures using top 200

survival-associated genes from each of four data sets.
38

Nigro et al (2005)
Colman et al (2010) Phillips et al (2006)

V 68 GBM with FFPE tissues 68 Selected nine genes on the basis of survival correlation and
technical compatibility with FFPE tissues.

Survival

Prognostic significance confirmed for both progression-free and
overall survivals.

V 101 GBM from patients treated
with standard-of-care TMZ/
XRT-TMZ

101 Prognostic independence from MGMT methylation status in the
101 GBM validation data sets.

9

Prognostic independence from patient age and Karnofsky
performance status in both validation data sets.

Abbreviations: ECM¼ extracellular matrix; FFPE¼ formalin-fixed, paraffin-embedded; priGBM¼ primary GBM; secGBM¼ secondary GBM; T¼ training; TMZ/XRT-TMZ¼ conco-
mitant temozolomide/radiation therapy and adjuvant temozolomide; V¼ validation. aSee table 1 for histological subtype abbreviations. Studies listed in order of appearance in the text.
Shading indicates the different datasets or gene signatures utilized in each individual study, along with the associated findings across each shaded row, where applicable.
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recently been made. On the basis of a previous report (Phillips et al,
2006), Colman et al (2010) identified a consensus 38 gene signatures
from four independent data sets and from this set chose nine genes
(AQP1, CHI3L1, EMP3, GPNMB, IGFBP2, LGALS3, OLIG2, PDPN,
and RTN1), based on their survival correlation and technical
compatibility, for development of a quantitative, reverse transcrip-
tion–polymerase chain reaction assay. On the basis of the logistical
difficulties in obtaining fresh frozen tumours for DNA microarray-
based assays, such an assay is absolutely critical for successful
clinical implementation with formalin-fixed, paraffin-embedded
(FFPE) GBM, which constitute the vast majority of clinical samples.
The prognostic impact of this nine-gene profile was uniformly
associated with both progression-free survival and overall survival,
and independent of clinical (age and KPS) and molecular factors,
including MGMT methylation status. This assay is currently being
tested in two prospective, randomised, phase III clinical trials,
conducted by the RTOG. RTOG0525 is investigating the use of dose-
intensive adjuvant temozolomide vs standard of care (Stupp et al,
2005) in patients stratified on the basis of MGMT promoter
methylation status. Prospectively banked FFPE tissue from this trial
will be retrospectively analysed using the nine-gene predictor to
confirm its prognostic significance relative to MGMT status in a
uniformly treated patient population. RTOG0825 is investigating the
benefit of adjuvant bevacizumab, a humanised, anti-angiogenesis
monoclonal antibody, to standard of care and will prospectively
randomise patients on the basis of both MGMT methylation status
and the nine-gene assay. The study will address, as a secondary end
point, the hypothesis that mesenchymal GBM will selectively benefit
from the addition of bevacizumab to standard-of-care. Results from
these important clinical trials are expected in 2011–2012. In
summary, molecular subtyping now has the potential to become a
readily implemented clinical test that may guide future treatment
decisions, particularly in identifying those patients most likely to
benefit from standard-of-care vs novel, molecularly targeted agents.

CONCLUSION

As we have outlined above and summarised in Table 2,
tremendous progress in DNA microarray-based GEP of gliomas

has been made over the past decade. In the next decade,
next-generation sequencing technologies such as RNA-seq (Wang
et al, 2009) promises to accelerate the pace and depth of discovery,
further strengthening GEP as a method for cancer classification by
directly determining transcript identity, structure, and abundance
at the single-base level. Although GEP has provided significant
insights into the molecular heterogeneity of morphologically
defined gliomas, its role in clinical neuro-oncology still remains
to be established. Thus, 10 years after the challenge thrown by the
director of the US National Cancer Institute, the need for a ‘vastly
more informative classification system’ for gliomas still exists. In
this review, we have argued that GEP and the established
morphological classification system are complementary, not
mutually exclusive. The most clinically appropriate uses of GEP
will be as a diagnostic adjunct to more accurately classify
morphologically ambiguous gliomas and the identification of
molecular subtypes within otherwise morphologically homo-
geneous gliomas. There has been substantial progress in defining
molecular subtypes of GBM. However, unlike commercially
available genomic tests for breast cancer, molecular subtyping in
GBM is unlikely to be utilised for risk stratification because of the
limited prognostic variability of this tumour. Rather, as illustrated
by the RTOG clinical trials, molecular subtyping in GBM shows
promise in identifying subsets that may be uniquely responsive to
specific adjuvant therapies. Thus, the recent merger of genomic
and histopathological classification bodes well for the future of
personalised medicine in neuro-oncology.
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